Оперативный контроль коэффициента диффузии в тонких анизотропных пористых материалах

© В.П. Беляев, С.В. Мищенко, П.С. Беляев¶

Тамбовский государственный технический университет, Тамбов, Россия [¶] E-mail: bps800@yandex.ru

Поступило в Редакцию 3 сентября 2018 г.

Представлен метод неразрушающего контроля коэффициента диффузии растворителей в тонких волокнистых материалах с существенной анизотропией свойств. Определение искомого коэффициента обеспечивается при отсутствии реальной статической характеристики применяемого преобразователя концентрации диффузанта в твердой фазе, что существенно повышает производительность контроля.

DOI: 10.21883/PJTF.2019.01.47153.17513

В разных областях промышленности все более широкое применение получают пористые волокнистые композиционные материалы, использующиеся в виде тонколистовых изделий, получение и эксплуатация которых часто связаны с диффузией различных веществ [1,2]. В частности, средства химической регенерации воздуха систем жизнеобеспечения изготавливаются с использованием тканых и нетканых материалов или на бумажной основе путем распределения в матрице сорбционноактивных материалов [3]. Для повышения производительности исследований в направлении создания новых листовых сорбентов необходимо обеспечить оперативный контроль коэффициента диффузии в полупродуктах и изделиях с учетом вероятной анизотропии свойств.

Применяемая в настоящее время аппаратура для измерения коэффициента диффузии отличается достаточной сложностью [4,5], значительными массогабаритными параметрами и высокой стоимостью [4-6]. Кроме того, часто возникает необходимость защиты персонала от излучений [5,6]. Перспективным направлением в плане повышения производительности подобных исследований является разработка импульсных методов неразрушающего контроля (НК), характеризующихся малой длительностью процессов измерений и широко использующихся для определения теплофизических характеристик [7,8]. Задача достижения сопоставимой производительности при разработке аналогичных методов НК для измерения характеристик массопереноса осложнена необходимостью проведения длительной предварительной операции градуировки применяемых датчиков концентрации диффузанта по каждой системе композит-диффундирующее вещество [4-6,9,10]. А измерение локальной концентрации диффундирующих веществ, лежащее в основе реализации методов НК, представляет собой достаточно сложную задачу по сравнению с измерением локальных значений температуры [5,6,11].

Цель нашего исследования — разработка метода измерения коэффициента диффузии растворителей в изделиях из тонких пористых материалов, обеспечивающего оперативный контроль искомой характеристики в различных направлениях анизотропного материала без разрушения контролируемых изделий.

Существо предлагаемого метода рассмотрим на примере определения коэффициента диффузии влаги в бумаге из целлюлозы, обладающей анизотропией свойств в машинном и поперечном направлениях. Фрагмент листового пористого материала толщиной h с равномерным начальным распределением растворителя (влаги) помещается на плоскую подложку из не смачиваемого водой материала, например фторопласта. К поверхности образца плоской прямоугольной поверхностью прижимается измерительный зонд, имеющий вдоль оси симметрии прямолинейный паз длиной L для временного размещения линейного импульсного источника влаги. По обе стороны паза на одинаковом расстоянии $x_0 > 10h$ от его оси расположены электроды гальванического преобразователя (ГП) в виде прямолинейных отрезков длиной *l*. ГП выбран в качестве датчика концентрации распределенных в твердой фазе растворителей ввиду его высокой чувствительности, малой инерционности и способности обеспечивать более высокую локальность контроля по сравнению с другими известными электрофизическими преобразователями [10,12]. Необходимо, чтобы длина паза L имела размер не менее $20(x_0 + l)$, а размеры плоскости подлежащего контролю изделия должны быть достаточными для размещения измерительного зонда.

Путем равномерного перемещения по пазу зонда вращающегося увлажняющего диска, соединенного с дозирующим устройством, наносится импульс дозой влаги в виде увлажненной линии. После подачи линейного импульса источник влаги удаляется из зонда, прямолинейный паз герметизируется заглушкой, а сам зонд обеспечивает гидроизоляцию поверхности образца в зоне действия источника и прилегающей к ней области контроля распространения влаги. После подачи импульса влаги фиксируется изменение электродвижущей силы (ЭДС) гальванического преобразователя во времени. При описанной постановке эксперимента и определяющих размерах контролируемого изделия и измерительного устройства массоперенос в тонколистовом материале аналогичен распространению влаги в неограниченной среде при нанесении импульсного воздействия от плоского источника массы. При этом процесс распространения влаги может описываться краевой задачей [8]:

$$\frac{\partial U(x,\tau)}{\partial \tau} = \frac{\partial}{\partial x} \left[D \frac{\partial U(x,\tau)}{\partial x} \right] + \frac{W}{\rho_0} \delta(x,\tau),$$

$$\tau > 0, \quad 0 \le x < \infty,$$

$$U(x,0) = U_0, \quad \frac{\partial U(0,x)}{\partial x} = 0, \quad U(\infty,\tau) = U_0,$$

где $U(x, \tau)$ — концентрация влаги в исследуемом изделии на расстоянии x от линейного источника импульса массы в момент времени τ ; D — коэффициент диффузии; $\delta(x, \tau)$ — δ -функция Дирака; ρ_0 — плотность абсолютно сухого исследуемого материала; W мощность "мгновенного" источника влаги, подействовавшего в начале координат x = 0, вычисляемая как отношение количества влаги (подведенной к контролируемому изделию) к произведению длины линии Lимпульсного воздействия на толщину h исследуемого листового материала; U_0 — начальное влагосодержание в исследуемом материале.

В этом случае изменение концентрации растворителя в зоне действия источника описывается функцией [8]:

$$U(x,\tau) - U_0 = W / \left(\rho_0 \sqrt{4\pi D\tau} \exp[x^2/4D\tau] \right), \quad (1)$$

а коэффициент диффузии определяется соотношением

$$D = x_0^2 / (2\tau_{\rm max}), \tag{2}$$

где τ_{\max} — время, соответствующее максимуму на кривой изменения концентрации $U(x_0, \tau)$ на расстоянии x_0 от линейного источника.

После импульсного воздействия на заданном расстоянии x₀ от линейного источника наблюдается изменение концентрации в виде характерных кривых, имеющих восходящую ветвь от начала импульсного воздействия до момента $\tau_{\rm max}$ и нисходящую ветвь, наблюдаемую после наступления момента т_{тах}. Известно [12], что статическая характеристика ГП монотонна и имеет три участка. Наиболее предпочтительным для использования является средний участок со стабильным сигналом в диапазоне приблизительно $(0.7-0.9)E_e$ и высокой чувствительностью к изменению концентрации растворителя (влаги). Здесь Е_е — максимальный сигнал ГП, соответствующий переходу растворителя из области связанного состояния с твердой фазой исследуемого материала в область свободного состояния. Выберем два одинаковых значения ЭДС $E^*(x_0, \tau_1)$ и $E^*(x_0, \tau_2)$ из среднего участка статической характеристики ГП, достигаемых в моменты времени au_1 и au_2 соответственно на восходящей и нисходящей ветвях кривой изменения ЭДС во

Таблица 1. Коэффициент диффузии влаги в машинном направлении бумаги

$ au_{1i}$, s	$ au_{2i},{ m s}$	$D_i \cdot 10^8$, m ² /s	$\Delta D_i \cdot 10^9, \ \mathrm{m}^2/\mathrm{s}$
179.6	902.8	2.21	3.38
245.8	1276.5	1.59	-2.76
182.1	911.8	2.18	3.11
186.3	822.7	2.24	3.65
298.4	1215.4	1.44	-4.31
265.5	1197.6	1.56	-3.15
188.5	685.3	2.38	5.12
292.9	1299.4	1.42	-4.51
297.4	1212.6	1.46	-4.27
145.9	1035.6	2.40	5.32

Примечание. i = 1, 2, ..., 10 — порядковый номер опыта; математическое ожидание $\bar{D} = 1.8 \cdot 10^{-8} \text{ m}^2/\text{s}$; относительная погрешность результата измерения $\delta D = 9\%$.

времени. Соответствующие им одинаковые (вследствие монотонности статической характеристики) значения концентрации $U^*(x_0, \tau_1)$ и $U^*(x_0, \tau_2)$, достигаемые в моменты времени τ_1 и τ_2 , могут быть определены исходя из выражения (1) с учетом (2)

$$U^*(x_0, \tau_1) = W/2\rho_0 \big[(\pi D\tau_1) \exp(\tau_{\max}/\tau_1) \big]^{-1/2}, \qquad (3)$$

$$U^{*}(x_{0}, \tau_{2}) = W/2\rho_{0} \big[(\pi D\tau_{2}) \exp(\tau_{\max}/\tau_{2}) \big]^{-1/2}.$$
 (4)

Деление (3) на (4) приводит к следующему выражению:

$$\sqrt{\tau_2/\tau_1} \exp\left[0.5(\tau_{\max}/\tau_2 - \tau_{\max}/\tau_1)\right] = 1.$$
 (5)

Из (5) с учетом (2) получено расчетное выражение для определения искомого коэффициента диффузии

$$D = x_0^2 (\tau_2 - \tau_1) / [4\tau_2 \tau_1 \ln \sqrt{(\tau_2 / \tau_1)}].$$
 (6)

Для обеспечения контроля коэффициента диффузии в различных направлениях анизотропного материала линию импульсного воздействия ориентируют в заданном направлении материала (например, при исследовании бумаги — в машинном или поперечном направлении). При этом обеспечивается однонаправленный массоперенос в нужном направлении, не искаженный массопереносом в направлении, перпендикулярном исследуемому. За счет этого повышаются точность контроля и возможность определения искомого коэффициента в различных направлениях анизотропного листового материала.

В табл. 1 и 2 представлены фрагменты результатов 20кратных измерений коэффициента диффузии влаги в машинном и поперечном направлениях бумаги толщиной 0.14 mm, плотностью в сухом состоянии $2.2 \cdot 10^2$ kg/m³ (по десять результатов для каждого направления). Расстояние от источника дозы растворителя до расположения электродов ГП составляет 4 mm. Прижимаемая к исследуемому изделию плоская поверхность зонда

τ_{1i} , s	τ_{2i} · 10 ³ , s	$D_i \cdot 10^9$, m ² /s	$\Delta D_i \cdot 10^9, \ \mathrm{m}^2/\mathrm{s}$
612.3	2.317	7.22	-0.96
768.1	2.052	6.63	-1.55
583.3	1.551	8.75	0.57
451.4	1.351	10.77	2.58
832.6	2.229	6.11	-2.07
496.2	1.417	9.98	1.80
506.5	1.463	9.74	1.55
790.7	2.151	6.39	-1.79
848.9	2.320	5.94	-2.24
722.6	2.009	6.93	-1.25

Таблица 2. Коэффициент диффузии влаги в поперечном направлении бумаги

Примечание. i = 1, 2, ..., 10 — порядковый номер опыта; математическое ожидание $\bar{D} = 8.2 \cdot 10^{-9} \text{ m}^2/\text{s}$; относительная погрешность результата измерения $\delta D = 10\%$.

имеет размеры 120×100 mm, длина паза для размещения источника — 90 mm. Диаметр электродов гальванического преобразователя 0.2 mm, длина около 5 mm. Величина вносимой при импульсе влаги порядка $4-6\,\mu g$. Длительность эксперимента не выше 40 min.

В настоящее время нет возможности оценить систематическую составляющую погрешности в связи с отсутствием эталонных материалов для рассматриваемого класса систем пористый материал-растворитель, поэтому авторами представлена оценка случайной составляющей погрешности. Относительная погрешность результата измерения определялась следующим образом:

$$\delta_{\Sigma} = t_{\alpha,n} S_n / \left(\bar{D} \sqrt{n} \right),$$

где \bar{D} — математическое ожидание случайной величины; $t_{\alpha,n}$ — коэффициент Стьюдента при доверительной вероятности α и количестве измерений n;

$$S_n = \sqrt{\sum_{i=1}^n (D_i - \bar{D})^2 / (n-1)}$$

— среднеквадратическая погрешность отдельного измерения; $\Delta D = D_i - \bar{D}$.

Таким образом, для определения коэффициента диффузии необходимо выбрать два произвольных одинаковых значения на восходящей и нисходящей ветвях кривой изменения ЭДС во времени, определить значения моментов времени, в которые они достигаются, и рассчитать величину искомой характеристики массопереноса. Повышение производительности по сравнению с известными методами обеспечивается за счет меньшей длительности эксперимента, исключения операции по изготовлению специальных образцов для исследований и наиболее длительной операции градуировки датчиков концентрации распределенных в пористой среде растворителей.

Список литературы

- Каблов Е.Н. // Авиационные материалы и технологии. 2015. № 1(34). С. 3–33.
- [2] Гаршин А.П., Кулик В.И., Матвеев С.А., Нилов А.С. // Новые огнеупоры. 2017. № 4. С. 20–35. DOI: 10.17073/1683-4518-2017-4-20-35
- [3] Карелин А.И., Гладышев Н.Ф., Гладышева Т.В. // ЖНХ.
 2014. Т. 59. № 4. С. 517–525.
 DOI: 10.7868/S0044457X14040060
- [4] Коптог И.В., Сагдеев Р.З. // Успехи химии. 2002. Т. 71. № 10. С. 899–949.
- [5] Nizovtsev M.I., Stankus S.V., Sterlyagov A.N., Terekhov V.I., Khairulin R.A. // Int. J. Heat Mass Transfer. 2008. V. 51. N 17. P. 4161–4167.

https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.013

- [6] Roels S., Carmeliet J. // Int. J. Heat Mass Transfer. 2006.
 V. 49. N 25. P. 4762–4772.
- https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.035
- [7] Селиванова З.М., Хоан Т.А. // Измерительная техника. 2017. № 5. С. 44–48.
- [8] Пономарев С.В., Буланова В.О., Дивин А.Г., Буланов Е.В. // Метрология. 2015. № 4. С. 40–50.
- [9] Maksimović M., Stojanović G.M., Radovanović M., Malešev M., Radonjanin V., Radosavljević G., Smetana W. // Construct. Building Mater. 2012. V. 26. N 1. P. 327–333. https://doi.org/10.1016/j.conbuildmat.2011.06.029
- [10] Улыбин А.В., Старцев С.А., Зубков С.В. // Инж.-строит. журн. 2013. № 7. С. 32–39. DOI: 10.5862/MCE.42.5
- [11] Котерева Т.В., Иконников В.Б., Гаврищук Е.М., Потапов А.М., Савин Д.В. // ЖТФ. 2018. Т. 88. В. 7. С. 1110– 1115. DOI: 10.21883/PJTF.2018.07.46189.2572
- [12] Беляев В.П., Мищенко С.В., Беляев П.С. // Инж.-физ. журн. 2017. Т. 90. № 3. С. 733–741.