01

Фотонные кристаллы на основе сред с произвольной анизотропией диэлектрической и магнитной проницаемостей

© Г.Ф. Глинский

Санкт-Петербургский государственный электротехнический университет "ЛЭТИ", 197376 Санкт-Петербург, Россия e-mail: genaglinskii@mail.ru

(Поступило в Редакцию 14 июля 2018 г.)

Предложен общий подход к анализу собственных мод в анизотропных и гиротропных 3D фотонных кристаллах на основе диэлектрических и магнитных сред. В основе предлагаемого подхода лежит представление стационарных макроскопических уравнений Максвелла в операторной форме, соответствующей квантово-механическому уравнению для фотона, спин которого s = 1. Напряженностям электрического и магнитного полей в этих уравнениях сопоставлены векторы состояний в комплексном гильбертовом пространстве. Диэлектрическая и магнитная проницаемости выступают в роли операторов, действующих на эти векторы. Показано, что задача определения собственных мод фотонного кристалла сводится к поиску собственных векторов и собственных чисел эрмитова оператора, характеризующего спин-орбитальное взаимодействие фотона в исследуемой периодической анизотропной среде. В качестве базиса для представления операторных уравнений предлагается использовать состояния фотонов с определенным волновым вектором (определенным импульсом) и с определенной линейной или круговой спиновой поляризацией. В качестве примера рассмотрены одномерные фотонные кристаллы. Исследовано влияние анизотропии и гиротропии на дисперсию собственных мод в этих кристаллах. Проанализированы групповая скорость собственных мод, переносимый ими импульс, а также спиновый момент импульса в случае гиротропных сред.

DOI: 10.21883/JTF.2019.03.47163.273-18

Введение

Фотонные кристаллы (ФК) как новый вид оптических сред появились благодаря пионерским работам Э. Яблоновича и С. Джона [1,2]. В настоящее время на их основе создан ряд новых оптических приборов и устройств таких как оптические фильтры, микрорезонаторы, волноводы, разветвители и др. В большинстве работ, посвященных теоретическому исследованию ФК, авторы, как правило, ограничивались анализом немагнитных сред с периодически изменяющейся в пространстве изотропной диэлектрической проницаемостью [3-6]. Однако одним из наиболее перспективных направлений в области применения ФК является разработка приборов с управляемыми характеристиками. Возможность управления модовой структурой ФК посредством внешних воздействий, например, внешнего электрического или магнитного поля, а также механической деформации, открывает широкие возможности их использования в различных оптоэлектронных устройствах в том числе в параметрических усилителях и преобразователях света. Любые внешние воздействия, приводящие к перестройке собственных мод ФК, так или иначе, связаны с изменением тензора диэлектрической или магнитной проницаемости среды. В частности, индуцируемая внешними полями анизотропия или гиротропия должны приводить к снятию поляризационного вырождения собственных мод изотропного ФК. В настоящее время в литературе отсутствует общий подход к анализу ФК на основе периодических сред с произвольной анизотропией диэлектрической и магнитной проницаемостей. Отметим

лишь работы [7–14], в которых исследовались частные случаи анизотропных и гиротропных ФК.

В настоящей работе теория фотонных кристаллов обобщается на случай периодических диэлектрических и магнитных сред с произвольной анизотропией диэлектрической и магнитной проницаемостей, а также сред, обладающих гиротропными свойствами. Предлагается простая операторная форма записи стационарных уравнений Максвелла, аналогичная квантово-механическому уравнению для фотона, спин которого s = 1. Показано, что задача определения собственных частот и собственных мод ФК сводится к расчету собственных однофотонных состояний, представляющих собой векторы в комплексном гильбертовом пространстве, а также собственных чисел эрмитова оператора, характеризующего спин-орбитальное взаимодействие фотона в исследуемой среде.

Операторная форма макроскопических уравнений Максвелла

Как известно, для описания электромагнитных волн в рамках макроскопической электродинамики в отсутствии источников поля достаточно рассмотреть следующие уравнения Максвелла:

$$\nabla \times \mathbf{H}(\mathbf{x}, t) = \frac{1}{c} \frac{\partial}{\partial t} \mathbf{D}(\mathbf{x}, t),$$
$$\nabla \times \mathbf{E}(\mathbf{x}, t) = -\frac{1}{c} \frac{\partial}{\partial t} \mathbf{B}(\mathbf{x}, t).$$
(1)

Стационарные, т.е. установившиеся и периодически изменяющиеся во времени решения этих уравнений, с учетом вещественности поля всегда можно представить в виде суммы двух независимых решений

$$\mathbf{E}(\mathbf{x}, t) = A[\mathbf{E}(\mathbf{x})e^{-i\omega t} + \mathbf{E}^{*}(\mathbf{x})e^{i\omega t}],$$

$$\mathbf{H}(\mathbf{x}, t) = A[\mathbf{H}(\mathbf{x})e^{-i\omega t} + \mathbf{H}^{*}(\mathbf{x})e^{i\omega t}],$$

$$\mathbf{D}(\mathbf{x}, t) = A[\mathbf{D}(\mathbf{x})e^{-i\omega t} + \mathbf{D}^{*}(\mathbf{x})e^{i\omega t}],$$

$$\mathbf{B}(\mathbf{x}, t) = A[\mathbf{B}(\mathbf{x})e^{-i\omega t} + \mathbf{B}^{*}(\mathbf{x})e^{i\omega t}],$$
(2)

Введенный здесь размерный нормировочный множитель A будем выбирать, исходя из условий, при которых усредненная по периоду T энергия электромагнитного поля в рассматриваемом конечном объеме V фиксирована и равна W_0 , а отнесенные к A нормированные по энергии комплексные амплитуды, зависящие от координат, удовлетворяют следующему условию:

$$\frac{1}{4} \int_{V} d\mathbf{x} [\mathbf{E}^{*}(\mathbf{x})\mathbf{D}(\mathbf{x}) + \mathbf{H}^{*}(\mathbf{x})\mathbf{B}(\mathbf{x}) + k.c.] = 1, \quad (3)$$

где $d\mathbf{x} = dxdydz$ — элемент объема. В соответствии с этими требованием будем иметь

$$W_0 = \frac{1}{8\pi} \frac{1}{T} \int_0^T dt \int_V d\mathbf{x} [\mathbf{E}(\mathbf{x}, t) \mathbf{D}(\mathbf{x}, t) + \mathbf{H}(\mathbf{x}, t) \mathbf{B}(\mathbf{x}, t)]$$
$$= \frac{A^2}{8\pi} \int_V d\mathbf{x} [\mathbf{E}^*(\mathbf{x}) \mathbf{D}(\mathbf{x}) + \mathbf{H}^*(\mathbf{x}) \mathbf{B}(\mathbf{x}) + k.c.] = \frac{A^2}{2\pi}.$$

Отсюда следует, что $A = \sqrt{2\pi W_0}$, а равенство (3) можно рассматривать как условие нормировки энергии электромагнитной поля, выраженной через нормированные поля, на единицу.

Согласно (1), нормированные условием (3) комплексные амплитуды полей удовлетворяют следующим стационарным уравнениям Максвелла:

$$\nabla \times \mathbf{H}(\mathbf{x}) = -i \, \frac{\omega}{c} \, \mathbf{D}(\mathbf{x}),$$
$$\nabla \times \mathbf{E}(\mathbf{x}) = i \, \frac{\omega}{c} \, \mathbf{B}(\mathbf{x}). \tag{4}$$

В непоглощающей неоднородной анизотропной среде векторы индукции D(x) и B(x) связаны с напряженностями соответствующих полей E(x) и H(x) соотношениями

$$D_{i}(\mathbf{x}) = \sum_{j} \varepsilon_{ij}(\mathbf{x}) E_{j}(\mathbf{x}),$$
$$B_{i}(\mathbf{x}) = \sum_{j} \mu_{ij}(\mathbf{x}) H_{j}(\mathbf{x}).$$
(5)

Здесь $\varepsilon_{ij}(\mathbf{x})$ и $\mu_{ij}(\mathbf{x})$ зависящие от координат компоненты положительно определенных эрмитовых матриц тензоров диэлектрической и магнитной проницаемостей соответственно. Покажем, что уравнения (4) совместно с уравнениями связи (5) являются одним из возможных представлений более общих операторных уравнений

$$ic(\hat{\mathbf{s}} \cdot \mathbf{k})|H\rangle = \omega\hat{\varepsilon}|E\rangle,$$

$$-ic(\hat{\mathbf{s}} \cdot \hat{\mathbf{k}})|E\rangle = \omega\hat{\mu}|H\rangle, \tag{6}$$

которые будем рассматривать как одночастичные квантово-механические уравнения для фотона в анизотропной среде. В этих уравнениях ŝ — оператор спина фотона; к — оператор волнового вектора с точностью до постоянной Планка, совпадающий с оператором импульса $\hat{\mathbf{p}} = \hbar \hat{\mathbf{k}}; \hat{\varepsilon}$ и $\hat{\mu}$ — соответственно операторы диэлектрической и магнитной проницаемостей. Все перечисленные операторы эрмитовы, т.е. $\hat{\mathbf{s}}^+ = \hat{\mathbf{s}}, \ \hat{\mathbf{k}}^+ = \hat{\mathbf{k}},$ $\hat{\varepsilon}^+ = \hat{\varepsilon}, \ \hat{\mu}^+ = \hat{\mu}.$ В соответствии с общими принципами квантовой теории оператор $(\hat{\mathbf{s}} \cdot \hat{\mathbf{k}})$ следует интерпретировать как оператор спин-орбитального взаимодействия фотона. Напряженностям электрического и магнитного полей в этих уравнениях сопоставляются два вектора в комплексном гильбертовом пространстве $|E\rangle$ и $|H\rangle$, характеризующие стационарные состояния фотона в неоднородной анизотропной среде.

В качестве базиса представления уравнений (6) рассмотрим полный ортонормированный набор состояний фотона с определенной координатой $|\mathbf{x}\rangle$ и определенной линейной поляризацией вдоль вещественных ортов декартовой системы координат $\mathbf{e}_i = |i\rangle$, $\mathbf{e}_i = \langle i|$ (i = 1, 2, 3или x, y, z). Набор векторов $|\mathbf{x}, i\rangle = |\mathbf{x}\rangle \otimes |i\rangle$ в рассматриваемом гильбертовом пространстве образуют базис, удовлетворяющий соответственно следующим условиям ортонормированности и полноты:

$$\langle \mathbf{x}, i | \mathbf{x}', j \rangle = \delta(\mathbf{x} - \mathbf{x}') \delta_{ij},$$

$$\sum_{i} \int_{V} d\mathbf{x} | \mathbf{x}, i \rangle \langle \mathbf{x}, i | = 1.$$
(7)

Используя этот базис, представим векторы $|E\rangle$ и $|H\rangle$, а также сопряженные с ними векторы $\langle E|$ и $\langle H|$ в виде следующих разложений:

$$\begin{split} |E\rangle &= \sum_{i} \int_{V} d\mathbf{x} |\mathbf{x}, i\rangle \langle \mathbf{x}, i | E\rangle = \sum_{i} \int_{V} d\mathbf{x} |\mathbf{x}, i\rangle E_{i}(\mathbf{x}), \\ |H\rangle &= \sum_{i} \int_{V} d\mathbf{x} |\mathbf{x}, i\rangle \langle \mathbf{x}, i | H\rangle = \sum_{i} \int_{V} d\mathbf{x} |\mathbf{x}, i\rangle H_{i}(\mathbf{x}), \\ \langle E| &= \sum_{i} \int_{V} d\mathbf{x} \langle E| \mathbf{x}, i\rangle \langle \mathbf{x}, i | = \sum_{i} \int_{V} d\mathbf{x} E_{i}^{*}(\mathbf{x}) \langle \mathbf{x}, i |, \\ \langle H| &= \sum_{i} \int_{V} d\mathbf{x} \langle H| \mathbf{x}, i\rangle \langle \mathbf{x}, i | = \sum_{i} \int_{V} d\mathbf{x} H_{i}^{*}(\mathbf{x}) \langle \mathbf{x}, i |. \end{split}$$
(8)

Аналогичным образом определим в рассматриваемом базисе вид всех операторов, входящих в уравнения (6):

$$\langle \mathbf{x}, i | \hat{\mathbf{s}} | \mathbf{x}', j \rangle = \mathbf{s}_{ij} \delta(\mathbf{x} - \mathbf{x}'),$$

$$\langle \mathbf{x}, i | \hat{\mathbf{k}} | \mathbf{x}', j \rangle = -i [\nabla_{\mathbf{x}} \delta(\mathbf{x} - \mathbf{x}')] \delta_{ij},$$

$$\langle \mathbf{x}, i | \hat{\varepsilon} | \mathbf{x}', j \rangle = \varepsilon_{ij}(\mathbf{x}) \delta(\mathbf{x} - \mathbf{x}'), \langle \mathbf{x}, i | \hat{\mu} | \mathbf{x}', j \rangle = \mu_{ij}(\mathbf{x}) \delta(\mathbf{x} - \mathbf{x}').$$
 (9)

Здесь s_{ij} — матричные элементы матриц спинового момента s = 1 в декартовом базисе $|i\rangle$ [15]:

$$s_x = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, s_y = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix}, s_z = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$
(10)

Из полученных соотношений (7)-(10) следует, что

$$\begin{split} \sum_{j} & \int_{V} d\mathbf{x}' \langle \mathbf{x}, i | (\hat{\mathbf{s}} \cdot \hat{\mathbf{k}}) | \mathbf{x}', j \rangle \langle \mathbf{x}', j | H \rangle = [\nabla \times \mathbf{H}(\mathbf{x})]_{i}, \\ & \sum_{j} & \int_{V} d\mathbf{x}' \langle \mathbf{x}, i | (\hat{\mathbf{s}} \cdot \hat{\mathbf{k}}) | \mathbf{x}', j \rangle \langle \mathbf{x}', j | E \rangle = [\nabla \times \mathbf{E}(\mathbf{x})]_{i}, \\ & \sum_{j} & \int_{V} d\mathbf{x}' \langle \mathbf{x}, i | \hat{\varepsilon} | \mathbf{x}', j \rangle \langle \mathbf{x}', j | E \rangle = \sum_{j} \varepsilon_{ij}(\mathbf{x}) E_{j}(\mathbf{x}), \\ & \sum_{j} & \int_{V} d\mathbf{x}' \langle \mathbf{x}, i | \hat{\mu} | \mathbf{x}', j \rangle \langle \mathbf{x}', j | H \rangle = \sum_{j} \mu_{ij}(\mathbf{x}) H_{j}(\mathbf{x}). \end{split}$$

Тем самым доказывается эквивалентность операторных уравнений (6) в базисе $|\mathbf{x}, i\rangle$ и максвелловских уравнений (4).

Представление оператора спина ŝ в декартовом базисе $|i\rangle$ (формула (10)) не является единственно возможным. В гиротропных диэлектрических или магнитных средах с осью гирации, направленной вдоль оси z, более удобно использовать так называемый сферический базис $|m\rangle$ (m = +1, 0, -1), определяющий для электромагнитной волны, волновой вектор которой k || z, две ортогональные круговые поляризации: правую (m = +1) и левую (m = -1). Оба базиса декартов $|i\rangle$ и сферический $|m\rangle$ связаны следующим унитарным преобразованием [15]:

$$|i\rangle = \sum_{m} |m\rangle \langle m|i\rangle = \sum_{m} |m\rangle U_{mi},$$
$$|m\rangle = \sum_{i} |i\rangle \langle i|m\rangle = \sum_{i} |i\rangle U_{im}^{+},$$
(11)

где

$$\mathbf{U} = \begin{pmatrix} -1/\sqrt{2} & i & 0\\ 0 & 0 & 1\\ 1/\sqrt{2} & i & 0 \end{pmatrix}$$
(12)

— унитарная матрица, удовлетворяющая условиям: $\mathbf{U} \cdot \mathbf{U}^+ = \mathbf{U}^+ \cdot \mathbf{U} = \mathbf{I}$ (\mathbf{I} — единичная матрица). В частности, согласно (11) и (12):

$$\begin{split} |+1\rangle &= -\frac{|x\rangle + i|y\rangle}{\sqrt{2}}, \ \langle +1| = -\frac{\langle x| - i\langle y|}{\sqrt{2}}, \\ |0\rangle &= |z\rangle, \ \langle 0| = \langle z|, \\ |-1\rangle &= \frac{|x\rangle - i|y\rangle}{\sqrt{2}}, \ \langle -1| = \frac{\langle x| + i\langle y|}{\sqrt{2}}. \end{split}$$

Множество векторов $|\mathbf{x}, m\rangle = |\mathbf{x}\rangle \otimes |m\rangle$ также образуют полный ортонормированный базис

$$egin{aligned} &\langle \mathbf{x},m|\mathbf{x}',m'
angle &= \delta(\mathbf{x}-\mathbf{x}')\delta_{mm'},\ &\sum_m \int\limits_V d\mathbf{x}|\mathbf{x},m
angle \langle \mathbf{x},m| = 1. \end{aligned}$$

Операторы в этом представлении имеют вид, аналогичный (9):

$$\langle \mathbf{x}, m | \mathbf{s} | \mathbf{x}', m' \rangle = \mathbf{s}'_{mm'} \delta(\mathbf{x} - \mathbf{x}'),$$

$$\langle \mathbf{x}, m | \hat{\mathbf{k}} | \mathbf{x}', m' \rangle = -i [\nabla_{\mathbf{x}} \delta(\mathbf{x} - \mathbf{x}')] \delta_{mm'},$$

$$\langle \mathbf{x}, m | \hat{\varepsilon} | \mathbf{x}', m' \rangle = \varepsilon'_{mm'} (\mathbf{x}) \delta(\mathbf{x} - \mathbf{x}'),$$

$$\langle \mathbf{x}, m | \hat{\mu} | \mathbf{x}', m' \rangle = \mu'_{mm'} (\mathbf{x}) \delta(\mathbf{x} - \mathbf{x}'),$$

где матрицы в сферическом базисе s', $\varepsilon'(\mathbf{x})$, $\mu'(\mathbf{x})$ связаны с соответствующими матрицами в декартовом базисе s, $\varepsilon(\mathbf{x})$, $\mu(\mathbf{x})$ унитарным преобразованием вида $\mathbf{c}' = \mathbf{U} \cdot \mathbf{c} \cdot \mathbf{U}^+$. При этом матрицы спинового момента в результате этого преобразования приобретают вид

$$s'_{x} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad s'_{y} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix},$$
$$s'_{z} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$

а матрицы $\varepsilon(\mathbf{x})$ и $\boldsymbol{\mu}(\mathbf{x})$ для сред, у которых $\varepsilon_{11}(\mathbf{x}) = \varepsilon_{22}(\mathbf{x})$ и $\mu_{11}(\mathbf{x}) = \mu_{22}(\mathbf{x})$, а ось гирации направлена вдоль оси *z*, становятся диагональными.

Переход к задаче определения собственных векторов и собственных чисел эрмитовых операторов

Наличие в правых частях уравнений (6) операторов $\hat{\varepsilon}$ и $\hat{\mu}$ приводит к необходимости решения обобщенной задачи нахождения собственных чисел ω_l и собственных векторов $|E_l\rangle$ и $|H_l\rangle$. Однако посредством преобразований, она может быть сведена к обычной задаче определения собственных чисел и собственных векторов эрмитова оператора. С этой целью введем новые векторы состояний

$$\begin{split} |\tilde{E}\rangle &= \hat{\varepsilon}^{1/2} |E\rangle, \\ |\tilde{H}\rangle &= \hat{\mu}^{1/2} |H\rangle, \end{split} \tag{13}$$

а также неэрмитов оператор частоты $\hat{\Omega}$, который определим как

$$\Omega = ic\hat{\varepsilon}^{-1/2}(\hat{\mathbf{s}} \cdot \mathbf{k})\hat{\mu}^{-1/2},$$
$$\hat{\Omega}^{+} = -ic\hat{\mu}^{-1/2}(\hat{\mathbf{s}} \cdot \hat{\mathbf{k}})\hat{\varepsilon}^{-1/2}.$$
(14)

Новые векторы состояний, согласно (6), (13) и (14), удовлетворяют следующей системе операторных уравнений:

$$\begin{split} \hat{\Omega} |\tilde{H}\rangle &= \omega |\tilde{E}\rangle, \\ \hat{\Omega}^{+} |\tilde{E}\rangle &= \omega |\tilde{H}\rangle, \end{split} \tag{15}$$

а также эквивалентным ей уравнениям:

$$\hat{\Omega}^{+}\hat{\Omega}|\tilde{H}\rangle = \omega^{2}|\tilde{H}\rangle,$$
$$\hat{\Omega}\hat{\Omega}^{+}|\tilde{E}\rangle = \omega^{2}|\tilde{E}\rangle.$$
(16)

Каждое из уравнений (16) является уравнением для определения собственных чисел (квадратов частот) ω_l^2 и соответствующих им собственных векторов $|\tilde{H}_l\rangle$ и $|\tilde{E}_l\rangle$ эрмитовых операторов $\hat{\Omega}^+\hat{\Omega}$ и $\hat{\Omega}\hat{\Omega}^+$. Однако состояния $|\tilde{H}_l\rangle$ и $|\tilde{E}_l\rangle$ не независимы, а связанны между собой соотношениями (15). Как собственные векторы эрмитовых операторов они по отдельности ортогональны друг другу, если $l \neq l'$, и могут быть нормированы на единицу

$$\langle \tilde{E}_l | \tilde{E}_{l'} \rangle = \delta_{ll'},$$

$$\langle \tilde{H}_l | \tilde{H}_{l'} \rangle = \delta_{ll'}.$$
 (17)

Каждому собственному состоянию фотона $|\tilde{H}_l\rangle$ и $|\tilde{E}_l\rangle$ и в выбранном базисе будут соответствовать собственные нормированные по энергии электромагнитные моды. Так, например, в базисе $|\mathbf{x}, i\rangle$ им соответствуют моды $\tilde{H}_{i,l}(\mathbf{x}) = \langle \mathbf{x}, i | \tilde{H}_l \rangle$ и $\tilde{E}_{i,l}(\mathbf{x}) = \langle \mathbf{x}, i | \tilde{E}_l \rangle$.

Покажем, что условия нормировки (17) эквивалентны условию нормировки усредненной по периоду энергии электромагнитного поля, запасенной в *l*-й собственной моде, на единицу. Действительно, согласно (3), усредненная по периоду плотность энергии *l*-й моды $w_l(\mathbf{x})$, выраженная через нормированные поля, определяется соотношением

$$w_l(\mathbf{x}) = \frac{1}{4} [\mathbf{E}_l^*(\mathbf{x}) \cdot \mathbf{D}_l(\mathbf{x}) + \mathbf{H}_l^*(\mathbf{x}) \cdot \mathbf{B}_l(\mathbf{x}) + k.c.].$$

Откуда следует, что

$$\begin{split} W_l &= \int_{V} d\mathbf{x} w_l(\mathbf{x}) \\ &= \frac{1}{2} \sum_{i,j} \int_{V} d\mathbf{x} [E_{il}^*(\mathbf{x}) \varepsilon_{ij}(\mathbf{x}) E_{jl}(\mathbf{x}) + H_{il}^*(\mathbf{x}) \mu_{ij}(\mathbf{x}) H_{jl}(\mathbf{x})] \\ &= \frac{1}{2} [\langle E_l | \hat{\varepsilon} | E_l \rangle + \langle H_l | \hat{\mu} | H_l \rangle] = \frac{1}{2} [\langle \tilde{E}_l | \tilde{E}_l \rangle + \langle \tilde{H}_l | \tilde{H}_l \rangle] = 1 \end{split}$$

При выводе этих соотношений мы воспользовались формулами (5), (8), (9), (13) и (17). Аналогичным образом для каждой *l*-й собственной моды определим усредненные по периоду плотность импульса электромагнитного поля $S_l(x)$, которая пропорциональна вектору Пойнтинга, и плотность спинового момента $M_l(x)$:

$$\begin{split} \mathbf{S}_l(\mathbf{x}) &= \frac{1}{2} [\mathbf{E}_l^*(\mathbf{x}) \times \mathbf{H}_l(\mathbf{x}) - \mathbf{H}_l^*(\mathbf{x}) \times \mathbf{E}_l(\mathbf{x})], \\ \mathbf{M}_l(\mathbf{x}) &= \frac{-i}{2} [\tilde{\mathbf{E}}_l^*(\mathbf{x}) \times \tilde{\mathbf{E}}_l(\mathbf{x}) + \tilde{\mathbf{H}}_l^*(\mathbf{x}) \times \tilde{\mathbf{H}}_l(\mathbf{x})]. \end{split}$$

В соответствии с этим полный импульс S_l и полный спиновый момент M_l нормированной по энергии моды будут определяться следующими выражениями:

$$\mathbf{S}_{l} = \int_{V} d\mathbf{x} \mathbf{S}_{l}(\mathbf{x}) = \frac{i}{2} \big(\langle E_{l} | \hat{\mathbf{s}} | H_{l} \rangle - \langle H_{l} | \hat{\mathbf{s}} | E_{l} \rangle \big), \qquad (18)$$

$$\mathbf{M}_{l} = \int_{V} d\mathbf{x} \mathbf{S}_{l}(\mathbf{x}) = \frac{1}{2} \left(\langle \tilde{E}_{l} | \hat{\mathbf{s}} | \tilde{E}_{l} \rangle + \langle \tilde{H}_{l} | \hat{\mathbf{s}} | \tilde{H}_{l} \rangle \right).$$
(19)

Как следует из этих формул, обе величины \mathbf{S}_l и \mathbf{M}_l являются безразмерными.

Собственные моды анизотропного 3D ФК

Рассмотрим общий случай анизотропного 3D ФК, прямая и обратная решетки которого определяются тремя, связанными друг с другом, основными (примитивными) векторами трансляции $\mathbf{a}_{1,2,3}$ и $\mathbf{b}_{1,2,3}$ соответственно. Произвольные векторы трансляции прямой **a** и **b** обратной решеток определим как

$$\mathbf{a} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3,$$

 $\mathbf{b} = m_1 \mathbf{b}_1 + m_2 \mathbf{b}_2 + m_3 \mathbf{b}_3,$

где $n_i, m_i = 0, \pm 1, \pm 2...$ (i = 1, 2, 3). Согласно свойствам ФК, все операторы в уравнениях (15) и (16) должны обладать трансляционной симметрией, в частности, операторы диэлектрической и магнитной проницаемостей в базисе $|\mathbf{x}, i\rangle$ удовлетворять соотношениям

$$\varepsilon_{ij}(\mathbf{x} + \mathbf{a}) = \varepsilon_{ij}(\mathbf{x}),$$

$$\mu_{ij}(\mathbf{x} + \mathbf{a}) = \mu_{ij}(\mathbf{x}).$$
 (20)

В трансляционно-инвариантной системе в качестве базиса представления уравнений (15) и (16) удобно использовать состояния фотона с определенным волновым вектором, который запишем в виде суммы вектора обратной решетки **b** и вектора **k**, пробегающего для ограниченного кристалла дискретный ряд значений в зоне Бриллюэна ФК, и определенной, например, линейной поляризацией $|\mathbf{b} + \mathbf{k}, i\rangle$. Этот базис связан с базисом $|\mathbf{x}, i\rangle$ следующим унитарным преобразованием (преобразованием Фурье):

 $|\mathbf{b} + \mathbf{k}, i\rangle = \sum_{j} \int_{V} d\mathbf{x} |\mathbf{x}, j\rangle \langle \mathbf{x}, j | \mathbf{b} + \mathbf{k}, i\rangle,$

где

$$\mathbf{x}, \, j | \mathbf{b} + \mathbf{k}, \, i \rangle = \frac{1}{\sqrt{V}} e^{i (\mathbf{b} + \mathbf{k}) \mathbf{x}} \delta_{ji}, \tag{22}$$

(21)

 $V = N\Omega_0$ — объем ФК, N — число элементарных ячеек в ФК, Ω_0 — объем элементарной ячейки. Базисные орты $|\mathbf{b} + \mathbf{k}, i\rangle$ удовлетворяют соответственно следующим условиям ортонормированности и полноты:

$$\langle \mathbf{b} + \mathbf{k}, i | \mathbf{b}' + \mathbf{k}', j \rangle = \delta_{\mathbf{b}\mathbf{b}'} \delta_{\mathbf{k}\mathbf{k}'} \delta_{ij},$$

И

$$\sum_{\mathbf{b},\mathbf{k},i} |\mathbf{b} + \mathbf{k}, i\rangle \langle \mathbf{b} + \mathbf{k}, i| = 1.$$
(23)

Используя соотношения (20)-(23), определим вид всех интересующих нас операторов в этом базисе

$$\langle \mathbf{b} + \mathbf{k}, i | \hat{\mathbf{s}} | \mathbf{b}' + \mathbf{k}', j \rangle = \mathbf{s}_{ij} \delta_{\mathbf{b}\mathbf{b}'} \delta_{\mathbf{k}\mathbf{k}'},$$

$$\langle \mathbf{b} + \mathbf{k}, i | \hat{\mathbf{k}} | \mathbf{b}' + \mathbf{k}', j \rangle = (\mathbf{b} + \mathbf{k}) \delta_{\mathbf{b}\mathbf{b}'} \delta_{ij} \delta_{\mathbf{k}\mathbf{k}'},$$

$$\langle \mathbf{b} + \mathbf{k}, i | \hat{\varepsilon} | \mathbf{b}' + \mathbf{k}', j \rangle = \varepsilon_{ij} (\mathbf{b} - \mathbf{b}') \delta_{\mathbf{k}\mathbf{k}'},$$

$$\langle \mathbf{b} + \mathbf{k}, i | \hat{\mu} | \mathbf{b}' + \mathbf{k}', j \rangle = \mu_{ij} (\mathbf{b} - \mathbf{b}') \delta_{\mathbf{k}\mathbf{k}'}.$$
 (24)

Здесь s_{ij} определяются формулой (10), а

$$\varepsilon_{ij}(\mathbf{b} - \mathbf{b}') = \frac{1}{\Omega_0} \int_{\Omega_0} d\mathbf{x} \varepsilon_{ij}(\mathbf{x}) e^{-i(\mathbf{b} - \mathbf{b}')\mathbf{x}},$$
$$\mu_{ij}(\mathbf{b} - \mathbf{b}') = \frac{1}{\Omega_0} \int_{\Omega_0} d\mathbf{x} \mu_{ij}(\mathbf{x}) e^{-i(\mathbf{b} - \mathbf{b}')\mathbf{x}}$$

 фурье-образы компонент диэлектрической и магнитной проницаемостей соответственно.

Как следует из (24), наличие трансляционной симметрии у ФК приводит к тому, что все операторы в рассматриваемом базисе диагональны по индексам **k** и **k**'. В результате соответствующие этим операторам матрицы представления имеют блочно-диагональную структуру. Поэтому они сами и любые их произведения могут быть выражены через матрицы меньшей размерности, параметрически зависящие от волнового вектора **k**. Так, например

$$\langle \mathbf{b} + \mathbf{k}, i | \Omega | \mathbf{b}' + \mathbf{k}', j \rangle = \Omega_{\mathbf{b}i,\mathbf{b}'j}(\mathbf{k}) \delta_{\mathbf{k}\mathbf{k}'},$$

где $\Omega_{\mathbf{b}i,\mathbf{b}'j}(\mathbf{k})$ — матричные элементы следующей матрицы (см. формулу (14)):

$$\mathbf{\Omega}(\mathbf{k}) = i c \, \boldsymbol{\varepsilon}^{-1/2} \big(\mathbf{s} \cdot \mathbf{K}(\mathbf{k}) \big) \cdot \boldsymbol{\mu}^{-1/2}. \tag{25}$$

Здесь и далее в этом разделе s, K(k), ε и μ — матрицы, элементы которых, согласно (24), определены соответственно следующим образом:

$$\mathbf{s}_{\mathbf{b}i,\mathbf{b}'j} = \mathbf{s}_{ij}\delta_{\mathbf{b}\mathbf{b}'},$$

$$\mathbf{K}_{\mathbf{b}i,\mathbf{b}'j}(\mathbf{k}) = (\mathbf{b} + \mathbf{k})\delta_{\mathbf{b}\mathbf{b}'}\delta_{ij},$$

$$\varepsilon_{\mathbf{b}i,\mathbf{b}'j} = \varepsilon_{ij}(\mathbf{b} - \mathbf{b}'),$$

$$\mu_{\mathbf{b}i,\mathbf{b}'j} = \varepsilon_{ij}(\mathbf{b} - \mathbf{b}').$$
(26)

Согласно вышеизложенному, собственные векторы $|\tilde{H}_{l\mathbf{k}'}\rangle$ и $|\tilde{E}_{l\mathbf{k}'}\rangle$, являющиеся решениями уравнений (15) и (16) и описывающие собственные $l\mathbf{k}'$ -е блоховские состояния фотона, в базисе $|\mathbf{b} + \mathbf{k}, i\rangle$ также имеют вид блочно-диагональных матриц:

$$\langle \mathbf{b} + \mathbf{k}, i | \tilde{H}_{l\mathbf{k}'} \rangle = \tilde{H}_{\mathbf{b}i,l}(\mathbf{k}) \delta_{\mathbf{k}\mathbf{k}'},$$

$$\langle \mathbf{b} + \mathbf{k}, i | \tilde{E}_{l\mathbf{k}'} \rangle = \tilde{E}_{\mathbf{b}i,l}(\mathbf{k}) \delta_{\mathbf{k}\mathbf{k}'}.$$
(27)

Следовательно, в этом базисе они будут характеризоваться параметрически зависящими от волнового вектора **k** собственными столбцами $\tilde{\mathbf{H}}_{l}(\mathbf{k})$ и $\tilde{\mathbf{E}}_{l}(\mathbf{k})$, компоненты которых соответственно равны $\tilde{H}_{\mathbf{b}i,l}(\mathbf{k})$ и $\tilde{E}_{\mathbf{b}i,l}(\mathbf{k})$. В результате операторные уравнения (15) и (16) могут быть представлены соответственно в виде следующих параметрически зависящих от вектора **k** матричных уравнений:

$$\Omega(\mathbf{k}) \cdot \tilde{\mathbf{H}}_{l}(\mathbf{k}) = \omega_{l}(\mathbf{k})\tilde{\mathbf{E}}_{l}(\mathbf{k}),$$

$$\Omega^{+}(\mathbf{k}) \cdot \tilde{\mathbf{E}}_{l}(\mathbf{k}) = \omega_{l}(\mathbf{k})\tilde{\mathbf{H}}_{l}(\mathbf{k}).$$
(28)

$$\Omega^{+}(\mathbf{k}) \cdot \Omega(\mathbf{k}) \cdot \tilde{\mathbf{H}}_{l}(\mathbf{k}) = \omega_{l}^{2}(\mathbf{k})\tilde{\mathbf{H}}_{l}(\mathbf{k}),$$

$$\Omega(\mathbf{k}) \cdot \Omega^{+}(\mathbf{k}) \cdot \tilde{\mathbf{E}}_{l}(\mathbf{k}) = \omega_{l}^{2}(\mathbf{k})\tilde{\mathbf{E}}_{l}(\mathbf{k}).$$
(29)

Таким образом, задача определения собственных нормированных по энергии блоховских мод ФК сводится к поиску собственных чисел $\omega_l^2(\mathbf{k})$ и соответствующих им собственных столбцов $\tilde{\mathbf{H}}_l(\mathbf{k})$, $\tilde{\mathbf{E}}_l(\mathbf{k})$ матричных уравнений (28) и (29). Для этого, как указывалось выше, из четырех уравнений (28) и (29) достаточно рассмотреть только два, например, следующие:

$$\Omega^{+}(\mathbf{k}) \cdot \Omega(\mathbf{k}) \cdot \tilde{\mathbf{H}}_{l}(\mathbf{k}) = \omega_{l}^{2}(\mathbf{k})\tilde{\mathbf{H}}_{l}(\mathbf{k}),$$
$$\tilde{\mathbf{E}}_{l}(\mathbf{k}) = \frac{1}{\omega_{l}(\mathbf{k})}\Omega(\mathbf{k}) \cdot \tilde{\mathbf{H}}_{l}(\mathbf{k}).$$
(30)

При этом продольные моды, у которых $\omega_l(\mathbf{k}) = 0$, должны быть исключены из рассмотрения. Необходимую для определения матрицы $\Omega(\mathbf{k})$ процедуру извлечения корня квадратного из эрмитовых матриц ε и μ с элементами, определенными в (26), можно осуществить посредством предварительного перехода к базису, в котором эти матрицы диагональны, а после извлечения корня возвратиться к исходному базису. Собственные столбцы $\tilde{\mathbf{H}}_l(\mathbf{k})$ и $\tilde{\mathbf{E}}_l(\mathbf{k})$ удовлетворяют следующим условиям нормировки:

$$\begin{split} \tilde{\mathbf{H}}_{l}^{+}(\mathbf{k}) \cdot \tilde{\mathbf{H}}_{l'}(\mathbf{k}) &= \delta_{ll'}, \\ \tilde{\mathbf{E}}_{l}^{+}(\mathbf{k}) \cdot \tilde{\mathbf{E}}_{l'}(\mathbf{k}) &= \delta_{ll'}, \end{split}$$
(31)

которые непосредственно следуют из условий ортонормированности собственных блоховских состояний фотона $\langle \tilde{H}_{l\mathbf{k}} | \tilde{H}_{l'\mathbf{k}'} \rangle = \langle \tilde{E}_{l\mathbf{k}} | \tilde{E}_{l'\mathbf{k}'} \rangle = \delta_{ll'} \delta_{\mathbf{k}\mathbf{k}'}$ и соотношений (27):

$$\begin{split} \langle \tilde{H}_{l\mathbf{k}} | \tilde{H}_{l'\mathbf{k}'} \rangle &= \sum_{\mathbf{b}, \mathbf{k}'', i} \langle \tilde{H}_{l\mathbf{k}} | \mathbf{b} + \mathbf{k}'', i \rangle \langle \mathbf{b} + \mathbf{k}'', i | \tilde{H}_{l'\mathbf{k}'} \rangle \\ &= \delta_{\mathbf{k}\mathbf{k}'} \sum_{\mathbf{b}, i} \tilde{H}_{l,\mathbf{b}i}^+(\mathbf{k}) \tilde{H}_{\mathbf{b}i,l'}(\mathbf{k}) \\ &= \delta_{\mathbf{k}\mathbf{k}'} \tilde{\mathbf{H}}_{l}^+(\mathbf{k}) \cdot \tilde{\mathbf{H}}_{l'}(\mathbf{k}) = \delta_{\mathbf{k}\mathbf{k}'} \delta_{ll'}. \end{split}$$

Аналогичным образом доказывается и второе условие в (31).

Пространственное распределение проекций магнитного и электрического полей в *l***k**-й нормированной

по энергии блоховской моде $H_{i,l\mathbf{k}}(\mathbf{x}) = \langle \mathbf{x}, i | H_{l\mathbf{k}} \rangle$ и $E_{i,l\mathbf{k}}(\mathbf{x}) = \langle \mathbf{x}, i | E_{l\mathbf{k}} \rangle$ можно определить с помощью обратного преобразования Фурье:

$$H_{i,l\mathbf{k}}(\mathbf{x}) = \frac{1}{\sqrt{V}} \sum_{\mathbf{b}} e^{i(\mathbf{b}+\mathbf{k})\mathbf{x}} H_{\mathbf{b}i,l}(\mathbf{k}) = \frac{1}{\sqrt{N}} e^{i\mathbf{k}\mathbf{x}} H_{i,l}(\mathbf{x};\mathbf{k}),$$
$$E_{i,l\mathbf{k}}(\mathbf{x}) = \frac{1}{\sqrt{V}} \sum_{\mathbf{b}} e^{i(\mathbf{b}+\mathbf{k})\mathbf{x}} E_{\mathbf{b}i,l}(\mathbf{k}) = \frac{1}{\sqrt{N}} e^{i\mathbf{k}\mathbf{x}} E_{i,l}(\mathbf{x};\mathbf{k}).$$
(32)

Здесь

I

$$H_{i,l}(\mathbf{x}; \mathbf{k}) = \frac{1}{\sqrt{\Omega_0}} \sum_{\mathbf{b}} e^{i\mathbf{b}\mathbf{x}} H_{\mathbf{b}i,l}(\mathbf{k}),$$
$$E_{i,l}(\mathbf{x}; \mathbf{k}) = \frac{1}{\sqrt{\Omega_0}} \sum_{\mathbf{b}} e^{i\mathbf{b}\mathbf{x}} E_{\mathbf{b}i,l}(\mathbf{k})$$
(33)

— периодические части блоховских функций (32), фурье-компоненты которых $H_{bi,l}(\mathbf{k})$ и $E_{bi,l}(\mathbf{k})$ образуют соответственно столбцы $\mathbf{H}_l(\mathbf{k})$ и $\mathbf{E}_l(\mathbf{k})$, которые, согласно (13), связаны с собственными столбцами матричных уравнений (30) $\tilde{\mathbf{H}}_l(\mathbf{k})$ и $\tilde{\mathbf{E}}_l(\mathbf{k})$ соотношениями

$$\mathbf{H}_{l}(\mathbf{k}) = \boldsymbol{\mu}^{-1/2} \cdot \tilde{\mathbf{H}}_{l}(\mathbf{k}),$$
$$\mathbf{E}_{l}(\mathbf{k}) = \boldsymbol{\varepsilon}^{-1/2} \cdot \tilde{\mathbf{H}}_{l}(\mathbf{k})$$
(34)

где матрицы µ и є определены в (26).

При вычислении полного импульса и полного спинового момента *l***k**-й нормированной по энергии блоховской моды достаточно воспользоваться формулами (18) и (19). Соответственно будем иметь

$$\mathbf{S}_{l}(\mathbf{k}) = \frac{l}{2} [\mathbf{E}_{l}^{+}(\mathbf{k}) \cdot \mathbf{s} \cdot \mathbf{H}_{l}(\mathbf{k}) - \mathbf{H}_{l}^{+}(\mathbf{k}) \cdot \mathbf{s} \cdot \mathbf{E}_{l}(\mathbf{k})],$$
$$\mathbf{M}_{l}(\mathbf{k}) = \frac{1}{2} [\tilde{\mathbf{E}}_{l}^{+}(\mathbf{k}) \cdot \mathbf{s} \cdot \tilde{\mathbf{E}}_{l}(\mathbf{k}) + \tilde{\mathbf{H}}_{l}^{+}(\mathbf{k}) \cdot \mathbf{s} \cdot \tilde{\mathbf{H}}_{l}(\mathbf{k})], \quad (35)$$

где мы воспользовались матричным представлением оператора спина (формула (26)).

Покажем, что полный импульс *l***k**-й нормированной по энергии моды $\mathbf{S}_l(\mathbf{k})$ совпадает с ее групповой скоростью $\mathbf{v}_{g,l}(\mathbf{k}) = \partial \omega_l(\mathbf{k}) / \partial \mathbf{k}$, отнесенной к скорости света в вакууме. С этой целью в уравнениях (28) осуществим бесконечно малую вариацию волнового вектора $\delta \mathbf{k}$ [16]. Будем иметь

$$egin{aligned} &\delta \mathbf{\Omega}(\mathbf{k}) \cdot \mathbf{H}_l(\mathbf{k}) + \mathbf{\Omega}(\mathbf{k}) \cdot \delta \mathbf{H}_l(\mathbf{k}) = \delta \omega_l(\mathbf{k}) \mathbf{E}_l(\mathbf{k}) \ &+ \omega_l(\mathbf{k}) \delta ilde{\mathbf{E}}_l(\mathbf{k}), \ &\delta \mathbf{\Omega}^+(\mathbf{k}) \cdot ilde{\mathbf{E}}_l(\mathbf{k}) + \mathbf{\Omega}^+(\mathbf{k}) \cdot \delta ilde{\mathbf{E}}_l(\mathbf{k}) = \delta \omega_l(\mathbf{k}) ilde{\mathbf{H}}_l(\mathbf{k}) \ &+ \omega_l(\mathbf{k}) \delta ilde{\mathbf{H}}_l(\mathbf{k}), \end{aligned}$$

Далее умножим слева первое из этих уравнений на $\tilde{\mathbf{E}}_l^+(\mathbf{k})$, а второе на $\tilde{\mathbf{H}}_l^+(\mathbf{k})$ и воспользуемся уравнениями для эрмитово сопряженных столбцов

$$egin{aligned} & ilde{\mathbf{H}}_l^+(\mathbf{k})\cdot\mathbf{\Omega}^+(\mathbf{k}) = \omega_l(\mathbf{k}) ilde{\mathbf{E}}_l^+(\mathbf{k}), \ & ilde{\mathbf{E}}_l^+(\mathbf{k})\cdot\mathbf{\Omega}(\mathbf{k}) = \omega_l(\mathbf{k}) ilde{\mathbf{H}}_l^+(\mathbf{k}), \end{aligned}$$

которые получаются посредством эрмитова сопряжения уравнений (28). Складывая левые и правые части полученных уравнений после сокращений подобных членов и учета условий нормировки (31), получим

$$\tilde{\mathbf{E}}_{l}^{+}(\mathbf{k}) \cdot \delta \mathbf{\Omega}(\mathbf{k}) \cdot \tilde{\mathbf{H}}_{l}(\mathbf{k}) + \tilde{\mathbf{H}}_{l}^{+}(\mathbf{k}) \cdot \delta \mathbf{\Omega}^{+}(\mathbf{k}) \cdot \tilde{\mathbf{E}}_{l}(\mathbf{k}) = 2\delta \omega_{l}(\mathbf{k}).$$
(36)

Согласно (25) и (26):

$$\delta \Omega(\mathbf{k}) = i c \varepsilon^{-1/2} \cdot (\mathbf{s} \cdot \delta \mathbf{k}) \cdot \boldsymbol{\mu}^{-1/2},$$

$$\delta \Omega^{+}(\mathbf{k}) = -i c \boldsymbol{\mu}^{-1/2} \cdot (\mathbf{s} \cdot \delta \mathbf{k}) \cdot \varepsilon^{-1/2}, \qquad (37)$$

Подстановка (37) в (36) с учетом (34) и (35) приводит к искомому результату

$$\mathbf{S}_l(\mathbf{k}) = \mathbf{v}_{g,l}(\mathbf{k})/c. \tag{38}$$

Дисперсия собственных мод анизотропных и гиротропных 1D ФК (численный расчет)

Развитая выше теория была использована для расчета зонной структуры и пространственного распределения собственных мод 1D ФК на основе анизотропных и гиротропных диэлектрических и магнитных сред. Рассматривался наиболее общий случай среды, с периодически изменяющимися в направлении z компонентами тензоров диэлектрической $\varepsilon_{ik}(z)$ и магнитной $\mu_{ik}(z)$ проницаемостей. С этой целью были введены две периодические с периодом решетки ФК a_0 ступенчатые функции

Рис. 1. Зонная структура изотропного 1*D* ФК. Параметры ФК: $\Delta \varepsilon_{ik}^1 = 15\delta_{ik}, \Delta \varepsilon_{ik}^2 = \delta_{ik}, \Delta \mu_{ik}^{1,2} = 0; \omega_0 = ck_0, k_0 = 2\pi/a_0.$

Рис. 2. Пространственное распределение электрического (*a*) и магнитного (*b*) полей в изотропном 1*D* ФК. ТМ-мода, l = 3, $k_z = 0.25k_0$. Параметры ФК приведены в подписи к рис. 1.

 $f_1(z)$ и $f_2(z) = 1 - f_1(z)$, осуществляющие послойную пространственную модуляцию как диэлектрической, так и магнитной проницаемостей. Первая из этих функций в пределах элементарной ячейки ФК, центрированной в точке z = 0, удовлетворяла следующим условиям: $f_1(z) = 1$ в области $|z| \le a_0/4$ и $f_1(z) = 0$ в остальной ее части. Координатная зависимость компонент тензоров определялась следующим образом:

$$\varepsilon_{ik}(z) = \delta_{ik} + \Delta \varepsilon_{ik}^1 f_1(z) + \Delta \varepsilon_{ik}^2 f_2(z),$$

$$\mu_{ik}(z) = \delta_{ik} + \Delta \mu_{ik}^1 f_1(z) + \Delta \mu_{ik}^2 f_2(z).$$

Здесь $\Delta \varepsilon_{ik}^{1,2}$ и $\Delta \mu_{ik}^{1,2}$ — постоянные, характеризующие изменения компонент тензоров относительно вакуума соответственно в слоях 1 и 2. Произвольный вектор обратной решетки, направленный воль оси *z*, определялся как $b_m = (2\pi/a_0)m$, где $m = -N_b \dots 0 \dots N_b$ $(N_b = 80)$. Таким образом, матрица $\Omega(\mathbf{k})$ имела размерность 483 × 483. Во всех расчетах рассматривались электромагнитные волны, у которых $k_x = k_y = 0$.

В качестве примера на рис. 1 представлены результаты расчета зонной структуры изотропного 1D ФК,

параметры которого указаны в подписи к рисунку. Как и следовало ожидать, собственные моды этого кристалла, соответствующие ТМ- и ТЕ-поляризациям вырождены. Пространственное распределение электромагнитного поля в этом кристалле рассчитывалось по формуле (33). Соответствующие результаты для квадрата модуля амплитуд поля ТМ-моды приведены на рис. 2.

335

На рис. 3 представлены результаты расчета зонной структуры ФК с анизотропной диэлектрической проницаемостью в обоих слоях, но различной ориентацией в них осей анизотропии. Как видно из рисунка, наряду с расщеплением собственных мод, обусловлен-

Рис. 3. Зонная структура анизотропного 1*D* ФК. Параметры ФК: $\Delta \varepsilon_{11}^1 = 10$, $\Delta \varepsilon_{22}^1 = \Delta \varepsilon_{33}^1 = 2$, $\Delta \varepsilon_{ik}^1 = 0$ $(i \neq k)$, $\Delta \varepsilon_{11}^2 = \Delta \varepsilon_{22}^2 = \Delta \varepsilon_{33}^2 = \Delta \varepsilon_{12}^2 = \Delta \varepsilon_{21}^2 = 1$, $\Delta \varepsilon_{i3}^2 = \Delta \varepsilon_{3i}^2 = 0$ (i = 1, 2), $\Delta \mu_{ik}^{1,2} = 0$.

Рис. 4. Дисперсия частоты, полного импульса и групповой скорости моды l = 4 анизотропного 1D ФК. Параметры ФК приведены в подписи к рис. 3. Точками показана дисперсия групповой скорости.

Рис. 5. Зонная структура гиротропного 1*D* ФК. Параметры ФК: $\Delta \varepsilon_{ik}^1 = 0$, $\Delta \varepsilon_{11}^2 = \Delta \varepsilon_{22}^2 = \Delta \varepsilon_{33}^2 = \Delta \varepsilon_{12}^2 = \Delta \varepsilon_{21}^2 = 1$, $\Delta \varepsilon_{i3}^2 = \Delta \varepsilon_{3i}^2 = 0$ (i = 1, 2), $\Delta \mu_{11}^1 = \Delta \mu_{22}^1 = \Delta \mu_{33}^1 = 15$, $\Delta \mu_{12}^1 = -\Delta \mu_{21}^{11} = 15i$, $\Delta \mu_{i3}^1 = \Delta \mu_{3i}^1 = 0$ (i = 1, 2), $\Delta \mu_{ik}^2 = 0$.

Рис. 6. Дисперсия частоты и полного момента моды l = 3 гиротропного 1D ФК. Параметры ФК приведены в подписи к рис. 5. Дисперсия частоты показана штриховой линией.

ным анизотропией диэлектрических проницаемостей, в этом случае дополнительно наблюдаются эффекты антипересечения дисперсионных ветвей. Рассчитанная по формуле (35) зависимость проекции полного импульса электромагнитного поля на ось $z S_{z,l}(k_z)$ от волнового вектора k_z моды с номером l = 4 представлена на рис. 4. Для сравнения на этом же рисунке приведены закон дисперсии этой моды $\omega_4(k_z)$ и рассчитанная с его помощью дисперсия ее групповой скорости $v_{gz,4}(k_z)$. Как видно, дисперсионные зависимости полного импульса и групповой скорости, отнесенной к скорости света в вакууме, совпадают, что находится в полном согласии с представленными выше теоретическими результатами (формула (38)).

Дисперсия собственных мод ФК при наличии магнитной гиротропии одного из его слоев и диэлектрической анизотропии другого слоя, ось анизотропии которого не совпадает с осью гирации, приведена на рис. 5. Здесь, как и в случае анизотропного ФК (рис. 3), наблюдается снятие вырождения собственных мод и антипересечение дисперсионных ветвей. В качестве примера на рис. 6 представлен результат расчета зависимости проекции полного спинового момента на ось $z M_{z,l}(k_z)$ моды с номером l = 3 (формула (35)). Здесь же для сравнения приведен ее закон дисперсии $\omega_3(k_z)$. Из рисунка следует, что спиновый момент переносимый этой модой зависит от k_z и в наших безразмерных единицах изменяется в пределах зоны Бриллюэна от -1, что соответствует волнам с левой круговой поляризацией, до +1, что характерно для волн с правой круговой поляризацией.

Заключение

В работе продемонстрирована эквивалентность стационарных уравнений Максвелла для комплексных амплитуд электромагнитного поля и одночастичных квантовомеханических операторных уравнений для фотона. Переход к операторным уравнениям существенно упростил и максимально формализовал задачу определения зонной структуры и собственных мод ФК. Кроме того, данный подход позволил с единых позиций анализировать ФК на основе периодических сред с произвольной анизотропией и гиротропией их диэлектрических и магнитных свойств. Эффективность предлагаемого метода продемонстрирована на примере анализа зонной структуры и характеристик собственных мод анизотропных и гиротропных 1*D* ФК.

Автор признателен чл.-корр. РАН Ивченко Е.Л. и Глазову М.М. за интерес к настоящей работе и обсуждение ее результатов. Работа выполнена в рамках государственного задания Министерства образования и науки РФ (проектная часть 16.1750.2017/4.6).

Список литературы

- [1] Yablonovitch E. // Phys. Rev. Lett. 1987. Vol. 58. P. 2059–2062.
- [2] John S. // Phys. Rev. Lett. 1987. Vol. 58. P. 2486-2489.
- [3] Sukhoivanov I.A., Guryev I.V. Photonic Crystals. Springer, 2009. 242 p.
- [4] Sakoda K. Optical Properties of Photonic Crystals. Springer, 2005. 253 p.
- [5] Спицын А.С., Глинский Г.Ф. // ЖТФ. 2008. Т. 78. Вып. 5.
 С. 71–77. [Spitsyn A.S., Glinskii G.F. // Techn. Phys. 2008.
 Vol. 53. N 5. P. 602–608. DOI: 10.1134/S1063784208050125]
- [6] Спицын А.С., Глинский Г.Ф. // ФТП. 2008. Т. 42. Вып. 10.
 С. 1261–1267. [Spitsyn A.S., Glinskii G.F. // Semiconductors. 2008. Vol. 42. N 10. P. 1237–1243.
 DOI: 10.1134/S1063782608100175]

337

- [7] Li Z-Y, Wang J., Gu D-Y. // Phys. Rev. B. 1998. Vol. 58. P. 3721–3729.
- [8] Belotelov V.I., Zvezdin A.K. // J. Opt. Soc. Am. B. 2005. Vol. 22. N 1. P. 286–292.
- [9] Alagappan G., Sun X.W., Shum P., Yu M.B., Doan M.T. // J. Opt. Soc. Am. B. 2006. Vol. 23. N 1. P. 159–167.
- [10] Alagappan G., Sun X.W., Sun H.D. // Phys. Rev. B. 2008. Vol. 77. P. 195117. DOI: 10.1103/PhysRevB.77.195117
- [11] Khromova I.A., Melnikov L.A. // Opt. Commun. 2008. Vol. 281. P. 5458–5466. DOI: 10.1016/j.optcom.2008.07.059
- Panah M.B., Abrishamian M.S., Mirtaheri S.A. // J. Opt. 2011.
 Vol. 13. P. 015103. DOI: 10.1088/2040-8978/13/1/015103
- [13] Ignatov A.I., Merzlikin A.M., Levy M., Vinogradov A.P. // Materials. 2012. Vol. 5. P. 1055–1083. DOI: 10.3390/ma5061055
- [14] Zhang H.-F., Liu S.-B., Kong X.-K. // Phys. Plasmas. 2013. Vol. 20. P. 092105.
- [15] Глинский Г.Ф. Методы теории групп в квантовой механике. СПб.: Изд-во СПбГЭТУ "ЛЭТИ", 2012. 200 с. (http://www.twirpx.com/file/1014645/)
- [16] *Глинский Г.Ф.* // Изв. вузов. Радиофизика. 1980. Т. 23. № 1. С. 90–95.