04

Исследование наносекундного разряда в аргоне при атмосферном давлении с предварительной ионизацией

© В.С. Курбанисмаилов¹, О.А. Омаров¹, Г.Б. Рагимханов^{1,¶}, Д.В. Терешонок²

¹ Дагестанский государственный университет, Махачкала, Россия

² Объединенный институт высоких температур РАН, Москва, Россия

[¶] E-mail: gb-r@mail.ru

Поступило в Редакцию 17 апреля 2018 г.

С применением высокоскоростного фотоэлектронного регистратора с наносекундным временным разрешением и на основе двумерной осесимметричной диффузионно-дрейфовой модели выполнено исследование влияния начальных условий на особенности формирования и развития катодонаправленной волны ионизации между двумя плоскими электродами в аргоне при атмосферном давлении.

DOI: 10.21883/PJTF.2019.02.47213.17334

Несмотря на большое число публикаций, посвященных исследованию импульсных объемных разрядов (OP), многие вопросы, связанные с физикой формирования начальных стадий, вызывают научные дискуссии [1–5].

В настоящей работе в условиях равномерной предварительной ионизации газа аргона при атмосферном давлении выполнено как экспериментальное, так и расчетно-теоретическое исследование формирования импульсного OP.

Подробное описание экспериментальной установки, а также методики исследования представлено в работе [5]. Амплитуда напряжения на разрядном промежутке изменялась в диапазоне $U_0 = 3-20$ kV. Начальная ионизация газа была на уровне $n_0 \sim 10^8$ cm⁻³ и создавалась посредством облучения через сетчатый анод диаметром 4 cm ультрафиолетом от стороннего искрового разряда. В качестве катода использовался цельный диск диаметром 4 cm из нержавеющей стали. Расстояние между параллельными электродами составляло d = 1 cm. Динамика формирования разряда с пространственным и временным разрешением в наносекундном диапазоне времени исследовалась с применением фотоэлектронного регистратора (ФЭР2-1).

На рис. 1 приведены пространственные картины формирования ОР в аргоне. При создании начальной концентрации электронов в промежутке $n_0 \approx 10^8 \text{ cm}^{-3}$ и незначительных перенапряжениях W = 10-100% первое регистрируемое свечение возникает на аноде к началу резкого роста тока и распространяется к катоду со скоростью $\sim (2-5) \cdot 10^7$ cm/s. На стадии формирования и распространения фронта свечения ток разряда меняется в пределах 1–10 А.

По мере продвижения фронта свечения к катоду концентрация электронов в разрядном промежутке увеличивается. Величина концентрации электронов, оцененная по сечению разряда и плотности тока, в уже сформировавшемся плазменном столбе составляет $\sim 10^{13} - 10^{14}$ сm⁻³. Перекрытие ионизационным фронтом разрядного промежутка приводит к образованию катодного пятна (рис. 1, кадр 4), из которого прорастает высокопроводящий искровой канал со скоростью $V_c \approx 2 \cdot 10^6$ cm/s.

Моделирование выполнено в двумерной осесимметричной постановке. Расчет проводится в аргоновой среде при атмосферном давлении в условиях, аналогичных эксперименту. Напряжение на электродах задавалось исходя из эксперимента для случая, когда амплитуда напряжения на разряднике составляла 6.8 kV.

Расчетная сетка по радиусу была равномерной с числом ячеек $N_r = 25$. В межэлектродном промежутке сетка сгущалась вблизи электродов $N_z = 250$. При этом увеличение числа ячеек по радиусу до 200 (по оси *z* количество ячеек не меняется) не приводит к существенному отличию решения.

Газоразрядная плазма рассматривается как сплошная многокомпонентная среда, состоящая из нейтральных атомов (Ar), электронов (e), возбужденных атомов (Ar^{*}) с энергией возбуждения 11.5 eV, атомарных (Ar^{*}) и молекулярных (Ar²) ионов. Кинетика рассматриваемых процессов, константы соответствующих реакций и потери энергии электрона были взяты из работы [6].

Приведенная далее система уравнений (1) включает в себя уравнения баланса заряженных и возбужденных частиц, уравнение для энергии электронов и уравнение Пуассона [7–10]. Нагрев нейтрального газа не учитывался. Температура тяжелых частиц в процессе расчета предполагалась равной температуре нейтрального газа (300 K).

$$\begin{aligned} \frac{\partial n}{\partial t} + \nabla \cdot \mathbf{\Gamma} &= S, \\ \mathbf{\Gamma} &= q n \mu \mathbf{E} - \nabla (D n), \\ \frac{\partial}{\partial t} \left(\frac{3}{2} n_e k_{\rm B} T_e \right) + \nabla \cdot \mathbf{F} &= Q_E - Q_{el} - Q_{in}, \\ \mathbf{F} &= \frac{5}{2} k_{\rm B} T_e \mathbf{\Gamma}_e - \nabla (\lambda_e T_e), \\ \lambda_e &= \frac{5}{2} n_e D_e, \\ \nabla \cdot \mathbf{E} &= \frac{e (n_{\rm Ar^+} + n_{\rm Ar_2^+} - n_e)}{\varepsilon_0}, \end{aligned}$$
(1)

Рис. 1. Оптические картины развития разряда в аргоне: p = 760 Torr, $U_0 = 6.8$ kV. Цифры I-4 — номера кадров.

где n, Γ , μ , D — концентрация, поток, подвижность и коэффициент диффузии соответствующих компонент плазмы, e — заряд электрона, $k_{\rm B}$ — постоянная Больцмана, T_e , λ_e , D_e — температура, теплопроводность и коэффициент диффузии электронов, n_e , $n_{\rm Ar^+}$, $n_{\rm Ar_2^+}$ концентрации электронов, атомарных и молекулярных ионов, Q_E — работа электрического поля, Q_{el} , Q_{in} упругие и неупругие потери энергии электронов, S источник рождения и гибели рассматриваемых частиц в плазме, **E** — напряженность электрического поля. Для ионов q = +1, для электронов q = -1, для возбужденных частиц q = 0.

Для диффузионного члена как в уравнении переноса, так и в уравнении энергии вместо общепринятых диффузионных потоков $\Gamma_{dif} = -D\nabla n$ и $\mathbf{F} = -\lambda_e \nabla T_e$ используются правильные выражения: $\Gamma_{dif} = -\nabla(Dn)$ и $\mathbf{F} = -\nabla(\lambda_e T_e)$ [11]. Коэффициенты подвижности для ионов и коэффициент диффузии возбужденных частиц в собственном газе взяты из работы [12].

Граничные условия на катоде для потенциала, концентраций заряженных (индекс i относится к атомарным и молекулярным ионам) и возбужденных (n^*) частиц:

$$egin{aligned} arphi_c &= 0, \quad rac{\partial n_i}{\partial z} = 0, \, \mathbf{\Gamma}_e = -\gamma \sum_i \mathbf{\Gamma}_i, \ n^* &= 0, \, rac{3}{2} k_{\mathrm{B}} T_e = I - 2 arphi_W; \end{aligned}$$

на аноде:

$$arphi_a=0, \quad rac{\partial n_e}{\partial z}=rac{\partial T_e}{\partial z}=0, \quad n_i=0, \quad n^*=0;$$

на боковых гранях расчетной области:

$$\frac{\partial \varphi}{\partial r} = \frac{\partial n_e}{\partial r} = \frac{\partial n_i}{\partial r} = \frac{\partial n^*}{\partial r} = \frac{\partial T_e}{\partial r} = 0,$$

где $\gamma = 0.1$ — второй коэффициент Таунсенда, I = 15.76 eV — потенциал ионизации аргона, $\varphi_W = 4.5 \text{ eV}$ — работа выхода катода. Для ионэлектронной эмиссии учитывался поток на катод как атомарных, так и молекулярных ионов. Интегрирование проводилось явным методом [13] со вторым порядком точности по времени и пространству с числом Куранта 0.1. Уравнение Пуассона решалось итерационным методом переменных направлений.

Из анализа результатов моделирования следует, что электроны вследствие дрейфа уходят из прикатодной области в сторону анода, тем самым увеличивая концентрацию электронов в положительном столбе за счет ионизационного размножения (рис. 2, a, b). При этом образуется нескомпенсированный положительный объемный заряд (рис. 3, a), приводящий к усилению электрического поля **E** в прикатодной области с одновременным ослаблением **E** в положительном столбе (рис. 3, b). По мере приближения к катоду напряженность поля на фронте ионизации также увеличивается, соответственно растет интенсивность ионизационных процессов.

Таким образом, формирование разряда в аргоне происходит за счет возникновения катодонаправленной волны ионизации. Оценим скорость движения фронта к катоду. Для этого рассмотрим положение двух минимумов электрического поля E в разные моменты времени: $t_1 = 37$ ns и $t_2 = 40$ ns (рис. 3, b). В результате получим скорость движения фронта на уровне $\sim 2.5 \cdot 10^7$ cm/s, что удовлетворительно согласуется с экспериментом.

На основании анализа пространственно-временно́го распределения концентрации возбужденных частиц Ar^{*} (рис. 2) можно сделать вывод, что в исследуемом диапазоне времен концентрация Ar^{*} непрерывно растет. Данное обстоятельство связано с тем, что источники рождения Ar^{*} в уравнении непрерывности (1) главным образом за счет возбуждения нейтральных атомов электронным ударом больше источника, отвечающего за гибель Ar^{*}, куда входят деактивация возбужденных частиц при столкновении с электроном и нейтральной частицей, а также ступенчатая и пеннинговская ионизации.

В положительном столбе (рис. 2) концентрация молекулярных ионов Ar_2^+ хотя и меньше, чем у атомарных ионов Ar^+ , но также монотонно растет, что в свою очередь объясняется рождением Ar_2^+ в тройных столкновениях иона Ar^+ с нейтральными частицами, а разрушение несущественно, пока концентрация электронов мала.

Рис. 2. Характерные распределения концентраций электронов (e), ионов (Ar^+, Ar_2^+) и возбужденных атомов (Ar^*) аргона в межэлектродном промежутке для моментов времени 32 (a) и 37 ns (b): p = 760 Torr, $U_0 = 6.8$ kV.

Рис. 3. Нескомпенсированный положительный пространственный заряд в межэлектродном промежутке в различные моменты времени (*a*) и характерные распределения в межэлектродном промежутке напряженности электрического поля (*b*): p = 760 Torr, $U_0 = 6.8$ kV.

Начиная с 35 ns после приложения напряжения вблизи катода концентрации заряженных и возбужденных частиц, а также напряженность электрического поля ведут себя немонотонно (рис. 2, b и 3, b). Кроме того, в прикатодной области существует подобласть, в которой концентрация возбужденных атомов оказывается ниже, чем концентрация молекулярных ионов (рис. 2, a), в то время как во всей расчетной области ситуация противоположная. Данное обстоятельство связано с постановкой граничных условий на катоде: концентрация Ar* обращается в нуль. Изменение граничных условий для Ar* может не только количественно, но и качественно изменить поведение профиля концентрации частиц, что в свою очередь может внести коррективы в формирование катодного слоя. При этом на больших временах нагрев газа окажется существенным и приведет к разрушению

молекулярных ионов. Поэтому вопрос учета нагрева газа и отбора плазмохимических реакций требует дальнейших исследований.

Таким образом, в работе в результате моделирования показано, что формирование разряда начинается с катодонаправленной волны ионизации, которая движется со скоростью ~ $2.5 \cdot 10^7$ cm/s, при этом к моменту времени 40 пs концентрация электронов в разрядном промежутке, за исключением катодного слоя, лежит в диапазоне $10^{13}-10^{14}$ cm⁻³, что удовлетворительно согласуется с результатами эксперимента, а напряженность поля близка к значению 10^5 V/cm.

Работа выполнена при финансовой поддержке стипендии Президента РФ молодым ученым и аспирантам № СП-3812.2016.1 и гранта РФФИ № 18-08-00075а.

Список литературы

- [1] *Королев Ю.Д., Месяц Г.А.* Физика импульсного пробоя газов. М.: Наука, 1991. 224 с.
- [2] Тарасенко В.Ф., Бакит Е.Х., Бураченко А.Г., Ломаев М.И., Сорокин Д.А., Шутько Ю.В. // ЖТФ. 2010. Т. 36.
 В. 8. С. 60–67.
- [3] Naidis G.V., Tarasenko V.F., Babaeva N.Yu., Lomaev M.I. // Plasma Sources Sci. Technol. 2018. V. 27. N 1. P. 013001.
- [4] Осипов В.В. // УФН. 2000. Т. 170. № 3. С. 225–245.
- [5] Курбанисмаилов В.С., Омаров О.А., Рагимханов Г.Б., Абакарова Х.М., Али А.Р.А. // Физика плазмы. 2016. Т. 42. № 7. С. 680–692.
- [6] Baeva M., Bosel A., Ehlbeck J. // Phys. Rev. E. 2012. V. 85. N 5. P. 056404.
- [7] *Терешонок Д.В. //* Письма в ЖТФ. 2014. Т. 40. В. 3. С. 83– 89.
- [8] Суржиков С.Т. Физическая механика газовых разрядов. М.: Изд-во МГТУ им. Н.Э. Баумана, 2006. 640 с.
- [9] Soloviev V.R., Krivtsov V.M. // J. Phys. D: Appl. Phys. 2009.
 V. 42. N 12. P. 125208.
- [10] Курбанисмаилов В.С., Омаров О.А., Рагимханов Г.Б., Терешонок Д.В. // Письма в ЖТФ. 2017. Т. 43. В. 18. С. 73– 81.
- [11] Hagelaar G.J.M., Pitchford L.C. // Plasma Sources Sci. Technol. 2005. V. 14. N 4. P. 722–733.
- [12] Смирнов Б.М. Свойства газоразрядной плазмы. СПб.: Издво Политехн. ун-та, 2010. 361 с.
- [13] Юргеленас Ю.В. // Журн. вычисл. математики и мат. физики. 2010. Т. 50. № 8. С. 1420–1437.