12

Особенности вольт-амперных характеристик и механизм высокоэффективной генерации электронного пучка в непрерывном открытом разряде

© П.А. Бохан¹, П.П. Гугин¹, Дм.Э. Закревский^{1,2}

¹ Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия ² Новосибирский государственный технический университет, Новосибирск, Россия E-mail: bokhan@isp.nsc.ru

Поступило в Редакцию 21 мая 2018 г.

Рассматриваются основные особенности непрерывного открытого разряда, используемого для генерации электронных пучков в газах среднего давления. В гелии при давлении 10–30 Тогг и его смесях с кислородом исследованы вольтамперные характеристики, измерены токовая и энергетическая эффективности и определены условия для достижения высокой (порядка геометрической прозрачности анода) энергетической эффективности генерации пучков. Отмечены принципиальные отличия исследованного разряда от аномального. В частности, получена Z-образная вольт-амперная характеристика, возникновение которой объяснено с точки зрения изменения роли основных механизмов эмиссии электронов по мере роста напряжения.

DOI: 10.21883/PJTF.2018.23.47016.17398

Генераторы электронных пучков (ЭП) на основе газовых разрядов (ГР) широко применяются в современной науке и технике [1]. Использование явления убегания электронов [2] позволило создавать импульсные источники ЭП с широким набором достижимых параметров [3,4]. К ним относятся генераторы на основе открытого разряда (ОР), используемые для получения ЭП наносекундной длительности [5] и субнаносекундной коммутации высоковольтных импульсов [6]. Прогресс в развитии методов генерации ЭП тесно связан с постепенным отходом

96

от традиционных представлений о роли различных механизмов эмиссии электронов в ГР [7–9]. В ГР вследствие легирования холодных катодов рабочими частицами коэффициенты эмиссии существенно отличаются от измеренных в вакууме. Например, коэффициент эмиссии γ_a под действием атома гелия при энергии ~ 1 keV в современных работах [9] отличается от использованного ранее в 60 раз [7,10]: $\gamma_a \approx 0.02$ и ≈ 1.2 соответственно. Целью настояшей работы являются реализация и исследование высокоэффективной генерации ЭП в непрерывном режиме, определение энергетической эффективности его генерации и идентификация механизмов эмиссии электронов в этих условиях.

Исследования проведены в ячейках с ОР, в которых разрядный зазор (РЗ) длиной d = 0.65 mm был образован титановым катодом и сетчатым анодом с геометрической прозрачностью μ и характерным размером $\delta = 0.2, 0.4$ ($\mu = 0.88$) и 1 mm ($\mu \approx 0.92$). Дополнительно во всех ячей-ках устанавливались зонды для измерения потенциала электрического поля на расстоянии от катода $d_p = 1.3$ и 2 mm. Рабочий диаметр катодов 12 mm, длина дрейфового пространства (ДП) 20 mm. Эксперименты проводились в тщательно обезгаженных и оттренированных ячейках в Не чистотой 99.999% и в Не с небольшими примесями (10–100 mTorr) О₂ и N₂. Для определения эффективности генерации ЭП измерялась энергия, выделяемая ЭП в ДП и на коллекторе электронов (КЭ) с помощью калиброванных термодатчиков. Использовались два режима включения ячеек:

— КЭ и анод заземлялись через токоизмерительные шунты;

— заземлялся только КЭ, а анод находился под плавающим потенциалом. Отрицательное напряжение прикладывалось к катоду.

Типичные вольт-амперные характеристики (ВАХ) U(I) разряда в чистом Не и смеси Не–O₂ в зависимости от состава смеси, давления и режима питания приведены на рис. 1. Оказалось, что ВАХ принципиально отличаются от ВАХ аномального разряда (АР). При давлении гелия $p_{\text{He}} < 10$ Тогг они имеют гладкий возрастающий характер, причем ток I в Не намного меньше (до трех порядков величины), чем в смесях Не с O₂ и N₂, а I в ячейке с $\delta = 0.2$ mm намного меньше, чем в ячейках с $\delta = 0.4$ и 1 mm. В диапазоне $p_{\text{He}} \approx 10-35$ Тогг ВАХ имеют Z-образный вид, демонстрируя три разных области. В первой из них ВАХ при пониженных U и I для всех ячеек близки. Затем в зависимости от p_{He} и режима питания при некоторой величине I (от 10 до 40 mA) рост U не влечет за собой увеличение I, а в диапазоне $U \approx 0.4-2$ kV реализуется

Рис. 1. ВАХ открытого разряда. Не: $1-4 - p_{\text{He}} = 30$ Torr; He + O₂: 5 — $p_{\text{He}} = 4$ Torr, $p_{\text{O}_2} = 60$ mTorr, $6 - p_{\text{He}} = 1.5$ Torr, $p_{\text{O}_2} = 100$ mTorr. OP с заземленным анодом (1-3, 5, 6), OP с плавающим потенциалом анода (4). $\delta = 0.2$ (1, 4), 0.4 (2), 1 mm (3, 6). 1-4, 6 — непрерывный режим; 1a, 2a, 5 — прямоугольный импульс, $\tau = 1.5$ ms. Осциллограммы U, I на вставке: $p_{\text{He}} = 30$ Torr, $\delta = 0.2$ mm, OP с заземленным анодом, полупериод сетевого напряжения.

падающая ВАХ (вторая область). Чем меньше величина δ , тем более глубокое падение *I* реализуется в этой области (кривые 1-3 для ячеек с $\delta = 0.2, 0.4$ и 1 mm соответственно). В непрерывном режиме при любых значениях балластного сопротивления по мере подъема *U* происходит скачкообразный переход от разряда с низким напряжением горения *U* в состояние с высоким *U* с появлением свечения в ДП. При питании полупериодом сетевого напряжения осциллограммы *U* и *I* приведены на вставке к рис. 1. Видно, что сначала загорается низковольтный разряд. Затем последовательно происходит резкий спад *I* и рост *U*, далее горение на высоковольтной стадии с последующим переходом в низковольтную стадию. На высоковольтной стадии (третья область)

Рис. 2. ВАХ открытого и аномального радряда. ОР — $p_{\text{He}} = 20$ Torr, $\delta = 0.2 \text{ mm}, I_a$ (1), I_b (2), I (3), η_b (4); AP — $I \sim U^3$ (5).

при подъеме U наблюдается рост I, сначала медленный, затем более быстрый. При питании прямоугольными импульсами с длительностью $\tau = 1.5$ ms начиная с $I \approx 4$ mA и до $I \approx 50$ mA ток перестает зависеть от U, и далее происходит медленный рост U (участок Ia). Для ячейки с $\delta = 0.4$ mm скачок в BAX меньше, чем для ячейки с $\delta = 0.2$ mm (соответственно в 18 и 37 раз), и вся она сдвигается в сторону больших токов (кривые 2, 2a). Для ячейки с $\delta = 1$ mm скачок в BAX практически отсутствует (кривая 3), а I для этого случая начиная с U = 2 kV превышает на два и более порядка ток ячейки с $\delta = 0.2$ mm.

В варианте включения ячейки с плавающим потенциалом анода Z-образный характер ВАХ сглаживается (кривая 4). Другое отличие состоит в том, что на низковольтной стадии падение U в этом случае больше, чем при заземленном аноде. Оно объясняется возникновением разности потенциалов между анодом и КЭ (~ 100 V на низковольтной стадии и ~ 150 V на высоковольтной), которое необходимо для сохранения непрерывности тока в разрядной цепи. Этот потенциал снижается до величины в несколько вольт в районе зонда, расположенного на расстоянии $d_p = 2$ mm. Если описывать ВАХ зависимостью $I = p^x U^y$, то в диапазоне $U \approx 2.5-3$ kV для ячейки с $\delta = 0.2$ mm и $p_{\rm He} = 30$ Torr

реализуется величина показателя степени $y \approx 10$ при плавающем потенциале анода и $y \approx 15$ при заземленном аноде. При питании прямоугольными импульсами для варианта с плавающим потенциалом параметр y стабилизируется на величине $y \approx 15$, а при заземленном аноде в диапазоне $I \approx 3-50$ mA величина y > 50. В диапазоне $U \approx 0.4-2$ kV параметр y имеет отрицательную величину и достигает значения $y \approx -5$. Параметр x в зависимости от условий изменяется в диапазоне $x \approx 1.5-7$ и в отличие от y всегда положителен.

При уменьшении р_{Не} все ВАХ сдвигаются в сторону меньших токов и их Z-образный характер становится менее выраженным. При $p_{\rm He} = 20$ Torr удается получить всю ВАХ при непрерывном режиме питания. На рис. 2 показаны характеристики ОР для этого случая: *I* полный ток, I_a — ток анода, I_b — ток коллектора, $\eta_b = I_b/I$ — токовая эффективность генерации ЭП. Видно, что ЭП возникает в верхней части Z-характеристики и при $U = 4 \, \text{kV}$ доля тока, регистрируемая КЭ, составляет $\sim 84\%$ от *I* при $\mu = 0.87$, что характеризует малую величину размножения зарядов в РЗ. В области $U \approx 3-3.8 \, \text{kV}$ параметр $y \approx 10$. Для сравнения (кривая 5) показано изменение в диапазоне $U \approx 2-3.8$ kV при $y \approx 3$ тока I, полученного в AP и OP [11]. Параметр x в диапазоне $U \approx 2-3.8 \,\mathrm{kV}$ уменьшается от $x \approx 5.85$ до $x \approx 2.8$. Дальнейшее уменьшение p_{не} приводит быстрому падению тока и исчезновению Z-образной BAX при $p_{\rm He} < 10$ Torr. При $p_{\rm He} < 4$ Torr ГР не зажигается ни в одной из ячеек вплоть до $U = 6 \,\text{kV}$, ограниченного электрической прочностью изолирующих слоев между катодом и анодом.

На рис. 3 для ячейки с $\delta = 0.2 \text{ mm}$ и $p_{\text{He}} = 26 \text{ Torr в зависимости от } U$ показано поведение токовой η_b и энергетической η_w эффективностей, а также Δ_c — доли мощности ЭП, рассеиваемой на КЭ. Видно, что при U > 4 kV эффективности η_w , η_b близки и практически равны μ . При U < 4 kV расхождение усиливается с уменьшением U, что объясняется ухудшением условий для осуществления режима убегания и соответственно усилением размножения зарядов в РЗ. Энергия, выделяемая быстрым электроном в ДП, складывается из энергии, теряемой при торможении и при отражении от КЭ, поэтому она мало зависит от U и равна $w_e \approx 2000 \text{ eV}$ (кривая 6). Это позволяет рассчитать величину $n_e = \mu \eta_{ex} w_e \gamma_{ph} R/hv$ — количество фотоэлектронов, эмитированных под действием ВУФ-фотонов, генерируемых в ДП при торможении одного быстрого электрона. Для гелия $\eta_{ex} \approx 0.3$ — доля энергии ЭП, вкладываемая в возбуждение резонансных состояний [12], $\gamma_{ph} \approx 0.3$ —

Рис. 3. Эффективности генерации ЭП η_w (1,3), η_b (2); доля мощности ЭП, рассеиваемая на КЭ Δ_c (4,5); энергия, теряемая одним электроном в ДП w_e (6,7). $\delta = 0.2 \text{ mm}, p_{\text{He}} = 26$ (1,2,4) и 20 Torr (3, 5–7). ОР с заземленным анодом (1,2,4,6), ОР с плавающим потенциалом анода (3, 5, 7).

коэффициент фотоэмиссии [8], $R \approx 0.17$ — доля ВУФ-излучения, перехватываемая катодом, $h\nu \approx 22 \text{ eV}$ — энергия кванта. Из формулы и данных рис. 3 следует, что при U = 4.35 kV величина $w_e \approx 2.13 \text{ keV}$. Следовательно, величина $n_e \approx 1.3$ что и обеспечивает самостоятельность ГР.

Для варианта с плавающим потенциалом анода значение w_e (кривая 7) и соответственно η_w (кривая 3) заметно меньше. Как отмечалось выше, в этом варианте включения из-за наличия скачка потенциала перед анодом осуществляется дрейф ионов из ДП в РЗ, при этом снижается доля тока, переносимая ЭП. ВАХ в этом случае подстраивается под увеличиение ионного тока и соответственно усиление эмиссии под действием тяжелых частиц, тем самым снижая U, w_e и долю фототока в полном токе разряда. Различия ВАХ в непрерывном и импульсном режимах объясняются сильным нагревом газа вследствие большой мощности, рассеиваемой в ДП. В импульсном режиме, несмотря на

нагрев, газ не успевает расшириться в буферные зоны. Поэтому по крайней мере при $\tau = 1.5 \text{ ms}$ и *I* до 50 mA условия для фотоподстветки неизменны и *I* не зависит от *U*.

Полученные результаты позволяют объяснить возникновение Z-образных BAX, а также определить условия для реализации непрерывного фотоэлектронного OP и достижения $\eta_w \approx \mu$. Наиболее высокие величины η_w получены в OP с заземленным анодом. В этом случае разряд зажигается при $U \approx 210-215 \text{ V}$ (рис. 1) при $pd = 1.95 \text{ Torr} \cdot \text{сm}$, что соответствует началу левой ветви кривой Пашена и преобладанию эмиссии под действием тяжелых частиц [13]. По мере роста U растет и *I*, достигая максимума при $U \approx 450-500$ V. Этот максимум реализуется при $E/N \approx 7.5 \cdot 10^{-15} \,\mathrm{V} \cdot \mathrm{cm}^2 \,(N$ — концентрация частиц рабочего газа) и соответствует максимуму коэффициента размножения Таунсенда а. Поэтому дальнейшее повышение U приводит к падению I, которое тем глубже, чем меньше величина δ. Это объясняется тем, что при повышенной величине б поле провисает за анод, способствуя дополнительной инжекции ионов из ДП в РЗ. При $U > 2 \, \text{kV}$ реализуется заметный вынос энергии из РЗ в ДП, а также новый рост I, который обусловлен формированием ЭП и усилением фотоподсветки из ДП. При $U > 3.2 \, \text{kV}$ энергии, расеиваемой в ДП, достаточно для генерации такого количества фотонов, при котором реализуется самостоятельной фотоэлектронный ОР с одновременным слабым размножением разядов в РЗ, обеспечивая величину $\eta_w \approx \mu$. Выполнение условия самостоятельности фоторазряда приводит к быстрому росту тока при $U > 3.2 \, \mathrm{kV}$ до тех пор, пока разогрев газа и его вытеснение из объема ячейки не приводят к стаблилизации разряда. Этот режим более ярко выражен при питании импульсами миллисекундной длительности.

Совокупность приведенных выше и полученных ранее результатов показывает, что фотоэлектронный открытый разряд и эффективная генерация в нем ЭП могут быть реализованы в непрерывном режиме при давлении гелия $p_{\rm He} = 10-30$ Torr, что расширяет области его применения. Непрерывный ОР имеет существенные отличия от АР, и поэтому изучение процессов в нем имеет самостоятельный интерес для физики газового разряда.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 17-08-00121.

Список литературы

- [1] Головин А.И., Шлойдо А.И. // Успехи прикладной физики. 2016. Т. 4. № 5. С. 439-448.
- [2] Babich L.P. High-energy phenomena in electric discharges in dense gases: theory, experiment and natural phenomena. Arington, Virginia: Futurepast Inc, 2003. 353 p.
- [3] Генерация убегающих электронов и рентгеновского излучения в разрядах повышенного давления / Под ред. В.Ф. Тарасенко. Томск: STT, 2015. 566 с.
- [4] Сорокин А.Р. // ЖТФ. 2006. Т. 76. В. 5. С. 47-55.
- [5] Akishev Y., Aponin G., Karalnik V., Petryakov A., Trushkin N. // J. Phys. D: Appl. Phys. 2018. V. 51. P. 394003.
- [6] Bokhan P.A., Gugin P.P., Lavrukhin M.A., Schweigert I.V., Alexandrov A.L., Zakrevsky Dm.E. // J. Phys. D.: Appl. Phys. 2018. V. 51. P. 404002.
- [7] Ульянов К.Н. // Теплофизика высоких температур. 2005. Т. 43. В. 5. С. 645– 656.
- [8] Bokhan P.A., Zakrevsky Dm.E. // Phys. Rev. E. 2013. V. 88. P. 013105.
- [9] Xu L., Khrabrov A.V., Kaganovich I.D., Sommer T.J. // Phys. Plasmas. 2017.
 V. 24. P. 093511.
- [10] Hayden H.C., Utterback N.G. // Phys. Rev. 1964. V. 135. P. A1575-A1579.
- [11] Клименко К.А., Королев Ю.Д. // ЖТФ. 1990. Т. 60. В. 9. С. 138–142.
- [12] Сыцько Ю.И., Яковленко С.И. // Физика плазмы. 1976. Т. 2. В. 1. С. 63-71.
- [13] Marić D., Savić M., Sivoš J., Škoro N., Radmilović-Radjenović M., Malović G., Petrocić Z.Lj. // Eur. Phys. J. D. 2014. V. 68. P. 155.