Анизотропия поверхностной энергии и работы выхода электрона IIВ металлов

© И.Г. Шебзухова,¹ Л.П. Арефьева^{2,¶}

 Кабардино-Балкарский государственный университет им. Х.М. Бербекова, 360004 Нальчик, Россия
 Донской государственный технический университет, 344000 Ростов-на-Дону, Россия
 e-mail: Ludmiloch ka529@mail.ru, Irina.Shebzukhova@mail.ru

(Поступило в Редакцию 13 мая 2018 г. В окончательной редакции 18 июня 2018 г.)

На базе электронно-статистического метода расчета поверхностной энергии металлов разработана методика оценки работы выхода электрона металлических кристаллов с гексагональными и ромбоэдрическими структурами. Предлагаемая методика связывает величину поверхностной энергии граней с работой выхода электрона, что позволяет также применять ее для оценки поверхностной энергии граней по экспериментальным данным работы выхода. Расчеты проводились для макрокристаллов кадмия, цинка и ртути. Построены температурная и ориентационная зависимости обеих величин. Полученные нами результаты хорошо согласуются с известными литературными данными.

DOI: 10.21883/JTF.2019.02.47087.188-18

Введение

13

Анизотропия поверхностной энергии (ПЭ) и работы выхода электрона (РВЭ) металлических кристаллов и пленок является одним из основных факторов, который необходимо учитывать при решении практических задач техники и технологии. Поэтому на протяжении нескольких десятилетий данному вопросу уделяется большое внимание [1–13]. Экспериментальные данные по ПЭ металлов и ее ориентационной зависимости неоднозначны или даже отсутствуют в справочной литературе [14]. В то же время РВЭ с ориентированной поверхности относительно несложно измерить. Современные экспериментальные методики определения РВЭ, основанные на применении метода сканирующего зонда Кельвина, используются при диагностике состояния поверхности, подвергающейся деформациям разного рода [10-13]. В справочной литературе [14] имеются экспериментальные данные РВЭ для большинства металлических поликристаллов, а также для некоторых металлов хотя бы для одной грани кристалла, а для некоторых *d*-металлов — для трех и более кристаллических граней.

Разными авторами экспериментально и теоретически [1,2,4–9] изучалась связь между РВЭ и ПЭ. В пионерской работе Г.Н. Шуппе [1] были установлены соотношения между величинами РВЭ, ПЭ и плотностью упаковки кристаллических граней.

Целью настоящей работы являлось распространение электронно-статистического метода расчета ПЭ металлов на описание связи ориентационных зависимостей работы выхода электрона $\varphi(hkl)$ и поверхностной энергии $f_{\omega}(hkl)$ плотноупакованных граней металлических макрокристаллов с некубическими структурами.

Электронно-статистический подход к расчету работы выхода электрона

Выражение, связывающее РВЭ и ПЭ металлических кристаллов, было получено в работах [7–9] в рамках электронно-статистической теории. Оно дает хорошее согласие с экспериментальными данными для *d*-металлов с ОЦК- и ГЦК-решетками. В настоящей работе мы применяем его для оценки анизотропии РВЭ гексагональных и ромбоэдрических структур IIB металлов, учитывая температурные зависимости величин, входящих в него.

Формула, связывающая $\varphi(hkl)$ с $f_{\omega}(hkl)$ [7–9], имеет вид

$$\varphi(hkl) = -\left(\frac{\partial E_0}{\partial z}\right)_{\overline{R}} - \frac{1}{n_v \tau} \left(\frac{\partial f_\omega(hkl)}{\partial z}\right)_{\overline{R}}.$$
 (1)

Здесь первое слагаемое есть некоторая постоянная величина, не зависящая от индексов кристаллографических граней, второе определяет ориентационную зависимость РВЭ. Производную $\left(\frac{\partial f_{\omega}(hkl)}{\partial z}\right)_{\overline{R}}$ можно получить по формуле, полученной ранее для ПЭ граней металлических кристаллов на основе электронно-статистического метода, используя выражения для хода электронной плотности на границе металл вакуум по Томасу–Ферми с поправками [15]

$$f_{\omega}(hkl) \cong \frac{1}{5} n(hkl) |W(r_0)| Q.$$
⁽²⁾

В формулах (1) и (2) a — параметр кристаллической решетки, z — число свободных электронов на атом, Q — функция, слабо зависящая от z, $|W(r_0)|$ — энергия связи кристаллической решетки, n(hkl) — концентрация частиц на грани. Суммирование в (2) для каждой грани

проводилось до *j*-й плоскости, при которой вклад в ПЭ составлял $\leq 0.1 \text{ mJ/m}^2$.

При эффективной толщине моноатомного поверхностного слоя $\tau = \overline{R}$ (где \overline{R} радиус *s*-сферы) и имея в виду (2), получим

$$\varphi(hkl) + \frac{B}{z} a^2 f_{\omega}(hkl) = \text{const.}$$
(3)

Постоянная *В* зависит от типа структуры решетки металла и в первом приближении для ГПУ кристаллов равна 3.51, а для кристаллической ртути с ромбоэдрической решеткой 5.846.

Мы уточнили константу B, для чего провели дифференцирование выражения для ПЭ граней по z, учли в производной и второе слагаемое, которое отражает ориентационную зависимость B, тогда для металлических кристаллов постоянную B можно записать в виде

$$B = \frac{a\beta}{Rf_v} \left[2 - \left(1 + \frac{\delta(hkl)}{2b\lambda s} \right)^{-1} \frac{\delta}{2b\lambda s} \right].$$
(4)

Здесь для ромбоэдрической структуры численный коэффициент $\beta = \sqrt{1 - 3\cos^2 \alpha + 2\cos^3 \alpha}$ ($\alpha = 70.74^\circ$), для ГПУ $\beta = 0.86c/a$, f_v — плотность упаковки ячейки.

Выражение (3) хорошо передает анизотропию $\varphi(hkl)$ металлов. Для оценки анизотропии РВЭ формула (3) приводится к виду:

$$\varphi(hkl) = \varphi_0 \left(1 - \frac{f_{\omega}^T(hkl)}{f_0} \right).$$
 (5)

Здесь $\varphi_0 = \text{const} = \overline{\varphi} + \frac{B}{z} a^2 \overline{f}_{\omega}$, $f_0 = \varphi_0 z / B a^2$, $\overline{\varphi}$ ричардсоновская РВЭ из поликристаллического образца, \overline{f}_{ω} — поверхностное натяжение (ПН) жидкого металла при температуре плавления T_m , $f_{\omega}^T(hkl)$ — ПЭ граней при заданной температуре.

При количественной проверке (3) было использовано выражение для разности РВЭ различных граней кристалла

$$\Delta \varphi = -Ba^2 \Delta f_{\omega}/z, \qquad (6)$$

где $\Delta \varphi$ и Δf_{ω} — соответственно разности РВЭ и свободной ПЭ двух различных граней. Это соотношение сравнивается с экспериментальными данными $\Delta \varphi_{\text{exp.}}$.

Для оценки РВЭ поликристалла применили формулу

$$\overline{\varphi}_{\text{theor}} = \frac{\sum_{i=1}^{n} g_i \varphi_i}{\sum_{i=1}^{n} g_i}, \qquad (7)$$

где g_i — статистический вес *i*-й грани, $\varphi_i = \equiv \varphi(hkl)$.

Обсуждение результатов

По выражениям (2) и (5) проведены оценки ПЭ и РВЭ четырех основных граней кристаллов кадмия и цинка и пяти граней ртути. Зависимость значений $f_{\omega}^{T}(hkl)$

Рис. 1. Зависимость РВЭ и ПЭ граней макрокристаллов цинка (*a*) и кадмия (*b*) от концентрации частиц на гранях при 293 К: $I - f_{\omega}^{T}(hkil)$; $2 - \varphi(hkil)$ с учетом (3); $3 - для \varphi(hkil)$ для B = 3.51.

и $\varphi(hkl)$ от плотности упаковки граней показана на рис. 1. Как видно из графиков, плотноупакованные грани обладают наименьшей ПЭ и наибольшей РВЭ, что согласуется с известными экспериментальными данными.

Полученные нами величины РВЭ для базисной грани (0001) кадмия и цинка хорошо согласуются с известными экспериментальными данными. Так, для цинка отклонение расчетного значения $\varphi(0001)$ при 293 К от $\varphi^{\exp}(0001)$ и от значения для поликристалла составляет 7.94 и 7.59% соответственно. А для кадмия погрешность расчета по сравнению с РВЭ поликристалла составляет всего 5.3%.

Значения коэффициента *B*, рассчитанные по (4), зависят не только от типа структуры, но и от кристаллографической ориентации грани, что позволяет более адекватно оценить анизотропию РВЭ. Так, для цинка отношения РВЭ граней (1120) и (1121) к РВЭ базисной грани (0001) уменьшается на 1.5–2%.

На рис. 2 показаны графики зависимости ПЭ и РВЭ пяти граней кристалла ртути от плотности упаковки граней. Расчеты проводились для температуры кристал-

900

800

700

600

500

400

300

200

100

0

6

 $(1\overline{1}1)$

7

 $f_{\omega}^{T}(hkl), mJ/m^{2}$

Рис. 2. Зависимость РВЭ и ПЭ граней макрокристалла ртути от концентрации частиц на гранях.

9

n(hkl), 10^{-18} m⁻²

 $(1\overline{1}0)$

8

(111) (110)

10

11

4.6

4.4

4.2

4.0

3.8 (*Y*).

3.6

3.4

3.2

3.0

12

(100)

Рис. 3. Температурная зависимость РВЭ граней макрокристалла ртути.

лизации ртути (234.11 К), а также экстраполировались на температуру 297 К, для которой в литературе [16] имеются достоверные данные ПН. Видно, что, как и для кубических [7–9], для ГПУ-структуры и кристаллов с низкосимметричной ромбоэдрической решеткой ПЭ наиболее плотноупакованных граней минимальна (грани (001) и (100) соответственно), а РВЭ, наоборот, максимальна.

Также получена зависимость РВЭ и ПЭ граней кристаллов ртути, цинка и кадмия от температуры (рис. 3, 4). Температурный коэффициент ПЭ отрицателен и имеет величину порядка $10^{-2} \text{ mJ}/(\text{m}^2\text{K})$. При увеличении температуры в интервале от 78 до 234.11 К РВЭ граней макрокристалла ртути незначительно повы-

шается. Температурный коэффициент РВЭ для рассматриваемых металлов положителен.

Работа выхода электрона для ртути по данным, приведенным в [14], составляет 4.52 eV. В справочнике не указано, к какому агрегатному состоянию и температурному интервалу относится данное значение. Сравнение наших результатов со справочным значением [14] показывает отклонение 1.3% для грани (100). Поверхностная энергия грани (100), приведенная к температуре плавления, по сравнению с экспериментальными данными для жидкого состояния (463.1 mN/m при 293 K [16]) выше на 25%.

Нами построены полярные диаграммы анизотропии ПЭ (рис. 5) и РВЭ (рис. 6) граней кристаллов цинка и кадмия. Как видно из рис. 5 и 6, соотношения величин РВЭ граней выглядят следующим образом $\varphi(11\overline{2}1) < \varphi(11\overline{2}0) < \varphi(10\overline{1}0) < \varphi(0001)$, что также со-

Рис. 4. Температурная зависимость ПЭ граней макрокристалла ртути.

Рис. 5. Полярная φ -диаграмма для [1100] зоны плоскостей: *1* — ПЭ граней кадмия при 0К, *2* — ПЭ граней кадмия при 293 К, *3* — ПЭ граней кадмия при 1039 К.

Рис. 6. Полярная *ф*-диаграмма для [1100] зоны плоскостей: *1* — РВЭ граней кадмия при 1039 К, *2* — РВЭ граней кадмия при 293 К.

ответствует [1]. Полученные результаты вычислений ПЭ и РВЭ подтверждают резкую анизотропию свойств цинка и кадмия, что характерно для металлов с ГПУ структурой.

Заключение

Выражения (3) и (5), связывающие РВЭ кристаллов с ПЭ, позволяют корректно оценивать ориентационную зависимость РВЭ макрокристаллов с ГПУ структурами.

Для металла с низкосимметричной кристаллической структурой (ртуть) подобные расчеты проведены впервые и, как показано в настоящей работе, выражения (2) и (3), полученные в рамках модифицированного электронно-статистического метода, позволяют оценить ПЭ граней кристалла с ромбоэдрической структурой и получить данные об анизотропии РВЭ.

Ввиду отсутствия в большинстве случаев и неоднозначности имеющихся экспериментальных данных ПЭ граней монокристаллов с некубическими структурами, тонких пленок и наночастиц рассмотренных металлов, выражения (3) и (5) могут применяться для оценки величины ПЭ металлических поверхностей на границе с вакуумом по данным РВЭ этих поверхностей.

Список литературы

- [1] Шуппе Г.Н. Электронная эмиссия металлических кристаллов. Ташкент: САГУ, 1959. 234 с.
- [2] Кашетов А., Горбатый Н.А. // ФТТ. 1969. Т. 11. Вып. 2. С. 493–495.
- [3] Мамонова М.В., Прудников В.В. // ФММ. 1998. Т. 86. № 2.
 С. 33–39. [Mamonova M.V., Prudnikov V.V. // The Physics of Metals and Metallography. 1998. Vol. 86. N 2. P. 129–133.]
- [4] Wang J., Wang S.-Q. // Surf. Sci. 2014. Vol. 630. P. 216–224.

- [5] Мусохранов М.В., Антонюк Ф.И., Калмыков В.В. // Наука и образование. 2014. № 11. С. 45–51.
- [6] Калмыков В.В., Мусохранов М.В., Малышев Е.Н., Зенкин Н.В. // Современные тенденции развития науки и технологий. 2015. № 6-2. С. 50-52.
- [7] Шебзухова И.Г., Арефьева Л.П. // Изв. РАН. Сер. физ. 2015. Т. 79. № 6. С. 896–899. [Shebzukhova I.G., Arefeva L.P. // Bulletin of the Russian Academy of Sciences: Physics. 2015. Vol. 79. N 6. P. 811–814.]
- [8] Арефьева Л.П., Шебзухова И.Г. Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов / Под. ред. М. Самсонова, Н.Ю. Сдобнякова. 2015. Вып. 7. С. 52–58.
- [9] Арефьева Л.П., Шебзухова И.Г. // ФТТ. 2016. Т. 58. Вып. 7. С. 1249–1253. [Shebzukhova I.G., Aref'eva L.P. // Phys. Sol. Stat. 2016. Vol. 58. N 7. P. 1289–1294.]
- [10] Пантелеев К.В., Свистун А.И., Жарин А.Л. // Приборы и методы измерений. 2014. № 2 (9). С. 107–113.
- [11] Пантелеев К.В., Свистун А.И., Жарин А.Л. // Приборы и методы измерений. 2015. № 1 (10). С. 56–63.
- [12] Жарин А.Л., Гусев О.К., Свистун А.И., Тявловский А.К. // Известия Тульского государственного университета. Технические науки. 2011. № 5–2. С. 286–295.
- [13] Тявловский А.К., Жарин А.Л., Гусев О.К., Воробей Р.И., Мухуров Н.И., Шаронов Г.В., Пантелеев К.В. // Приборы и методы измерений. 2017. Т. 8. № 1. С. 61–72.
- [14] Свойства элементов: справочник / Под ред. М.Е. Дрица. М.: Металлургия, 1985. 672 с.
- [15] Шебзухова И.Г., Арефьева Л.П., Хоконов Х.Б. // ΦΤΤ. 2009. Т. 51. № 12. С. 2400–2403. [Shebzukhova I.G., Aref'eva L.P., Khokonov K.B. // Phys. Sol. Stat. 2009. Vol. 51. N 12. P. 2553–2556.]
- [16] Алчагиров Б.Б., Альбердиева Д.Х., Горчханов В.Г., Дадашев Р.Х., Элимханов Д.З. // Вестник АН Чеченской республики. 2015. № 4 (29). С. 8–21.