15

Позиционно-чувствительный спектрометрический модуль для регистрации ионизирующего излучения полупроводниковыми стриповыми детекторами

© Ю.В. Тубольцев¹, А.А. Богданов¹, И.В. Ерёмин¹, В.К. Ерёмин¹, Ю.В. Чичагов¹, А.С. Фомичев², Н.Н. Аруев¹

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

² Объединенный институт ядерных исследований, Лаборатория ядерных реакций им. Г.Н. Флёрова, Дубна, Московская обл., Россия E-mail: tuboltsev@mail.ioffe.ru

Поступило в Редакцию 20 июля 2018 г.

Разработан и реализован позиционно-чувствительный модуль для регистрации ионизирующего излучения на основе полупроводниковых стриповых детекторов и многоканального спектрометрического тракта. Динамический диапазон регистрируемого трактом заряда, генерированного ионизирующей частицей в детекторе, составляет 5–250 fC. Позиционно- чувствительный модуль является конструктивно законченным устройством с функциями усиления спектрометрического сигнала, оцифровки, буферизации, предварительной обработки и передачи данных на компьютер.

DOI: 10.21883/PJTF.2018.23.47010.17468

Решающим фактором успешного развития ядерной физики, астрофизики, физики высоких энергий и радиационной медицины является применение позиционно-чувствительных спектрометрических систем с высоким пространственным и энергетическим разрешением. В частности, такие спектрометрические системы, построенные на основе стриповых кремниевых планарных детекторов, успешно используются в экспериментах на Большом адронном коллайдере в ЦЕРН [1] и в работах по международной программе FAIR на площадке центра ядерных исследований GSI (Дармштадт) [2]. Многостриповые кремниевые

56

детекторы активно используются в экспериментах с радиоактивными пучками на комплексе DRIBs-III в Лаборатории ядерных реакций OИЯИ [3]. Важнейшим требованием, предъявляемым к кремниевым детекторам упомянутых систем, является высокое позиционное разрешение. В результате количество независимых чувствительных элементов, формирующих однокоординатную матрицу и имеющих форму полосок — стрипов, даже в одном кремниевом детекторе может достигать тысячи. Столь большое число соответствующих стрипам независимых спектрометрических каналов регистрации сигналов обусловливает использование специализированных аналого-цифровых микросхем высокой степени интеграции [4,5], которые, как и вся элементная база электроники, находятся в интенсивном развитии. В результате сохраняется актуальность разработок на новой элементной базе и поддерживается интерес к соответствующим публикациям.

ФТИ им. А.Ф. Иоффе имеет значительный опыт в исследованиях и разработках кремниевых детекторов. В настоящее время в ФТИ в связи с участием в экспериментах в ОИЯИ и GSI разрабатывается многоканальная электроника, являющаяся составной частью модулей детектирования.

Нами описывается многоканальный позиционно-чувствительный спектрометрический модуль, предназначенный для регистрации ионизирующих частиц с энерговыделением в кремниевом детекторе от 0.1-5.6 MeV. Возможна работа устройства с несколько ухудшенной линейностью преобразования с энерговыделением до ~ 12 MeV.

В созданном экспериментальном модуле используется односторонний планарный кремниевый $p^+ - n - n^+$ -детектор с p^+ -контактом, сегментированным на 64 стрипа, и несегментированным n^+ -контактом. Исходя из необходимого диапазона регистрации сигналов с детектора была выбрана специализированная микросхема IDE1140 [6]. Структура устройства (рис. 1) обоснована принципом действия IDE1140, который предполагает запуск цикла его работы внешним триггерным сигналом. По функциональному назначению в устройстве можно выделить следующие узлы:

- узел регистрации и обработки сигналов стрипового детектора;
- узел генерации триггерного сигнала;
- узел обработки, накопления и передачи данных.

Письма в ЖТФ, 2018, том 44, вып. 23

Узел регистрации и обработки сигналов стрипового детектора состоит из самой миросхемы IDE1140, буферных усилителей (buffer amplifier, amplifier) и аналого- цифрового преобразователя (ADC1).

Тригтерный канал, предназначенный для регистрации сигналов с n^+ -контакта детектора, включает в себя зарядочувствительный предусилитель CR-110 фирмы Cremat Inc. [7] (preamplifier) и следующие за ним элементы, реализующие две функции: создание самого триггерного (стартового) сигнала и формирование спектрометрического сигнала. Первую функцию реализуют быстрый усилитель (fast amplifier) и дискриминатор (discriminator), вторую — усилитель-формирователь спектрометрического сигнала (shaping amplifier) и аналого-цифровой преобразователь (ADC2).

Узел обработки, накопления и передачи данных выполнен на программируемой логической матрице FPGA типа EP3C16Q240 и включает дополнительную оперативную память и USB-передатчик, которые на схеме не показаны.

Для проверки работоспособности и качества работы каналов предусмотрен внутренний генератор импульса калибровки (pulse generator).

Спектрометрический тракт работает по следующему алгоритму. Частица, попадая на детектор, создает сигнал в виде собранного заряда на одном или нескольких стрипах детектора. Одновременно возникает сигнал и на общем n^+ -контакте, заряд с которого преобразуется в напряжение при помощи зарядочувствительного предусилителя в триггерном канале. С быстрого выхода усилителя триггерного канала сигнал попадает на дискриминатор, вырабатывающий логический сигнал, поступающий на вход логической матрицы. Сигнал с усилителя-формирователя спектрометрического канала оцифровывается аналогоцифровым преобразователем ADC2.

Сигналы со всех стрипов регистрируются одновременно с помощью микросхемы IDE1140, каждый из 64 каналов которой включает зарядочувствительный предусилитель, формирующий усилитель и устройство выборки-хранения. По фронту триггерного импульса во всех каналах устройства выборки-хранения запоминаются амплитудные значения сформированных сигналов от стрипов. После этого через внутренний мультиплексор выполняются их последовательное считывание и оцифровка на ADC1. Микросхема FPGA осуществляет предварительную обработку данных, их накопление во внешней памяти и передачу в компьютер по интерфейсу USB.

Рис. 2. Амплитуды сигналов с микросхемы IDE1140 в относительных единицах. a — тестовый режим (фронт импульса 6 μ s, спад 30 μ s), b — вид считываемых сигналов в рабочем режиме.

Конструктивно позиционно-чувствительный модуль выполнен на двух печатных платах. Детектор, микросхема IDE1140, предусилитель и *RC*-фильтры в цепи подачи напряжения смещения на стриповый детектор расположены на отдельной печатной плате повышенной точности изготовления, соединяемой с основной платой шлейф-кабелем.

Рис. 3. Интегральная нелинейность преобразования (INL) для различных диапазонов входных зарядов.

В микросхеме IDE1140 предусмотрена возможность тестирования каждого усилительного канала отдельно. Результаты теста, выполненные с помощью внешнего генератора, показывают, что сигналы на выходах усилителей-формирователей подобны и имеют характерную форму, представленную на рис. 2, а. На рис. 2, *b* представлен фрагмент последовательности сигналов, считанных со схем выборки-хранения. Значимый сигнал зарегистрирован в одном канале, тогда как уровни напряжений на остальных каналах флуктуируют за счет шумов. Время считывания одного канала было установлено равным 5μ s, что повысило точность измерения его выходного напряжения за счет усреднения измерений, сделанных ADC1.

На рис. 3 представлена характеристика преобразования входного заряда в напряжение, измеренное ADC1. Собственная нелинейность электронного тракта, регистрирующего сигнал с выхода IDE1140, составляет 0.022%. Однако передаточная характеристика всего устройства, включающего IDE1140, имеет отчетливо выраженную нелинейность. В работе она была оценена величиной интегральной нелинейности (INL) и представлена в таблице на рис. 3 для разных диапазонов входного заряда.

Характеристики разработанного модуля были следующими:

- динамический диапазон регистрируемых сигналов от 5 до 250 fC;
- интегральная нелинейность менее 1% в диапазоне от 5 до 160 fC;
- эквивалентный шумовой заряд 0.7 fC;
- коэффициент преобразования 4.4 каналов ADC/fC в диапазоне от 5 до 160 fC;

— время формирования сигнала в микросхеме IDE1140: фронт $6 \mu s$, спад 30 μs ;

— напряжение питания 12 V, ток потребления модуля 250 mA.

Схемотехника, конструкция и программное обеспечение модуля разработаны для использования его в составе позиционно-чувствительных спектрометров со стриповыми кремниевыми детекторами с размером чувствительной области от $5 \times 5 \,\mathrm{mm}$ до $40 \,\mathrm{cm}^2$ и минимальным шагом стрипов $20 \,\mu\mathrm{m}$.

Два макета позиционно-чувствительных модулей были протестированы при их облучении радиоактивным пучком ¹²Ве с энергией 39 MeV на нуклон, получаемымна фрагмент-сепараторе ACCULINNA-2 при ускорителе У-400М.

Таким образом, на основе приведенных характеристик позиционночувствительного модуля на базе микросхемы IDE1140 можно сделать заключение о возможности его эффективного применения при построении спектрометрических систем, разрабатываемых для решения задач ядерной физики, физики высоких энергий, астрофизики и массспектрометрии.

Список литературы

- Madaffari D. Strip detector for the ATLAS detector upgrade for the highluminosity LHC. CERN Document Server; https://cds.cern.ch/record/2291135
- [2] Heuser J.M. // JPS Conf. Proc. 2015. V. 8. P. 022007.
- [3] Fomichev A.S., Grigorenko L.V., Krupko S.A., Stepantsov S.V., Ter-Akopian G.M. // Eur. Phys. J. A. 2018. V. 54. P. 97.
- [4] Zhang F., Fan R.-R., Peng W.-X., Dong Y.-F., Gong K., Liang X.-H., Liu Y.-Q., Wang H.-Y. // Chin. Phys. C. 2014. V. 38. P. 066101.
- [5] Chen W., Guo J., Wang S. // Nucl. Techn. 2018. V. 41. P. 020402.
- [6] IDE1140: 64 Channel sample-and-hold and multiplexer output; http://www.ideas.no/products/ide1140
- [7] CR-110 charge sensitive preamplifier: application guide; http://www.cremat.com/CR-110-R2.pdf