02

Исследование последовательности импульсов динамической развязки для дипольно-связанных спиновых систем с неоднородным уширением*

© М.М. Миннегалиев¹, Р.В. Урманчеев¹, В.А. Скребнев², С.А. Моисеев^{1,2,¶}

¹ Казанский квантовый центр, Казанский национальный исследовательский технический университет им. А.Н. Туполева — КАИ,

420111 Казань, Россия

² Казанский физико-технический институт им .Е.К. Завойского, ФИЦ Казанский научный центр РАН, 420029 Казань, Россия

[¶]e-mail: s.a.moiseev@kazanqc.org

Поступила в редакцию 24.09. 2018 г.

Проведено теоретическое исследование протокола динамической развязки с применением последовательности резонансных радиочастотных (РЧ) импульсов различной формы к системе дипольно-связанных электронных/ядерных спинов с неоднородным уширением резонансной линии. Обсуждается выбор оптимальных параметров РЧ импульсов для реализации долгоживущей широкополосной квантовой памяти на таких спиновых системах.

DOI: 10.21883/OS.2019.01.47045.252-18

Введение

Квантовая память является важным элементом для построения многокубитового универсального квантового компьютера и оптического квантового репитера квантовых коммуникаций на большие расстояния [1-3]. Одно из главных требований к квантовой памяти — это обеспечение достаточно длительного времени хранения произвольных квантовых состояний, в частности, не меньше времени, необходимого для распределения квантовой запутанности по узлам квантовой сети [4]. В недавней работе [5] было достигнуто время хранения около одной секунды на парах цезия, находящихся при комнатной температуре. Для практического использования большой интерес также вызывают неорганические кристаллы, легированные редкоземельными ионами. Переходы внутри 4f-оболочки таких ионов обладают значительным неоднородным уширением линии резонансных переходов и сравнительно большим временем когерентности, что делает их многообещающим кандидатом для реализации широкополосной квантовой памяти [6].

Существенное увеличение времени когерентности редкоземельных ионов в кристаллах может быть достигнуто при использовании методов динамической развязки, впервые предложенных в ядерном магнитном резонансе и основанных на применении специальных последовательностей радиочастотных (РЧ) импульсов [7,8], резонансных выбранным квантовым переходам между ядерными спиновыми подуровнями. Методы динамической развязки показали свою эффективность в усреднении негативного влияния флуктуирующих магнитных полей, сбивающих фазу спиновой когерентности [9,10]. В последнее время эти методы были успешно использованы в квантовых вычислениях и квантовой памяти [11–14].

Эффективность применения многоимпульсной динамической развязки сильно зависит от свойств флуктуирующих полей, параметров основного гамильтониана изучаемой системы и от длительности цикла динамической развязки. Недавно в работах [15,16] была предложена новая многоимпульсная последовательность РЧ импульсов для использования в динамическом усреднении флуктуаций в системе электронных/ядерных спинов. Последовательности РЧ импульсов с предложенными параметрами (амплитуда, фаза и число используемых импульсов) образуют периодические циклы возбуждения спин-системы, эффективно и быстро усредняющие влияние неоднородности магнитного поля спин-системы H_0 , которое определяет неоднородное уширение резонансного перехода и диполь-дипольное взаимодействие H₁ между спинами. Такие многоспиновые системы характерны для протоколов квантовой памяти, основанных на использовании эффекта фотонного/спинового эха.

Как известно, экспериментально невозможно абсолютно точно воспроизвести необходимые параметры последовательности РЧ импульсов, и даже небольшие ошибки в площади импульса могут оказывать существенное влияние при большом числе повторений последовательности [17] (например, в работе [18] одна и та же последовательность повторялась более 10⁴ раз). Более того, при наличии неоднородного уширения перехода становится важным учет реальной длительности РЧ импульсов.

В настоящей работе представлены результаты исследования последовательности динамической развяз-

^{*} XIII International Conference on Hole Burning, Single Molecule, and Related Spectroscopies: Science and Applications (HBSM-2018), August 6–12, 2018, Suzdal–Moscow, Russia.

ки [15], имеющего целью изучить влияние ошибок в задании импульсной площади и конечной длительности РЧ импульсов, которые (в отличие от предлагаемых ранее идеальных δ -импульсов) приводят к нежелательным отклонениям в набеге фазы у различных спинов, а также исследовать возможность улучшения использования рассматриваемой динамической развязки за счет применения импульсов с протяжкой несущей частоты.

Влияние ошибки в определении площади и учет конечной длительности импульса

Во вращающейся системе координат в неоднородном магнитном поле гамильтониан спиновой системы имеет следующий вид [19]:

$$H = \sum_{i} \Delta_{i} I_{z}^{i} + \sum_{i>j} a_{i,j} (3I_{z}^{i}I_{z}^{j} + I^{i}I^{j}), \qquad (1)$$

где I_i^{xyz} — спиновый оператор *i*-го атома, $I^i I^j = I_x^i I_x^j + I_y^i I_y^j + I_z^i I_z^j$, Δ_i — отстройка частоты *i*-го атома, $a_{ij} = \frac{1}{4} \gamma^2 \hbar^2 \frac{(1-3\cos^2 \theta_{ij})}{r_{ij}^3}$ — константа спин-спинового взаимодействия между ядерными спинами *i* и *j*, γ — гиромагнитное отношения для ядерного спина, \hbar — постоянная Планка, ниже принятая равной единице для простоты описания, r_{ij} — расстояние между спинами *i* и *j*, θ_{ij} — угол между направлением постоянного магнитного поля \mathbf{H}_z и вектором \mathbf{r}_{ij} .

Для удобства описания действия импульсной последовательности на спиновую систему остановимся на анализе свойств пары взаимодействующих спинов, имеющей, согласно (1), следующий гамильтониан:

$$H_{12} = \Delta_1 I_z^1 + \Delta_2 I_z^2 + a (3I_z^1 I_z^2 + I^1 I^2).$$
 (2)

Для нахождения гамильтониана спиновой системы $\widetilde{H}_{12}(t)$ в представлении взаимодействия при воздействии РЧ импульсов последовательности будем использовать следующее соотношение:

$$\widetilde{H}_{12}(t) = U_1^{-1}(t)H_{12}U_1(t).$$

В работе [15] было показано, что после одного цикла последовательности средний гамильтониан

$$\begin{split} \overline{H}_{12} &= \widetilde{H}_{12}(0-\tau) + \widetilde{H}_{12}(\tau-2\tau) + \widetilde{H}_{12}(2\tau-3\tau) \\ &+ \widetilde{H}_{12}(3\tau-4\tau) + \widetilde{H}_{12}(4\tau-5\tau) + \widetilde{H}_{12}(5\tau-6\tau) \end{split}$$

усредняется до нуля. Таким образом, в первом порядке происходит динамическое усреднение как дипольдипольного взаимодействия между спинами, так и неоднородности магнитного поля. Однако в экспериментальных условиях невозможно абсолютно точно задать необходимую импульсную площадь РЧ импульса, что ведет

Предложенная последовательность динамической развязки.

к неточному углу поворота вектора намагниченности. Обозначим эту ошибку через малую величину ε .

Мы рассмотрели два варианта данного отклонения. В первом случае ε представляется постоянной величиной, одинаковой как для $\pi/2$ -, так и для π -импульса, так что оператор эволюции для первого импульса последовательности $(\pi/2)_{-x}$ примет вид

$$U_1(\tau - 2\tau) = e^{-i\left(\frac{\pi}{2} + \varepsilon\right)I_x}$$

вместо

$$U_1(\tau - 2\tau) = e^{-i \frac{\pi}{2} I_x}$$

для идеального случая. Если ограничиться только первым порядком в ошибке площади импульса ε , то средний гамильтониан для одного цикла последовательности РЧ импульсов (рисунок) примет вид

$$\overline{H}_{12} = -\varepsilon \left\{ 2\Delta_1 I_1^z + 2\Delta_2 I_2^z + \Delta_1 I_1^x + \Delta_2 I_2^x + 6a_{12} (I_1^z I_2^y + I_2^z I_1^y) \right\}.$$
(3)

Во втором случае ошибку поворота вектора намагниченности на углы $\pi/2$ и π обозначим через ε и 2ε соответственно. В этом случае средний гамильтониан одного цикла последовательности примет вид

$$\overline{H}_{12} = -2\varepsilon \left\{ \Delta_1 I_1^z + \Delta_2 I_2^z + 3a_{12} (I_1^z I_2^y + I_2^z I_1^y) \right\}.$$
(4)

В работе [15] рассматривался идеальный случай δ-импульсов (очень коротких и неограниченно интенсивных импульсов). Поэтому стоит учесть ошибку, которая возникает из-за конечного времени длительности импульса. Эта ошибка приводит к различному набегу фазы отдельных спинов из-за неоднородности магнитного поля. В данном случае оператор эволюции примет вид

$$U_1(t) = e^{i(\Delta I_z - \Omega I_{x,y})\delta t},$$

где Ω — частота Раби поворота вектора намагниченности вдоль осей X или Y при действии РЧ импульса с длительностью δt . Так, для первого импульса последовательности $\left(\frac{\pi}{2}\right)_{-x}$ оператор эволюции примет вид

$$U_1(\tau - 2\tau) = e^{i\left(\Delta t I_z - \frac{\pi}{2} I_x\right)}$$

(вместо $U_1(\tau - 2\tau) = e^{-i\frac{\pi}{2}I_x}$ для δ -импульса), что учитывает зависимость ориентации оси вращения и угла поворота спина от его частотной расстройки. При расчете оператора эволюции всей последовательности импульсов, используя разложение Магнуса [20] и ограничиваясь первым членом этого разложения, находим средний гамильтониан цикла

$$\begin{split} \overline{H}_{12} &= \left(\frac{15\Delta_1^2}{2\Omega} - \frac{2\Delta_1^2}{\Omega'}\right) I_1^x + \left(\frac{15\Delta_2^2}{2\Omega} - \frac{2\Delta_2^2}{\Omega'}\right) I_2^x \\ &+ \left(\frac{4\Delta_1^2}{\Omega} - \frac{2\Delta_1^2}{\Omega'}\right) I_1^y + \left(\frac{4\Delta_2^2}{\Omega} - \frac{2\Delta_2^2}{\Omega'}\right) I_2^y \\ &+ \left(-\frac{3\Delta_1^2}{\Omega} - \frac{\Delta_1^2}{\Omega'}\right) I_1^z + \left(-\frac{3\Delta_2^2}{\Omega} - \frac{\Delta_2^2}{\Omega'}\right) I_2^z \\ &+ 3a_{12} \left[\left(-\frac{4\Delta_2}{\Omega} + \frac{2\Delta_2}{\Omega'} + \frac{\Delta_1}{\Omega}\right) I_1^x I_2^z \right] \\ &+ \left(-\frac{4\Delta_1}{\Omega} + \frac{2\Delta_1}{\Omega'} + \frac{\Delta_2}{\Omega}\right) I_1^z I_2^x \\ &+ \left(\frac{2\Delta_2}{\Omega} - \frac{2\Delta_1}{\Omega'} - \frac{3\Delta_1}{2\Omega}\right) I_1^x I_2^y \\ &+ \left(\frac{2\Delta_1}{\Omega} - \frac{2\Delta_2}{\Omega'} - \frac{3\Delta_2}{2\Omega}\right) I_1^y I_2^z \\ &+ \left(\frac{3\Delta_1}{\Omega} + \frac{3\Delta_2}{\Omega} - \frac{\Delta_1}{\Omega'} - \frac{\Delta_2}{\Omega'}\right) I_1^z I_2^y \right], \end{split}$$
(5)

где Ω и Ω' — частоты Раби для $\left(\frac{\pi}{2}\right)$ - и π -импульсов соответственно.

Как видно из (5), неидеальность РЧ импульсов проявляется возникновением дополнительных локальных полей в среднем гамильтониане, ориентированных в различных направлениях в лабораторной системе координат с углами ориентации, квадратично зависящими от частотных отстроек спинов. Дополнительные поля вызывают ошибку в набеге фазы различных спинов, имеющую вид

$$\delta arphi_1 \sim n \, rac{\overline{\Delta^2}}{\Omega} \, au_c \, ,$$

где τ_c — длительность цикла, n — число циклов, $\overline{\Delta^2}$ — среднеквадратичное отклонение частоты возбуждаемых спинов. Кроме того, такие импульсы вызывают появление эффективного диполь-дипольного взаимодействия, пропорционального частотной отстройке спинов, приводящего к дополнительной расфазировке с характерной величиной разброса фаз у различных пар спинов

$$\delta \varphi_2 \sim na_{12} \frac{\sqrt{\overline{\Delta^2}}}{\Omega} \tau_c$$

Таким образом, общее влияние эффективного гамильтониана (5) растет с увеличением частотных отстроек, при этом увеличение частоты Раби РЧ импульсов ослабляет оба типа дефазировки спинов. Однако рост числа циклов неизбежно увеличивает негативное влияние неидеальности РЧ импульсов. Существенно, что в фазу $\delta \varphi_2$ входит общая ширина линии $\sqrt{\Delta^2} = \Delta_{in}$, что означает необходимость уменьшения ее величины. Для более сильного подавления дефазировки в системе спинов с неоднородным уширением линии ниже мы рассматриваем возможность использование импульсов с плавной огибающей и протяжкой несущей частоты, применение которых, как известно, ослабляет зависимость эволюции спина от его частотной расстройки при воздействии таких импульсов [21]. Это позволило экспериментально добиться более точной реализации π -импульсов на неоднородно уширенном резонансном переходе [22,23].

Прохождение импульса с протяжкой частоты

Задачу об эволюции спина в РЧ импульсе с протяжкой частоты удобно решать, переходя к амплитудам вероятности собственных состояний двухуровневой системы $C_1(t)$ и $C_2(t)$:

$$|\psi\rangle = C_1(t)e^{-iE_1t/\hbar}|1\rangle + C_2(t)e^{-iE_2t/\hbar}|2\rangle, \qquad (6)$$

где $E_{1,2}$ — энергии состояний $|1\rangle$ и $|2\rangle$. В общем случае для описания поведения амплитуд $C_1(t)$ и $C_2(t)$ справедлива следующая система уравнений:

$$\begin{pmatrix} \dot{C}_1 \\ \dot{C}_2 \end{pmatrix} = \begin{pmatrix} 0 & \frac{i}{2}\dot{A}e^{iB} \\ \frac{i}{2}\dot{A}e^{-iB} & 0 \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}$$
(7)

где *А* и *В* определяются параметрами РЧ импульсов и спина, при этом мы выбираем импульсы в форме гиперболического секанса и протяжкой частоты в форме гиперболического тангенса:

$$\dot{A} = \frac{\alpha}{\pi\tau} \operatorname{sech} \frac{t - t_0}{\tau}, \quad \dot{B} = \frac{1}{\pi\tau} \left[\Delta + \beta \tanh \frac{(t - t_0)}{\tau} \right], \quad (8)$$

где α и τ определяют соответственно амплитуду и длительность импульса, а Δ и β — постоянную отстройку и диапазон протяжки частоты, при этом направление оси поворота определяется фазой *B*. Из (7) находим уравнения второго порядка для $C_1(t)$ и $C_2(t)$:

$$\ddot{C}_{1,2} + \left(\mp i\dot{B} - \frac{\ddot{A}}{\dot{A}}\right)\dot{C}_{1,2} + \left(\frac{\dot{A}}{2}\right)^2 C_{1,2} = 0.$$
(9)

В работе [24] было показано, что после перехода к переменной

$$z = \frac{1}{2} \left[1 + \tanh(t - t_0) \right]$$

С1 и С2 подчиняются гипергеометрическому уравнению

$$z(1-z)\frac{d^2C_1}{dz^2} + [c - (a+b+1)]z\frac{dC_1}{dz} - abC_1 = 0.$$
(10)

Для C_2 справедливо аналогичное уравнение, в котором $a, b, c \rightarrow a^*, b^*, c^*$, а коэффициенты a, b, c определяются параметрами импульса:

$$a = \frac{1}{2\pi} \left[(\alpha^{2} - \beta^{2})^{\frac{1}{2}} - i\beta \right],$$

$$b = \frac{1}{2\pi} \left[-(\alpha^{2} - \beta^{2})^{\frac{1}{2}} - i\beta \right],$$

$$c = \frac{1}{2} \left(1 - i\frac{\Delta - \beta}{\pi} \right).$$
 (11)

Здесь исправлена опечатка в [24] в определении с.

Используя (10), в работе [24] найден общий вид решения, выражаемого через суперпозицию гипергеометрических функций:

$$C_{1} = p_{1}F(a, b, c, z)$$

+ $p_{2}z^{1-c}F(a + 1 - c, b + 1 - c, 2 - c, z),$ (12)
$$C_{2} = q_{1}F(a^{*}, b^{*}, c^{*}, z)$$

$$+q_{2}z^{1-c^{*}}F(a^{*}+1-c^{*},b^{*}+1-c^{*},2-c^{*},z),$$
(13)

и на их основе в работе было исследовано поведение населенности уровней $|C_1|^2$ и $|C_2|^2$ для изначально невозмущенной системы $(C_1(t_0) = 1, C_2(t_0) = 0)$ при повороте вектора Блоха вокруг оси X ($B_0 = 0$). Для нахождения решения при любых начальных условиях ($C_1(t_0) \neq 0, C_2(t_0) \neq 0$) мы исследовали асимптотику решений (12), (13) и нашли общей вид параметров p_2 и q_2 :

$$p_{2} = \frac{i}{2\pi(1-c)} e^{i\left(B_{0} - \frac{\beta}{\pi} \ln 2\right]} q_{1}, \quad q_{1} = C_{2}(t_{0}),$$
$$q_{2} = \frac{i}{2\pi(1-c^{*})} e^{-i\left[B_{0} - \frac{\beta}{\pi} \ln 2\right]} p_{1}, \quad p_{1} = C_{1}(t_{0}). \quad (14)$$

Используя решения (12)–(14), мы получаем матрицу эволюции \hat{U} , описывающую поведение спина при воздействии РЧ импульса согласно выражению

$$\begin{pmatrix} C_1(t) \\ C_2(t) \end{pmatrix} = \hat{U} \begin{pmatrix} C_1(t_0) \\ C_2(t_0) \end{pmatrix}$$

с матричными элементами

$$\begin{split} U_{(11)} &= F(a, b, c, z), \quad U_{(22)} = F(a^*, b^*, c^*, z), \\ U_{(12)} &= \frac{i\alpha}{2\pi(1-c^*)} \, e^{-i \left[B_0 - \frac{\beta}{\pi} \ln 2\right]} z^{1-c^*} \\ &\times F(a^* + 1 - c^*, b^* + 1 - c^*, 2 - c^*, z), \\ U_{(21)} &= \frac{i\alpha}{2\pi(1-c^*)} \, e^{-i \left[B_0 - \frac{\beta}{\pi} \ln 2\right]} z^{1-c^*} \\ &\times F(a^* + 1 - c^*, b^* + 1 - c^*, 2 - c^*, z). \end{split}$$

При этом произвольные значения импульсной площади и направление магнитного поля РЧ импульса задаются выбором параметров α и B_0 . Используя найденное выражение для \hat{U} взамен матриц типа $e^{i\left(\Delta\delta t I_z - \frac{\pi}{2}I_x\right)}$, использованных ранее, можно найти соответствующие им матрицы для воздействия импульсов со свипированной частотой и построить общей оператор эволюции для всей многоимпульсной последовательности и проанализировать возможность подавления дефазировки $\delta \varphi_1$ и $\delta \varphi_2$ на поведение спинов в изучаемой задаче, что является предметом последующего детального изучения.

Заключение

В работе представлено исследование влияния неидеальных параметров последовательности импульсов динамической развязки [15] для системы дипольно-связанных двухуровневых атомов или спинов с неоднородным уширением линии. Учет конечной длительности используемых импульсов последовательности показал наличие двух типов дефазировок: одночастичной $\delta \varphi_1$ и двухчастичной $\delta \varphi_2$, величина которых пропорциональна второй и первой степеням ширины линии взаимодействующих спинов. Также была получена оценка влияния ошибки в определении площади отдельного импульса на гамильтониан системы многоимпульсной последовательности.

Мы нашли матрицу эволюции спинов при воздействии РЧ импульса с плавной огибающей и протяжкой несущей частоты. Использование таких импульсов представляется наиболее перспективным для применения в изучаемой многоимпульсной последовательности.

Работа поддержана грантом Российского научного фонда № 14-12-01333 П.

Список литературы

- [1] Briegel H.-J., Dür W., Cirac J.I., Zoller P. // Phys. Rev. Lett. 1998. V. 81. N 26. P. 5932.
- [2] Heshami K. et. al. // J. Mod. Opt. 2016. V. 63. N 20. P. 2005.
- [3] Tittel W. et. al. // Laser Photon. Rev. 2009. V. 4. N 2. P. 244.
- [4] Sangouard N., Simon C., Riedmatten H., Gisin N. // Rev. Mod. Phys. 2011. V. 83. N 1. P. 33.
- [5] Katz O., Firstenberg O. // Nat. Commun. 2018. V. 9. P. 2074.
- [6] Thiel C.W., Bottger T., Cone R.L. // J. Luminesc. 2011. V. 131. N 3. P. 353.
- [7] Paz-Silva G.A., Lee S.W., Green T.J., Viola L. // New J. Phys. 2016. V. 18. N 7. P. 073020.
- [8] Genov G.T., Schraft D., Vitanov N.V, Halfmann T. // Phys. Rev. Lett. 2017. V. 118. N 13. P. 1.
- [9] Lim H.J. et. al. // Phys. Rev. B. 2018. V. 97. N 6. P. 1.
- [10] Pascual-Winter M.F., Tongning R.-C., Chaneliére T., Le Gouët J.-L. // Phys. Rev. B. 2012. V. 86. P. 184301.
- [11] Viola L, Knill E., Lloyd S. // Phys. Rev. Lett. 1999. V. 82. N 12. P. 2417.
- [12] West J.R., Fong B.H., Lidar D.A. // Phys. Rev. Lett. 2010.
 V. 104. P. 130501.

Оптика и спектроскопия, 2019, том 126, вып. 1

- [13] Yang W., Wang Z., Liu R. // Front. Phys. China. 2011. V. 6. N 1. P. 2.
- [14] Maurer P.C. et. al. // Science. 2012. V. 336. N 6086. P. 1283.
- [15] Moiseev S.A. Skrebnev V.A. // Phys. Rev. A. 2015. V. 91. N 2. P. 022329.
- [16] Moiseev S.A., Skrebnev V.A. // J. Phys. B. At. Mol. Opt. Phys. 2015. V. 48. N 13. P. 135503.
- [17] Souza A.M., Ävarez G.A., Suter D. // Phys. Rev. Lett. 2011.
 V. 106. N 24. P. 1.
- [18] Zhong M. et. al. // Nature. 2015. V. 517. N 7533. P. 177.
- [19] *Slichter C.P.* Principles of Magnetic Resonance. Berlin: Springer, 1996.
- [20] Magnus W. // Commun. Pure Appl. 1954. V. VII. P. 649.
- [21] De Seze F. et. al. // Eur. Phys. J. D. 2005. V. 33. N 3. P. 343.
- [22] Gerasimov K.I. et. al. // Opt. Spectrosc. 2017. V. 123. N 2. P. 200.
- [23] Damon V. et. al. // New J. Phys. 2011. V. 13. N 9. P. 093031.
- [24] Hioe F.T. // Phys. Rev. A. 1984. V. 30. N 4. P. 2100.