11

Оптические свойства нанокластеров серебра, синтезированных в поверхностно-привитой полиакриловой кислоте при разных плотностях прививки

© А.А. Горбачев, Н.И. Сушко, П.П. Першукевич, О.Н. Третинников[¶]

Институт физики им. Б.И. Степанова НАН Беларуси 220072 Минск, Беларусь

[¶]e-mail: o.tretinnikov@ifanbel.bas-net.by

Поступила в редакцию 15.10.2018 г.

Флуоресцентные нанокластеры серебра, иммобилизованные на пластиковой подложке, получены фотоактивированным темплатным синтезом с использованием в качестве темплата полиакриловой кислоты, химически привитой к поверхности подложки. Изучены спектры электронного поглощения и флуоресценции нанокластеров в зависимости от плотности прививки полиакриловой кислоты. Установлено, что оптическое поглощение и флуоресцентное испускание нанокластеров монотонно увеличиваются с ростом плотности прививки. При этом положение и форма спектров поглощения и испускания практически не изменяются. Стабильность флуоресценции при хранении образцов в темноте при комнатных условиях тем выше, чем выше плотность прививки полимерного темплата.

DOI: 10.21883/OS.2019.02.47208.305-18

Введение

Наночастицы благородных металлов (Ag, Au, Cu) размером менее 2 nm обладают флуоресценцией в видимой и ближней ИК областях [1,2]. Их принято называть нанокластерами (НК), чтобы отличить от металлических наночастиц, которые имеют больший размер и соответственно не флуоресцируют. Металлические НК получают синтезом в водных растворах ионов соответствующего металла и темплатных молекул, в качестве которых используют некоторые синтетические и природные полиэлектролиты [3]. Макромолекулы полиэлектролита иммобилизуют ионы металла, ограничивают размер растущих НК и защищают их от агрегации и осаждения. Получаемые таким образом водные растворы НК серебра и золота в последние годы являются объектом многочисленных исследований, как нетоксичная и эффективная альтернатива флуоресцентным полупроводниковым нанокристаллам (квантовым точкам) в области медико-биологических маркеров, визуализаторов и тест-систем [4,5]. С другой стороны, иммобилизация флуоресцентных НК на твердых подложках открывает новые возможности в области материалов для химических и биологических сенсоров, оптической записи информации, электролюминесцентных устройств. В настоящее время иммобилизацию осуществляют нанесением на подложку и высушиванием описанных выше растворов НК, стабилизированных цепями темплатного полимера [6–9]. Полученная полимерная пленка, прочно удерживает в себе НК, но сами полимерные цепи связаны с подложкой не химически, а физически. Поэтому пленка вместе с НК может быть удалена с подложки под действием воды и других растворителей, механических воздействий.

Нами предложен способ необратимой иммобилизации флуоресцентных НК серебра на твердой подложке путем их синтеза в темплатном полимере, который получен методом поверхностной прививочной полимеризации, в результате чего каждая полимерная цепь химически связана одним своим концом с подложкой [10]. Важной особенностью поверхностно-привитых полимеров является зависимость структуры и свойств от плотности прививки (количества привитого полимера на единице площади поверхности). При малых плотностях прививки цепи не перекрываются и принимают форму клубка. С ростом плотности прививки цепи начинают перекрываться, и эффекты исключенного объема заставляют их разворачиваться перпендикулярно поверхности, что сопровождается усилением межмолекулярных взаимодействий и приводит к изменению свойств привитых цепей. Эти изменения особенно заметны в полиэлектролитах. Например, для полиакриловой кислоты (ПАК) при высоких плотностях прививки наблюдали существенное снижение степени диссоциации, ионообменной емкости и смачивания водой [11,12]. В разработанном нами методе [10] темплатным полимером для синтеза и иммобилизации НК серебра служит поверхностно-привитая ПАК. Учитывая сказанное выше, нельзя исключить, что оптические свойства НК, полученных при разных плотностях прививки ПАК, могут отличаться. Исследование данного вопроса является предметом настоящей работы.

Экспериментальная часть

Акриловая кислота (АК) и бензофенон (БФ) были получены от Sigma-Aldrich (Германия) и имели чистоту не менее 95%. Нитрат серебра имел чистоту 99.9%. Все реагенты применялись без дополнительной очистки. Пленку полипропилена (ПП) толщиной $40\,\mu m$ очищали экстракцией ацетоном в аппарате Сокслета.

Для получения поверхностно-привитой ПАК сначала на поверхность пленки ПП наносили фотоинициатор (БФ) из 5% раствора в ацетоне, затем поверхность пленки покрывали тонким слоем 20% водного раствора АК, накрывали кварцевой пластиной и облучали в течение заданного времени УФ излучением с длиной волны 365 nm и плотностью мощности 70 mW/cm², создаваемым светодиодным источником собственного изготовления. После этого пленку промывали в дистиллированной воде в течение 8 h при непрерывном перемешивании и сушили на воздухе.

Для получения НК серебра пленку ПП, одна из поверхностей которой была предварительно модифицирована поверхностно-привитой ПАК, фиксировали на дне пластиковой чашки Петри модифицированной поверхностью вверх, заливали в чашку раствор нитрата серебра (0.1 mol/1) в деионизованной воде, закрывали крышкой, выдерживали 20 min в темноте и экспонировали в течение 8 min УФ излучением с длиной волны 365 nm и плотностью мощности 50 mW/cm². После этого пленку 1 min промывали в дистиллированной воде при непрерывном встряхивании, споласкивали в новой порции воды и сушили на воздухе.

Спектры флуоресценции регистрировали на автоматизированном спектрофлуориметре СДЛ-2 с монохроматором возбуждения МДР-12 и монохроматором регистрации МДР-23. Оси возбуждения и регистрации располагались под углом 90°, угол между поверхностью исследуемой пленки и осью регистрации составлял 30°. Источником возбуждения служила ксеноновая лампа ДКсШ-120. Испускание регистрировалось с помощью охлаждаемых фотоумножителей ФЭУ-100 и ФЭУ-62 (диапазоны 230-800 и 600-1200 nm) в режиме счета фотонов. Измеренные спектры корректировались с учетом спектральной чувствительности системы регистрации и распределения спектральной плотности возбуждающего излучения. Спектры электронного поглощения измеряли на спектрофотометре UV-Vis-NIR Cary-500. ИК спектры поверхности пленок ПП получали методом нарушенного полного внутреннего отражения (НПВО) с помощью приставки Smart ARK (ThermoSpectra-Tech, CIIIA) с элементом внутреннего отражения из кристалла ZnSe с углом отражения 45°. Спектры регистрировали на ИК фурье-спектрометре Nexus 670 (ThermoNicolet, CША) при спектральном разрешении 4 сm⁻¹ и усреднении 128 сканирований.

Результаты и обсуждение

Способы фотоактивированного темплатного синтеза НК серебра с использованием ПАК в качестве темплата хорошо известны в литературе [13–15]. Отличие развиваемого нами подхода состоит в том, что ПАК находится не в виде раствора в воде или пленки, нанесенной из раствора на подложку, а представляет

Рис. 1. ИК спектры НПВО поверхности исходной пленки ПП (1) и пленок ПП, модифицированных УФ индуцированной прививочной полимеризацией АК при продолжительности УФ облучения 30 (2) и 90 s (3).

собой монослой макромолекул ПАК, каждая из которых ковалентно связана одним концом с поверхностью подложки. Это достигается методом УФ индуцированной прививочной полимеризации. Он заключается в том, что под действием УФ излучения молекулы фотоинициатора переходят в возбужденное состояние и, взаимодействуя с поверхностью полимерного материала, создают на ней радикалы, на которых в присутствии молекул мономера развивается рост привитых цепей по механизму свободно-радикальной полимеризации [16].

На рис. 1 приведены ИК спектры НПВО поверхности исходной пленки ПП и пленок ПП, модифицированных УФ индуцированной прививочной полимеризацией АК при продолжительности УФ облучения 30 и 90 s. Узкие интенсивные полосы при 1451, 1376 и 1167 ст⁻¹ в спектре исходной пленки являются характеристическими для изотактического ПП. Полосу при 1451 cm⁻¹ относят к деформационным колебаниям CH₃- и CH₂групп $(\delta_{CH_3} + \delta_{CH_2})$, а полосу при 1376 сm⁻¹ — только к колебаниями $\delta_{\rm CH_3}$, тогда как полоса при 1167 сm⁻¹ обусловлена совместным вкладом валентных колебаний С-С и деформационных колебаний групп СН₃ [17]. В спектрах модифицированных пленок присутствуют полосы поглощения с максимумами при 1704-1712, 1417 и 1246 ст $^{-1}$. По положению, форме и соотношению интенсивностей они идентичны полосам поглощения ПАК, что указывает на образование поверхностнопривитого полимера. Полосы ПАК при 1704-1712 и 1246 ст⁻¹ относятся к валентным колебаниям групп C=O и C-O соответственно, а полоса при 1417 сm⁻¹ к деформационным колебаниям групп О-Н [18]. При увеличении продолжительности облучения интенсивности полос ПАК возрастают, а интенсивности полос ПП снижаются в результате роста количества привитой ПАК на поверхности пленки. Одновременно полоса

Рис. 2. Зависимость плотности прививки ПАК, образующейся на поверхности пленок ПП в результате УФ индуцированной прививочной полимеризации, от времени УФ облучения.

валентных колебаний C=O смещается в низкочастотную область, что вызвано образованием более сильных водородных связей между карбоксильными группами ПАК [12]. Плотность прививки определяли в относительных единицах из интегральных интенсивностей полосы валентных колебаний карбонильной группы ПАК ($\nu_{C=O}$) и полосы деформационных колебаний метильной группы ПП (δ_{CH_3}) в ИК спектрах НПВО исследуемых пленок по формуле

$$G = I(\nu_{\mathrm{C}=\mathrm{O}})/I(\nu_{\mathrm{C}=\mathrm{O}}) + kI(\delta_{\mathrm{CH}_3}),$$

где G — плотность прививки, $I(v_{C=O})$ и $I(\delta_{CH_3})$ интегральные интенсивности полосы ПАК при $1704 - 1712 \,\mathrm{cm}^{-1}$ полосы ΠП при $1376 \,\mathrm{cm}^{-1}$ И соответственно, k отношение интегральных коэффициентов поглощения этих полос. На рис. 2 показана зависимость количества привитой ПАК, образующейся на поверхности пленки ПП в результате УФ индуцированной прививочной полимеризации, от продолжительности УФ облучения (tirrad). Видно, что количество привитого полимера монотонно растет по мере увеличения t_{irrad} от 15 до 90 s, а затем обнаруживает тенденцию к насыщению.

На рис. 3 приведены спектры электронного поглощения пленок ПП, модифицированных поверхностнопривитой ПАК с различной плотностью прививки, зарегистрированные после УФ экспонирования пленок в водном растворе AgNO₃ в течение 8 min. Данная длительность облучения выбрана потому, что при используемых условиях синтеза (интенсивность УФ излучения 50 mW/cm², концентрация AgNO₃ 0.1 mol/l) флуоресценция образующихся НК серебра максимальная [19]. На рис. 3 видно, что в результате облучения в пленках возникает интенсивное поглощение в области 220–300 nm, которое усиливается с увеличением количества привитой ПАК, оставаясь практически неизменным по форме. Сильное поглощение в УФ области является характерным для НК серебра, причем форма спектра поглощения, определяемая числом, положением и распределением интенсивностей полос, сильно зависит от числа атомов в НК (т.е. от размеров НК) [20,21]. Поэтому можно сделать вывод, что при фиксированных условиях синтеза размеры образующихся НК серебра не зависят от плотности прививки ПАК, а их количество увеличивается с ростом плотности прививки. Данный вывод подтверждается спектрами флуоресценции рассматриваемых пленок, представленными на рис. 4. Спектры зарегистрированы при длине волны возбуждения 485 nm. Интенсивность флуоресценции монотонно увеличивается с ростом плотности прививки, при этом положение полосы флуоресценции практически не изме-

Рис. 3. Спектры электронного поглощения, полученные на пленках ПП, модифицированных поверхностно-привитой ПАК с плотностью прививки G = 0.056 (2), 0.253 (1, 3), 0.433 (4) и 0.589 (5), до (1) и после синтеза НК серебра в привитом полимере (2–5).

Рис. 4. Спектры флуоресценции ($\lambda_{ex} = 485 \text{ nm}$) НК серебра, синтезированных в поверхностно-привитой ПАК на пленках ПП при плотностях прививки G = 0.056 (1), 0.155 (2), 0.253 (3), 0.433 (4) и 0.589 (5).

Интенсивность флуоресценции НК серебра (I_t) при различных временах хранения (t), нормированная на начальную интенсивность (I_0) , для двух значений плотности прививки ПАК (G)

G, arb. units	t, days		
	2	7	80
	I_t/I_0		
0.38 0.62	0.72 0.99	0.66 0.98	0.38 0.96

няется, ее максимум для всех пленок располагается при $765\pm15\,\text{nm}.$

Известно, что длина волны флуоресценции металлических НК увеличивается с ростом их размеров [22]. Следовательно, неизменность положения полосы флуоресценции НК серебра на рис. 4 можно считать доказательством того, что изменение плотности прививки ПАК не влияет на размеры синтезируемых НК.

Рост интенсивности флуоресценции с ростом плотности прививки следует объяснить тем, что увеличивая количество привитого полимера, мы тем самым увеличиваем количество карбоксильных групп, что приводит к образованию большего числа комплексов COO⁻Ag⁺, являющихся центрами зарождения и роста НК. В результате при одинаковых условиях синтеза в образцах с большей плотностью прививки образуется большее количество флуоресцентных НК.

Ранее нами было установлено, что с ростом плотности прививки формируются более сильные водородные связи между карбоксильными группами ПАК [12], что спектрально проявляется в отмеченном выше (рис. 1) низкочастотном смещении полосы $v_{C=O}$. Сильные водородные связи затрудняют ионизацию карбоксильных групп, что может препятствовать ионному обмену. Например, в системе поверхностно-привитая ПАК-ионы Zn²⁺ при увеличении плотности прививки выше $G \approx 0.45$ рост числа ионов Zn²⁺, связанных с привитым полимером, резко замедляется, а при G > 0.55 прекращается [12]. Равномерный рост интенсивности флуоресценции НК серебра во всем диапазоне значений G (рис. 4) может означать, что в системе поверхностно-привитая ПАК-ионы Ад⁺ по какой-то причине ионный обмен при высоких плотностях прививки протекает также эффективно, как и при низких. Возможно также, что сближение и вытягивание цепей ПАК перпендикулярно поверхности пленки ПП (переход от режима клубка к режиму щетки) при высоких плотностях прививки способствует более эффективному зарождению и росту НК.

Для практических применений важно, чтобы НК сохраняли флуоресцентные свойства при длительном хранении. В таблице приведены данные по стабильности флуоресценции НК серебра, синтезированных в поверхностно-привитой ПАК со средней и высокой плотностью прививки (G = 0.38 и 0.62), при хранении в темноте при комнатных условиях. Видно, что после хранения

в течение 80 дней флуоресценция образца со средней плотностью прививки падает более чем в 2 раза, тогда как флуоресценция образца с высокой плотностью прививки практически не изменяется (снижение менее 5%). Причины роста стабильности флуоресценции с ростом плотности прививки не очевидны и требуют дальнейших исследований.

Работа выполнена частично при поддержке Белорусского республиканского фонда фундаментальных исследований (проект № Ф17-041).

Список литературы

- [1] Peyser L.A., Vinson A.E., Bartko A.P., Dickson R.M. // Science. 2001. V. 291. P. 103.
- [2] Zheng J., Zhang C., Dickson R.M. // Phys. Rev. Lett. 2004.
 V. 93. P. 077402.
- [3] Shang L., Dong S., Nienhaus G.U. // Nano Today. 2011. V. 6. P. 401.
- [4] Xu H., Suslick K.S. // Adv. Mater. 2010. V. 22. P. 1078.
- [5] Choi S., Dickson R.M., Yu J. // Chem. Soc. Rev. 2012. V. 41. P. 1867.
- [6] Su L., Shu T., Wang Z., Cheng J., Xue F., Li C., Zhang X. // Biosens. Bioelectron. 2013. V. 44. P. 16.
- [7] Zhang W., Song J., Liao W., Guan Y., Zhang Y., Zhu X.X. // J. Mater. Chem. C. 2013. V. 1. P. 2036.
- [8] Kunwar P., Hassinen J., Bautista G., Ras R.H.A., Toivonen J. // Sci. Rep. 2016. V. 6. P. 23998.
- [9] Senthamizhan A., Balusamy B., Aytac Z., Uyar T. // Anal. Bioanal. Chem. 2016. V. 408. P. 1347.
- [10] Tretinnikov O.N., Gorbachev A.A., Pershukevich P.P. // J. Appl. Spectrosc. 2016. V. 83. P. 864.
- [11] Dong R., Lindau M., Ober C.K. // Langmuir. 2009. V. 25. P. 4774.
- [12] Sheipak T.M., Gorbachev A.A., Tretinnikov O.N. // Polym. Sci. Ser. A. 2018. V. 60. P. 459.
- [13] Zhang J., Xu S., Kumacheva E. // Adv. Mater. 2005. V. 17. P. 2336.
- [14] Shen Z., Duan H., Frey H. // Adv. Mater. 2007. V. 19. P. 349.
- [15] Zhang W., Song J., Liao W., Guan Y., Zhang Y., Zhu X.X. // J. Mater. Chem. C. 2013. V. 1. P. 2036.
- [16] Røanby B., Yang W.T., Tretinnikov O. // Nucl. Instr. Meth. Phys. Res. B. 1999. V. 151. P. 301.
- [17] Miyazawa T. // J. Polym. Sci. C. Polym. Symp. 1964. V. 7. P. 59.
- [18] Patel M.M., Smart J.D., Nevell T.G., Ewen R.J., Eaton P.J., Tsibouklis J. // Biomacromolecules. 2003. V. 4. P. 1184.
- [19] Gorbachev A.A., Sheypak T.M., Pershukevich P.P., Tretinnikov O.N. // Physics, Chemistry and Application of Nanostructures. Singapore: World Sci. Publ., 2017. P. 327–330.
- [20] Harb M., Rabilloud F., Simon D., Rydlo A., Lecoultre S., Conus F., Rodrigues V., Félix C. // J. Chem. Phys. 2008. V. 129. P. 194108.
- [21] Столярчук М.В., Сидоров А.И. // Опт. и спектр. 2018. Т. 125. С. 291.
- [22] Zheng J., Zhang C., Dickson R.M. // Phys. Rev. Lett. 2004.
 V. 93. P. 077402.