06 Свойства пленок титаната бария-стронция на кремниевой подложке, нанесенных методом высокочастотного катодного распыления

© В.Б. Широков^{1,2}, С.П. Зинченко^{1,2}, Л.И. Киселева¹, А.В. Павленко^{1,2}

¹ Южный научный центр РАН, Ростов-на-Дону, Россия ² Южный федеральный университет, Ростов-на-Дону, Россия E-mail: shirokov-vb@rambler.ru

Поступило в Редакцию 1 ноября 2017 г.

Методом высокочастотного катодного распыления мишени в атмосфере кислорода получены тонкие пленки твердого раствора $Ba_{0.6}Sr_{0.4}TiO_3$ на поверхности монокристаллического кремния среза (001). Проведены исследования их кристаллической структуры, микроструктуры и оптических характеристик. Показано, что пленки являются оптически анизотропными, поликристаллическими, с преимущественным направлением оси *с* перпендикулярно подложке. Оси *а* и *b* в плоскости положки не имеют выделенного направления. Установлено, что между пленкой и подложкой в процессе синтеза образуется буферный слой толщиной порядка 20 nm, оптически эквивалентный оксиду кремния.

DOI: 10.21883/PJTF.2018.24.47034.17105

В последние годы большое внимание уделяется процессу интеграции сегнетоэлектриков с микроэлектронными технологиями (в частности, эпитаксиальному росту сегнетоэлектрических пленок на кремниевых подложках) и созданию на их основе нового класса устройств приема, хранения и обработки информации: устройства памяти, элементы с высокой удельной емкостью для технологии сверхвысокой степени интеграции, электрически перестраиваемые устройства СВЧ- и оптического диапазонов [1]. Тонкие пленки титаната бария-стронция $Ba_{1-x}Sr_xTiO_3$ являются одними из наиболее перспективных материалов, которым свойственны высокие диэлектрическая проницаемость, остаточная поляризация, пироэлектрический эффект и диэлектрическая нелинейность [2]. Впервые о прямом эпитаксиальном росте SrTiO₃ на

81

поверхности Si сообщалось в [3]. В последующие годы эпитаксиально были выращены и другие составы системы [4], при этом в большинстве случаев для синтеза пленок используются многостадийные методы (молекулярно-лучевая эпитаксия, магнетронное распыление). Настоящая работа посвящена исследованиям структуры и оптических характеристик тонких пленок $Ba_{0.6}Sr_{0.4}TiO_3$ (BST60), выращенных одностадийным методом высокочастотного (ВЧ) катодного распыления [2] на подложках монокристаллического кремния *p*-типа с удельным сопротивлением $12 \Omega \cdot \text{сm}$ (КДБ12) среза (001) толщиной 0.35 mm.

Процесс подготовки подложек по аналогии с [5] состоял из предварительной очистки от органических загрязнений в горячем (75–80°С) ацетоне на водяной бане, обработки в горячей смеси (1:1) 20% раствора одной из кислот (HCl, H₂SO₄, HNO₃) и перекиси водорода (H₂O₂), травления в 2% растворе фтористоводородной кислоты (HF). Следует отметить, что после каждой стадии очистки необходимо осуществлять тщательную отмывку пластин бидистиллированной водой, а затем просушивание пластин очищенным потоком воздуха. При напылении пленки напряжение на катоде (мишени) поддерживалось неизменным, ток варьировался в пределах 0.39–0.5 A, а температура подложки — в диапазоне 590–685°С. Время напыления для всех пленок составляло 15 min, что соответствует средней их толщине 70–100 nm (в зависимости от вкладываемой в разряд мощности), давление кислорода в камере составляло 0.45 Torr. Перед включением разряда осуществлялся предварительный нагрев подложки до температуры 420°С.

На рис. 1 представлена топография поверхности кремния после очистки от оксида кремния, измеренная на атомном силовом микроскопе (АСМ) ИНТЕГРА фирмы НТ-МДТ. Как видно из рисунка, неоднородность рельефа поверхности не превосходит 1.2 nm, а по результатам статистической обработки рельефа поверхности полуширина пика на гистограмме составила 0.44 nm, средняя шероховатость — 0.12 nm.

Для выяснения влияния ВЧ-разряда на поверхность кремниевой подложки была нанесена пленка ВЅТ60 толщиной 100 nm, а затем удалена по технологии оксидного травления. По результатам последующих АСМ-измерений рельеф поверхности подложки не подвергся значимым изменениям: полуширина пика на гистограмме составляла 0.4 nm, а средняя шероховатость — 0.13 nm. Таким образом, процесс нанесения пленки ВЅТ60 на кремниевую подложку в ВЧ-разряде в рамках принятых технологических условий не меняет топографию поверхности подложки.

Рис. 1. Топография поверхности кремния после очистки. На вставке показана гистограмма высот и ее полуширина.

Сравнение топографии поверхности пленок BST60, нанесенных при различной мощности разряда, показало, что высота рельефа последовательно снижается с уменьшением подводимой мощности ВЧ-разряда. Топография поверхности синтезированной пленки при токе 0.4 А (температура подложки $T = 619^{\circ}$ С) представлена на рис. 2. Средняя шероховатость пленки составила 5.5 nm. На дифрактограмме $\theta/2\theta$ (вставка на рис. 2) присутствуют рефлексы (00*l*) от пленки. Рефлексов, необходимых для выполнения φ -сканирования, обнаружить не удалось. Это свидетельствует о том, что полученные пленки являются поликристаллическими с преимущественным направлением оси *с* перпендикулярно подложке, а оси *а* и *b* в плоскости подложки не имеют выделенного направления. Параметр c = 4.056 Å.

Для определения оптических характеристик проводились измерения угловой зависимости интенсивности отраженного оптического излучения ТЕ- и ТН-поляризаций для чистой подложки и подложки с пленкой на стенде, описанном в [6]. В качестве источника зондирующего

Рис. 2. Топография поверхности пленки BST60 толщиной 100 nm. На вставке приведена $\theta/2\theta$ -рентгенограмма.

излучения использовался He–Ne-лазер (длина волны $\lambda = 632.8$ nm). Оптические свойства пленок определялись путем согласования теоретических и экспериментальных кривых зеркального отражения двух поляризаций. Чтобы избавиться от аппаратурных величин нормировки и фонового излучения при обработке экспериментальных кривых, спектры преобразовывались к виду

$$\exp_{Fit} = \frac{\exp(\theta) - \exp(\theta_{shift})}{\exp(\theta_{norm}) - \exp(\theta_{shift})} = \frac{R(\theta) - R(\theta_{shift})}{R(\theta_{norm}) - R(\theta_{shift})},$$
(1)

где $\exp(\theta)$ — экспериментальный спектр, θ_{shift} и θ_{norm} — фиксированные углы приведения.

Аппроксимация угловой зависимости спектров отражения выполнялась по методу наименьших квадратов с использованием формулы (1). В качестве углов приведения в формуле (1) использовались следующие значения: для Н-поляризации $\theta_{shift} = 75^{\circ}$, $\theta_{norm} = 75^{\circ}$, для Е-поляризации $\theta_{shift} = 20^{\circ}$, $\theta_{norm} = 70^{\circ}$ (точные значения определяются

экспериментальными значениями углов вблизи этих значений). Для представления экспериментальных данных в масштабе реального коэффициента отражения после вычислений находились по методу наименьших квадратов коэффициенты приведения

$$\exp_R(\theta) = A \exp(\theta) + B.$$
(2)

Предварительно проводились измерения и расчеты для пластин кремния без пленок с целью уточнения их оптических свойств. Вычисления выполнялись по формуле (1) до достижения минимального значения суммарной величины среднеквадратичного отклонения обеих поляризаций $\sigma_{\rm H} + \sigma_{\rm E}$. По результатам вычислений для пластины, очищенной от оксида кремния, получены значения действительной и мнимой частей показателя преломления $n_{Si} = 3.865$, $k_{Si} = 0$ при среднеквадратичной погрешности: для Н-поляризации $\sigma_{\rm H} = 0.96\%$, для Е-поляризации $\sigma_E = 0.9\%$.

При анализе угловой зависимости коэффициентов отражения ТЕи ТН-поляризаций от неочищенной поверхности пластины получены аналогичные результаты ($n_{\rm Si} = 3.865, k_{\rm Si} = 0$). Среднеквадратичная погрешность для Н-поляризации $\sigma_{\rm H} = 0.76\%$, для Е-поляризации $\sigma_{\rm E} = 0.55\%$. Эти результаты в дальнейшем использованы при анализе пленки BST60 на Si. Поскольку известно, что на поверхности кремния, имеющего контакт с воздухом, присутствует тонкий слой оксида кремния, проведены вычисления с учетом этого слоя. Вычисления при учете поверхностной пленки SiO₂ с показателем преломления $n_{SiO_2} = 1.457$ толщиной до 5 nm не меняют среднеквадратичной погрешности для Н- и Е-поляризаций во втором знаке. Таким образом, показатель преломления пластин кремния КДБ12 равен n_{Si} = 3.865. Это значение используется при дальнейших вычислениях. По литературным данным значение показателя преломления равно 3.85. Различие величин показателя преломления связано, по-видимому, с добавлением легирующих элементов.

После определения параметров пластин кремния выполнены измерения угловой зависимости коэффициентов отражения ТЕ- и ТН-поляризаций от пленки BST60, нанесенной на пластину монокристаллического кремния среза (001) (рис. 3). При обработке угловой зависимости спектров отражения пленки по формуле (1) с одним анизотропным слоем не удается получить удовлетворительного согласия

Рис. 3. Угловая зависимость нормированных спектров отражения Е- и Н-поляризаций от пленки BST60 толщиной 100 nm, нанесенной на пластину кремния. Кружки и треугольники — экспериментальные значения коэффициентов отражения, сплошные линии — подгонка по методу наименыших квадратов.

с экспериментом (среднеквадратичная погрешность $\sigma_{\rm H} + \sigma_{\rm E} > 10\%$). Приемлемое согласие получено при введении в расчеты дополнительного слоя SiO₂ между поверхностью кремния и пленкой. В результате вычислений получены следующие параметры слоев (показатель преломления пленки SiO₂ фиксирован, h_S — толщина слоя S (SiO₂ либо BST60)): $h_{\rm SiO_2} = 18.4$ nm, $n_{\rm SiO_2} = 1.457$, $k_{\rm SiO_2} = 0$, $h_{\rm BST60} = 77.5$ nm, $n_o = 2.30$, $n_e = 2.25$, $k_{\rm BST60} = 0$, среднеквадратичная погрешность для H-поляризации $\sigma_H = 1.1\%$, для E-поляризации $\sigma_E = 1.2\%$.

Таким образом, пленки BST60, синтезированные на подложке монокристаллического кремния среза (001), являются поликристаллическими с преимущественным направлением оси *с* перпендикулярно подложке. Оси *а* и *b* в плоскости положки не имеют выделенного направления. Пленка оптически анизотропна с показателями преломления обыкновенного и необыкновенного лучей, меньшими, чем для

объемного кристалла (показатели преломления для объемного титаната бария $n_o = 2.413$, $n_e = 2.396$). Это означает, что пленка деформирована в плоскости подложки и, возможно, обладает спонтанной поляризацией [7]. Установлено, что в ходе напыления пленок на поверхности кремния образуется буферный слой толщиной порядка 18 nm, по оптическим характеристикам близкий к оксиду кремния. Возникновение окиси кремния на границе раздела титаната бария-стронция и кремния отмечалось в работе [8] и, по мнению авторов, обусловлено довольно высокими температурами при синтезе пленок (500–800°C). Для реализации эпитаксиального роста пленок BST в рамках используемого нами метода, по-видимому, необходимо применять подходы, предложенные в [8] и заключающиеся в пассивировании поверхности кремния для предварительного формирования эпитаксиального слоя (2–5 nm) титаната стронция.

Работа выполнена в рамках государственного задания ЮНЦ РАН (тема госрегистрации № 01201354247) и гранта РФФИ № 16-29-14013.

Список литературы

- [1] Воротилов К.А., Сигов А.С. // ФТТ. 2012. Т. 54. В. 5. С. 843-848.
- [2] Мухортов В.М., Юзюк Ю.И. Гетероструктуры на основе наноразмерных сегнетоэлектрических пленок: получение, свойства и применение. Ростовна-Дону: Изд-во Южного научного центра РАН, 2008. 224 с.
- [3] McKee R.A., Walker F.J., Chisholm M.F. // Phys. Rev. Lett. 1998. V. 81. N 14. P. 3014–3017.
- [4] Vaithyanathan V., Lettieri J., Tian W., Sharan A., Vasudevarao A., Li Y.L., Kochhar A., Ma H., Levy J., Zschack P., Woicik J.C., Chen L.Q., Gopalan V., Schlom D.G. // J. Appl. Phys. 2006. V. 100. P. 024108.
- [5] Dubourdieu C., Bruley J., Arruda T.M., Posadas A., Jordan-Sweet J., Frank M.M., Cartier E., Frank D.J., Kalinin S.V., Demkov A.A., Narayanan V. // Nature Nanotechnol. 2013. V. 8. P. 748–754.
- [6] Ковтун А.П., Зинченко С.П., Павленко А.В., Толмачев Г.Н. // Письма в ЖТФ. 2016. Т. 42. В. 11. С. 48–55.
- [7] Razumnaya A.G., Mikheykin A.S., Lukyanchuk I.A., Shirokov V.B., Golovko Y.I., Mukhortov V.M., Marssi M.E., Yuzyuk Yu.I. // Phys. Status Solidi B. 2017. V. 254. P. 1600413.
- [8] Dubourdieu C., Gélard I., Salicio O., Saint-Girons G., Vilquin B., Hollinger G. // Int. J. Nanotechnol. 2010. V. 7. P. 320–347.