01

Вероятности радиационных переходов в спектрах никелеподобных ионов Cd XXI, In XXII, Sn XXIII

© А.В. Логинов

Петербургский государственный университет путей сообщения Императора Александра I, 190031 Санкт-Петербург, Россия

e-mail: andrlgnv@yandex.ru

Поступила в редакцию 19.09.2018 г.

Полуэмпирически в промежуточной схеме связи выполнен расчет вероятностей электродипольных переходов $3d^94p \rightarrow 3d^{10}$, $3d^94s$ в спектрах никелеподобных ионов Cd XXI, In XXII, Sn XXIII. Радиальные интегралы, необходимые для перехода к абсолютной шкале вероятностей, вычислены с функциями Хартри-Фока в форме длины.

DOI: 10.21883/OS.2019.02.47191.272-18

Введение

Судя по библиографии из базы данных [1], спектры никелеподобных ионов — популярный объект для исследования. Эта популярность, в частности, связана с надеждой создать лазер в рентгеновской области спектра на переходе $3d^94d$ $(J = 0) \rightarrow 3d^94p(J = 1)$ [2]. К настоящему моменту экспериментальные сведения по уровням энергии получены для ионов с зарядом ядра $Z \leq 50$ (т.е. до Sn XXIII) [3], а теоретические сведения как по уровням энергии, так и по радиационным константам — для ионов с $Z \le 100$ [4–7]. Тем не менее, опубликованных данных по спектрам никелеподобных ионов высоких степеней ионизации, видимо, недостаточно, чтобы выбрать из них "рекомендованные значения" уровней энергии и вероятностей переходов для заполнения соответствующих столбцов базы данных [1]. Это означает, что продолжение исследований по этой тематике по-прежнему актуально.

В настоящей работе полуэмпирически вычислены вероятности электродипольных переходов $3d^94p \rightarrow 3d^{10}$, $3d^94s$ в спектрах никелеподобных ионов Cd XXI, In XXII, Sn XXIII. Отметим, что в упомянутых работах [4–7] расчеты выполнены *ab initio*. Полагаем, что полуэмпирические данные, полученные здесь на основе высокоточных измерений длин волн переходов, вполне органично дополнят результаты [4–7].

Метод расчета

Данная работа является непосредственным продолжением работы [8], в которой совершенно аналогичная процедура была выполнена для никелеподобных ионов до Ag XX включительно. Расчет проведен в промежуточной схеме связи, при этом угловая часть волновой функции получается диагонализацией матрицы оператора энергии, построенной в *SL*-связи в одноконфигурационном приближении. Радиальные части элементов матрицы оператора энергии рассматриваются как параметры, определяемые из предписания наименыших квадратов, сформулированного для собственных значений матрицы оператора энергии и сопоставляемых им экспериментальных уровней энергии. При реализации предписания наименыших квадратов для конфигураций $3d^94l$ рассматривался следующий набор параметров: интегралы Слэтера F_{dl}^k , G_{dl}^k (радиальные интегралы, входящие сомножителями в матричные элементы оператора электростатического взаимодействия), спин-орбитальные константы ξ_{3d} , ξ_{4l} (радиальные интегралы, входящие сомножителями

Таблица 1. Параметры (в ст $^{-1}$) для конфигурации $3d^94s$ в спектрах Cd XXI, In XXII, Sn XXIII

Параметр	Cd XXI	In XXII	Sn XXIII
F_{ds}^0 G^2	345907 ± 57 30804 ± 569	375300 ± 67 31685 ± 662	405779 ± 43 32890 ± 426
ξ _{3d}	23032 ± 46	25832 ± 53	28817 ± 34
$\Delta E \\ \Delta E'$	57	66	85 43

Таблица 2. Параметры (в ст $^{-1}$) для конфигурации $3d^94p$ в спектрах Cd XXI, In XXII, Sn XXIII

Параметр	Cd XXI	In XXII	Sn XXIII	
F_{dp}^0	388914 ± 40	420866 ± 16	453890 ± 5	
F_{dp}^2	90350 ± 600	94307 ± 270	98369 ± 69	
G_{dp}^{1}	28530 ± 181	30107 ± 82	31225 ± 24	
G_{dp}^{3}	29334 ± 685	30762 ± 371	31791 ± 78	
ξ _{3d}	23009 ± 31	25818 ± 18	28783 ± 3	
ξ_{4p}	52811 ± 139	59195 ± 41	66576 ± 7	
F_1	-106 ± 23	-158 ± 12	-164 ± 3	
G_2	-40 ± 39	—	-47 ± 5	
T_{111}	3431 ± 1160	955 ± 440	—	
ΔE	98	56	11	
$\Delta E'$	42	25	4	

Переход	Cd XXI			In XXII		Sn XXIII	
$3d^94p \rightarrow 3d^94s$	λ	Α	A [5]	λ	Α	λ	Α
$01 \rightarrow 11$	25.311	2.47 + 10	2.20 + 10	23.874	2.76 + 10	22.488	3.09 + 10
$11 \rightarrow 11$	29.474	3.81 + 8		28.141	5.18 + 8	26.887	7.19 + 8
$11 \rightarrow 21$	25.633	7.01 + 9	6.84 + 9	24.216	6.98 + 9	22.901	6.62 + 9
$11 \rightarrow 22$	29.967	1.02 + 10	0.85 + 10	28.598	1.13 + 10	27.317	1.27 + 10
$12 \rightarrow 11$	27.363	2.37 + 9	2.12 + 9	26.034	2.41 + 9	24.790	2.35 + 9
12 ightarrow 21	24.022	1.91 + 10	1.59 + 10	22.640	2.24 + 10	21.361	2.65 + 10
12 ightarrow 22	27.788	4.09 + 9	4.02 + 9	26.425	3.92 + 9	25.155	3.57 + 9
$13 \rightarrow 11$	24.011	2.48 + 10	2.16 + 10	22.643	2.76 + 10	21.355	3.10 + 10
13 ightarrow 21	21.399	1.88 + 9		20.031	1.97 + 9	18.761	1.99 + 9
13 ightarrow 22	24.337	2.77 + 9		22.938	3.17 + 9	21.625	3.63 + 9
$21 \rightarrow 11$	36.709	8.98 + 6		35.585	8.30 + 6	34.556	7.60 + 6
21 ightarrow 21	30.936	1.13 + 9		29.533	1.33 + 9	28.239	1.56 + 9
21 ightarrow 22	37.477	5.88 + 7		36.319	5.26 + 7	35.270	4.79 + 7
21 ightarrow 31	30.304	1.31 + 10	1.13 + 10	28.935	1.39 + 10	27.668	1.48 + 10
$22 \rightarrow 11$	30.126	7.90 + 9	6.57 + 9	28.777	8.45 + 9	27.534	9.04 + 9
22 ightarrow 21	26.125	1.95 + 9	1.76 + 9	24.686	1.91 + 9	23.368	1.82 + 9
22 ightarrow 22	30.641	5.18 + 9	4.34 + 9	29.255	5.73 + 9	27.985	6.31 + 9
22 ightarrow 31	25.673	8.19 + 7		24.267	9.22 + 7	22.976	9.63 + 7
$23 \rightarrow 11$	27.694	8.72 + 8		26.348	8.49 + 8	25.075	7.92 + 8
23 ightarrow 21	24.276	2.32 + 10	2.05 + 10	22.877	2.60 + 10	21.573	2.91 + 10
23 ightarrow 22	28.128	7.87 + 8		26.748	7.50 + 8	25.448	7.08 + 8
23 ightarrow 31	23.885	2.43 + 9		22.517	2.97 + 9	21.238	3.61 + 9
$24 \rightarrow 11$	23.547	1.27 + 10	1.09 + 10	22.193	1.44 + 10	20.927	1.64 + 10
$24 \rightarrow 21$	21.029	9.61 + 7		19.678	8.66 + 7	18.430	8.69 + 7
24 ightarrow 22	23.860	1.71 + 10	1.49 + 10	22.476	1.89 + 10	21.186	2.10 + 10
24 ightarrow 31	20.735	2.75 + 8		19.411	2.77 + 8	18.185	2.79 + 8
31 ightarrow 21	30.271	8.94 + 9	7.54 + 9	28.921	9.52 + 9	27.677	1.01 + 10
31 ightarrow 22	36.507	1.03 + 7		35.398	8.49 + 6	34.399	7.49 + 6
31 ightarrow 31	29.666	5.85 + 9	4.86 + 9	28.348	6.33 + 9	27.129	6.84 + 9
32 ightarrow 21	23.786	1.11 + 10	9.48 + 9	22.410	1.26 + 10	21.122	1.43 + 10
32 ightarrow 22	27.473	2.25 + 8		26.112	2.04 + 8	24.823	1.92 + 8
32 ightarrow 31	23.411	1.92 + 10	1.66 + 10	22.064	2.14 + 10	20.801	2.38 + 10
33 ightarrow 21	21.514	3.58 + 8		20.117	3.39 + 8	18.829	3.37 + 8
33 ightarrow 22	24.487	2.70 + 10	2.30 + 10	23.051	3.03 + 10	21.716	3.40 + 10
33 ightarrow 31	21.207	1.68 + 8		19.838	1.59 + 8	18.573	1.56 + 8
$41 \rightarrow 31$	24.525	2.72 + 10	2.31 + 10	23.092	3.04 + 10	21.751	3.41 + 10

Таблица 3. Длины волн (λ , nm) и вероятности (A, s⁻¹) переходов $3d^94p \rightarrow 3d^94s$ в спектрах Cd XXI, In XXII, Sn XXIII

Примечание. Значения вероятностей переходов приведены в следующей форме: например, 2.72 + 10 = 2.72 · 10¹⁰.

Таблица 4. Длины волн (λ , nm) и вероятности (A, s⁻¹) переходов $3d^94p \rightarrow 3d^{10}$ в спектрах Cd XXI, In XXII, Sn XXIII

Переход	Cd XXI			In XXII			Sn XXIII		
$3d^94p \rightarrow 3d^{10}$	λ	Α	A [6]	λ	Α	A [6]	λ	Α	A [6]
$\begin{array}{c} 11 \rightarrow 01 \\ 12 \rightarrow 01 \end{array}$	2.893 2.872	4.59 + 10 8 93 + 11	5.10 + 10 1 21 + 12	2.674 2.653	6.37 + 10 1 01 + 12	7.97 + 10 1 39 + 12	2.479 2.460	9.43 + 10 1 13 + 12	1.22 + 11 1.57 + 12
$12 \rightarrow 01$ $13 \rightarrow 01$	2.830	1.61 + 11	1.21 + 12 1.93 + 11	2.613	1.01 + 12 1.80 + 11	2.14 + 11	2.400	1.13 + 12 1.97 + 11	2.40 + 11

в матричные элементы оператора спин-орбитального взаимодействия), эффективные параметры F_k , G_k , которые принято называть интегралами Слэтера с запрещенными рангами, магнитные эффективные параметры $T_{k_1k_2k_3}$ (для конфигураций $3d^94p$). Угловые коэффициенты для интегралов Слэтера и спин-орбитальных

констант вычислялись по общеизвестным формулам (например, [9]), детали вычислений угловых коэффициентов для эффективных параметров можно найти в [8].

Качество реализации предписания наименьших квадратов определяется дисперсиями параметров, а также

стандартными (ΔE) и среднеквадратичными ($\Delta E'$) отклонениями по энергии:

$$\Delta E = \sqrt{\sum_{i=1}^{n} (E_{\text{calc}}^{i} - E_{\text{exp}}^{i})^{2}/(n-m)},$$
$$\Delta E' = \sqrt{\sum_{i=1}^{n} (E_{\text{calc}}^{i} - E_{\text{exp}}^{i})^{2}/n},$$

где n — число экспериментальных уровней, включенных в вычислительную процедуру, m — число свободно варьируемых параметров, E_{calc}^i , E_{exp}^i — соответственно вычисленное и экспериментальное значения энергии *i*-го уровня.

Результаты

Параметры

Таблицы 1, 2 содержат значения параметров, их дисперсии и среднеквадратичные отклонения ΔE , $\Delta E'$, полученные из предписания наименьших квадратов для конфигураций $3d^94s$ (табл. 1) и $3d^94p$ (табл. 2). Экспериментальные уровни энергии были взяты из [3]. Заметим, что в статье [3] допущена опечатка в той части Table II, где приведены значения уровней энергии конфигурации $3d^94p$ для Cd XXI. Эти же значения (без опечатки) повторно опубликованы в работе [10].

Из табл. 1, 2 следует, что интегралы Слэтера и спинорбитальные константы определены очень хорошо — с точностью до 3-5 значащих цифр. Что касается эффективных параметров (F_1 , G_2 , T_{111}), то они определены, скажем так, вполне приемлемо. При этом отметим, что в [3] для трех уровней энергии конфигурации $3d^94p$ (из 12 возможных) отсутствуют экспериментальные значения в случае Sn XXIII, а экспериментальные значения этих же уровней для In XXII отмечены вопросительным знаком (авторы сомневаются в их надежности). Поэтому при реализации предписания наименьших квадратов для конфигураций $3d^94p$ In XXII, Sn XXIII упомянутые уровни были исключены из вычислительной процедуры. По этой причине не все эффективные параметры (из трех рассмотренных) оказались существенными для In XXII и Sn XXIII.

В целом, привлекая результаты, полученные в [8] для предыдущих членов изоэлектронной последовательности, можно заключить, что параметры монотонно изменяются с ростом Z (исключая скачок эффективного параметра T_{111} для In XXII). Это обстоятельство наряду с небольшими значениями среднеквадратичных отклонений ΔE , $\Delta E'$ свидетельствует об адекватности реализованной процедуры наименьших квадратов.

Вероятности переходов

Волновые функции промежуточной связи, полученные в предыдущем разделе, были использованы для расчета

Таблица 5. Времена жизни (в ps) уровней $3d^94p$ в спектрах Cd XXI, In XXII, Sn XXIII

Уровень	Cd XXI	In XXII	Sn XXIII	
$01({}^{3}P_{0})$	40.4	36.2	32.4	
$11({}^{3}P_{1})$	15.8	12.1	8.74	
$12({}^{1}P_{1})$	1.09	0.962	0.862	
$13(^{3}D_{1})$	5.26	4.77	4.27	
$21(^{3}P_{2})$	70.0	65.2	60.9	
$22(^{3}F_{2})$	66.2	61.8	57.9	
$23(^{1}D_{2})$	36.6	32.7	29.2	
$24(^{3}D_{2})$	33.2	29.7	26.5	
$31(^{3}F_{3} + {}^{1}F_{3})$	67.6	63.0	58.9	
$32(^{3}D_{3})$	32.7	29.3	26.2	
$33(^{3}F_{3} + {}^{1}F_{3})$	36.4	32.5	29.0	
$41(^{3}F_{4})$	36.8	32.8	29.3	

Примечание. В скобках указана SL-компонента волновой функции с максимальным весом.

вероятностей электродипольных радиационных переходов $3d^94p \rightarrow 3d^{10}, 3d^94s$. Для перехода к абсолютной шкале вероятностей были использованы радиальные интегралы переходов, рассчитанные в форме длины с функциями Хартри-Фока по программе [11]. В табл. 3, 4 приведены длины волн и вероятности указанных переходов. Уровни в этих таблицах обозначаются двумя цифрами. Первая цифра дает значение полного момента *J* для данного уровня, вторая — порядковый номер данного уровня среди совокупности уровней с указанным значением *J*, упорядоченных по возрастанию энергии. В табл. 5 даны времена жизни уровней $3d^94p$, полученные суммированием вероятностей переходов $k \rightarrow i$ из табл. 3, 4:

$$\tau_k = 1/\sum_i A_{ki}.$$

Для сравнения в табл. 3,4 приведены те данные работ [5,6], которые можно непосредственно сопоставить нашим результатам. Данные [5,6] получены на основе "relativistic many-body perturbation theory (RMBPT)". Легко видеть, что они вполне приемлемо согласуются с данными настоящей работы. При этом значения вероятностей переходов $3d^94p \rightarrow 3d^{10}$ из [6] (табл. 4) систематически превосходят наши, а значения вероятностей переходов $3d^94p \rightarrow 3d^94s$ из [5] (табл. 3), напротив, систематически меньше таковых. Это означает, что расхождение с результатами [5,6] можно описать масштабирующими множителями и отнести их, например, на счет различия в радиальных интегралах переходов. А в целом можно заключить, что *ab initio* метод RMBPT [5,6] и полуэмпирическая вычислительная процедура из настоящей работы привели в данном случае к очень похожим результатам. Сопоставление с экспериментальными радиационными константами невозможно ввиду их отсутствия в литературе.

Список литературы

- [1] Kramida A., Ralchenko Yu., Reader J., and NIST ASD Team. NIST Atomic Spectra Database (ver. 5.3).Электронный ресурс. Режим доступа: http://physics.nist.gov/asd
- [2] Chen B.K. et al. // Appl. Phys. B. V. 106. N 4. P. 817.
- [3] Churilov S.S., Ryabtsev A.N. // Phys. Scr. 1988. V. 38. P. 326.
- [4] Иванова Е.П. // Опт. и спектр. 2015. Т. 118. № 4. С. 535.
- [5] Safronova U.I., Safronova A.S., Beiersdorfer P. // J. Phys. B. 2007. V. 40. P. 955.
- [6] Safronova U.I., Safronova A.S., Hamasha S.M., Beiersdorfer P. // At. Dat. Nucl. Dat. Tabl. 2006. V. 92. P. 47.
- [7] Safronova U.I., Safronova A.S., Beiersdorfer P. // Phys. Rev. A. 2008. V. 77. P. 032506.
- [8] Логинов А.В. // Опт. и спектр. 2015. Т. 118. № 3. С. 355.
- [9] Wybourne B.G. Spectroscopic Properties of the Rare Earths. N.Y.: Wiley, 1965.
- [10] Rahman A., Hammarsten E.C., Sakadzic S., Rocca J.J., Wyart J.-F. // Phys. Scr. 2003. V. 67. P. 414.
- [11] *Cowan R.D.* The Theory of Atomic Structure and Spectra. Berkeley: Univ. Calif. Press, 1981. Cowan computer codes.