Влияние электрического режима и *у*-облучения на образование поверхностных дефектов на границе раздела Si–SiO₂ в МОП-транзисторе

© Н.А. Куликов, В.Д. Попов¶

Национальный исследовательский ядерный университет "Московский инженерно-физический институт", 115409 Москва, Россия

[¶] E-mail: wdpopov@mail.ru

(Получена 26 апреля 2018 г. Принята к печати 25 июня 2018 г.)

Приводятся результаты экспериментального исследования процесса образования поверхностных дефектов при воздействии гамма-излучения с мощностью дозы P = 0.1 рад(Si)/c на МОП-транзисторы с *n*-каналом в пассивном и активном режимах. Наблюдались два этапа поверхностного дефектообразования. Предлагается качественная модель, объясняющая влияние напряжения на стоке транзистора на процесс дефектообразования.

DOI: 10.21883/FTP.2019.01.46998.8900

1. Введение

При развитии технологии МОП-приборов и интегральных микросхем (ИМС) на их основе для выращивания тонких оксидных пленок стали использовать реакцию окисления моносилана [1]. Преимущество такого окисления кремния заключается в более низкой температуре процесса, что обусловливает отсутствие перераспределения примесей в приповерхностной области кремния. Более того, водород заполняет оборванные валентные связи и создает водородосодержащие комплексы Si-H, что тем самым снижает плотность поверхностных дефектов в оксиде кремния и на границе раздела оксид кремния — кремний (SiO₂-Si).

В настоящее время МОП ИМС широко используются в космической технике, которая подвергается длительному низкоинтенсивному воздействию космических лучей. Для прогнозирования работоспособности микросхем при воздействии ионизирующих излучений космического пространства применяют моделирующие испытания с использованием у-излучения [2]. При воздействии у-излучения происходит образование дефектов как в пленке оксида МОП-структуры, так и на границе раздела (SiO₂-Si). Ранее образование поверхностных дефектов наблюдалось при уменьшении размеров МОПтранзисторов (МОПТ) и было вызвано образованием "горячих" электронов в канале без воздействия ионизирующего излучения. В [3] считается, что "горячий" электрон, инжектированный из канала МОПТ в подзатворный оксид вблизи границы раздела SiO2-Si, разрывает кремний-водородную связь

$$e^- + \operatorname{SiH} \to \operatorname{H}^+ \equiv \operatorname{Si}^{\bullet}$$
.

При развитии технологии микроэлектронных микросхем толщина пленки оксида кремния уменьшается и на первое место выходят дефекты на границе раздела SiO₂-Si (поверхностные дефекты — interface traps). Именно эти поверхностные дефекты (ПД) в настоящее время определяют радиационную стойкость МОПмикросхем к воздействию ионизирующих излучений в космическом пространстве, вблизи физических установок (ускорителей, реакторов и т.п.) [2].

При снижении мощности дозы ионизирующего излучения наблюдались два этапа поверхностного дефектообразования на границе раздела SiO2-Si. Первая публикация об этом эффекте при облучении МОПТ с *п*-каналом без подачи электрического режима (в пассивном режиме) была осуществлена в журнале "Semiconductor" [4] в 2016 г. В этой статье были опубликованы результаты эксперимента, проводившегося на КМОП-микросхемах, изготовленных в России. В следующей публикации [5] представлены результаты эксперимента по воздействию у-излучения в широком диапазоне мощности дозы на МОПТ с *п*-каналом в составе КМОПмикросхем, изготовленных в США. Облучение микросхем также проводилось без подачи электрического режима (в пассивном режиме). В обеих публикациях наблюдались два этапа ПД на границе раздела SiO₂-Si.

Цель данной работы заключается в сравнении радиационных эффектов в МОПТ с *n*-каналом при низкоинтенсивном облучении *γ*-лучами в пассивном и активном режимах.

2. Методика и результаты экспериментального исследования

В данной работе проводились исследования МОПТ с *n*-каналом в КМОП-микросхеме (6 инверторов) типа CD 4069 UBCN. В эксперименте использовались 3 микросхемы КМОП-инвертора, которые облучались γ -лучами от источника Cs¹³⁷ при мощности дозы P = 0.1 рад(Si)/с и температуре $T \approx 25^{\circ}$ C. В каждой микросхеме три МОПТ с *n*-каналом облучались в пассивном режиме (все выводы интегральной схемы были закорочены во время облучения), а 3 транзистора —

 10^{11} 100 200 300 400 500 *t*, h Рис. 1. Изменение плотности поверхностных дефектов в МОПТ с *n*-каналом при мощности дозы *P* = 0.1 рад/с в пас-

сивном (1) и в активном (2) режимах. (Пунктиром показаны

экспоненциальные кривые на первом (1-1 и 1-2) и втором (2-1

и 2-2) этапах дефектообразования).

в электрическом режиме при напряжении на затворе $U_g = 0$ и напряжении на стоке $U_d = 12$ В.

В эксперименте до и после облучения измерялись зависимости тока I_{dd} в цепи питания от напряжения на входе инвертора U_{in} при напряжении стока $U_d = 5$ В. Для измерения характеристик использовался анализатор полупроводниковых приборов типа Agilent Technologies В1500А. Из зависимостей $I_{dd}(U_{in})$ определялась приведенная крутизна k МОПТ. Уменьшение крутизны МОПТ связано со снижением поверхностной подвижности μ_s в канале транзистора. В [5] использовалось относительное изменение крутизны

$$\frac{k(0)}{k(D)}=\frac{\mu_s(0)}{\mu_s(D)},$$

где k(0) и k(D) — значения приведенных крутизн, а $\mu_s(0)$ и $\mu_s(D)$ — поверхностные подвижности до облучения и после облучения дозой *D* соответственно.

В [6] представлена модель, в которой поверхностная подвижность μ_s связана с изменением плотности ПД $\Delta N_{\rm it}$. Эта модель представляется как

$$\mu_s(D) = \frac{\mu_s(0)}{1 + \alpha(\Delta N_{\rm it})},\tag{1}$$

где $\mu_s(D)$ и $\mu_s(0)$ — значения поверхностной подвижности после и до облучения дозой $D, \, \alpha \approx 7 \cdot 10^{-13} \, \mathrm{cm}^2$ параметр модели, ΔN_{it} — изменение плотности ПД.

Поскольку необходимо сравнить процессы во времени t, использовалось выражение t = D/P, где D поглощенная доза, Р — мощность дозы.

Используя модель (1) и относительные зависимости поверхностной подвижности $\mu_s(t)/\mu_s(0)$ от времени облучения t, получили изменения плотности ПД $\Delta N_{\rm it}(t)$,

представленные на рис. 1. Эти зависимости показывают два этапа поверхностного дефектообразования. При этом процесс поверхностного дефектообразования на втором этапе в пассивном режиме протекает быстрее, чем в активном режиме.

3. Обсуждение результатов исследований

На первом этапе проходит процесс поверхностного дефектообразования на границе раздела SiO2-Si со стороны оксида кремния. Модель этого процесса опубликована в [7]. Сущность его заключается в захвате дырок, образованных у-лучами в пленке оксида кремния, на атомы водорода $h + H \rightarrow H^+$. В результате возникают положительно заряженные протоны, которые при низких мощностях дозы Р подходят к границе раздела SiO₂-Si и создают Р_b-центры. Этот процесс описывается уравнением

$$\frac{\partial N_{\rm Pb}}{\partial t} = (N_{\rm SiH} - N_{\rm Pb})\sigma_{\rm it}f_{\rm H}(L,t) - \frac{N_{\rm Pb}}{\tau_{\rm Pb}'},\tag{2}$$

в котором N_{SiH} — плотность водородосодержащих центров, $N_{\rm Pb}$ — плотность P_b -центров, $\sigma_{\rm it}$ — сечение захвата протона SiH-центром, $f_{\rm H}(L, t)$ — поток протонов $(L - положение в момент времени t), \tau_{Pb}$ — время жизни дефекта на границе раздела Si-SiO₂.

Уравнение (2) дает экспоненциальную зависимость, которая описывает первый этап поверхностного дефектообразования. В итоге получаем выражение вида

$$N_{\rm Pb} = \frac{N_{\rm SiH}}{1 - \frac{1}{\sigma_{\rm it}f_{\rm H}\tau_{\rm Pb}}} \left[1 - \exp\left(-\frac{\sigma_{\rm it}f_{\rm H}\tau_{\rm Pb} - 1}{\tau_{\rm Pb}}\right) t \right]$$
$$= \frac{N_{\rm SiH}}{\frac{\beta}{\sigma_{\rm it}f_{\rm H}}} \left[1 - \exp(-\beta t) \right] = N_{\rm Pb..s.} \left[1 - \exp(-\beta t) \right], \quad (3)$$

где $N_{\text{Pb..s}}$ — плотность P_b -центров при насыщении, β параметр модели.

Поскольку нас интересует изменение плотности ПД $\Delta N_{\rm it}(t)$, то будем использовать выражение

$$\Delta N_{\rm it}(t) = N_{\rm Pb}(t) - N_{\rm Pb}(0),$$

где $N_{Pb}(0)$ и $N_{Pb}(t)$ — плотности P_b -центров до и после радиационных испытаний.

Параметры этих экспоненциальных зависимостей представлены в табл. 1. Насыщение плотности *P*_{*b*}-центров возникает при достижении равновесия, когда количество созданных дефектов будет равно количеству исчезнувших дефектов [8].

В пассивном режиме область границы раздела SiO₂-Si значительно шире, чем в случае активного режима. Процесс поверхностного дефектообразования на первом этапе охватывает практически всю площадь границы раздела SiO2-Si как в пассивном, так и в

Рис. 2. Схематическое изображение МОПТ с n-каналом в пассивном (a) и активном (b) режимах (пунктирными линиями показаны области пространственного заряда, а стрелками — пути движения "горячих" электронов).

Таблица 1. Параметры экспоненциальных зависимостей первого этапа

Режим при облучении	$\Delta N_{\mathrm{it},s},\mathrm{cm}^{-2}$	β , ч $^{-1}$
Пассивный ($U_g = U_d = 0 \mathrm{B}$)	$4.66 \cdot 10^{11}$	0.04
Активный $(U_g = 0, U_d = 12 \mathrm{B})$	$5.79\cdot10^{11}$	0.023

Таблица 2. Параметры экспоненциальных зависимостей второго этапа

Режим при облучении	уо	$\Delta N_{\mathrm{it},s}$, cm ⁻²	β , ч ⁻¹
Пассивный ($U_g = U_d = 0$ В)	$3.83\cdot 10^{11}$	$6.08\cdot10^{13}$	0.0122
Активный $(U_g = 0, U_d = 12 \text{ B})$	$1.60\cdot 10^{12}$	$1.30\cdot10^{12}$	0.0046

активном режимах. Параметры экспоненциальной зависимости (3) получаются практически одинаковыми (см. пунктирные линии на рис. 1). Их разброс 11% можно считать технологическим.

На втором этапе при воздействии *у*-излучения происходит ионизация атомов кремния в подложке (кармане). Образовавшиеся в приповерхностной области кремния "горячие" электроны взаимодействуют с уровнями водородосодержащих комплексов на границе раздела Si-SiO₂. В результате происходит реакция [9]

$$\mathbf{H}^{+} + e^{-} + \mathrm{SiH} \to \mathbf{H}_{2}^{+} \equiv \mathrm{Si}^{\bullet} \tag{4}$$

и образуется дефект типа *P*_b-центра. В этом случае достигнутое на первом этапе равновесие нарушается, что вызывает дальнейшее увеличение плотности ПД.

Различия пассивного и активного режимов в МОПТ с *n*-каналом показаны на рис. 2, на котором указаны стрелками направления движения электронов (**e**).

На втором этапе процесс образования ПД протекает только в области канала МОПТ между областями пространственного заряда (ОПЗ) истока и стока. В случае подачи положительного напряжения на сток *п*-канального МОПТ возникает расширение (ОПЗ) стокового p-n-перехода. В этой области отрицательно заряженные акцепторы уменьшают воздействие "горячих" электронов, что объясняет меньшую скорость образования ПД на границе раздела Si–SiO₂ на втором этапе. Отрицательный заряд акцепторов в ОПЗ препятствует протеканию реакции (4) и в ней происходит только процесс первого этапа с участием протонов из объема оксида. Это обстоятельство объясняет задержку начала второго этапа и образование меньшей плотности поверхностных дефектов при воздействии γ -излучения в случае напряжения на стоке МОПТ.

Второй этап описывается экспоненциальной зависимостью вида

$$\Delta N_{\rm it}(t) = y_0 + \Delta N_{\rm it,s} \exp(-\beta t),$$

в которой y_0 — параметр модели, $\Delta N_{it,s}$ — плотность ПД при насыщении, β — параметр модели. Параметры звисимостей приведены в табл. 2.

4. Заключение

В МОПТ с *n*-каналом при длительном низкоинтенсивном облучении γ -лучами как в случае подачи электрического режима, так и в случае облучения в пассивном режиме наблюдаются два этапа поверхностного дефектообразования.

Первый этап вызван образованием протонов в пленке оксида кремния, которые создают на границе раздела $Si-SiO_2$ ПД типа P_b -центр. На втором этапе происходит взаимодействие электронов, образовавшихся в результате ионизации объема кремния, с водородосодержащими комплексами вблизи границы раздела $Si-SiO_2$. В этом случае плотность поверхностных дефектов зависит от ширины области пространственного заряда p-n-перехода стока МОП-транзистора.

Следует заметить, что скорее всего второй этап поверхностного дефектообразования начинается с момента начала облучения *γ*-лучами, но он не может быть определен из-за доминирования дефектов, образованных на первом этапе.

Авторы благодарят д.ф.-м.н. проф. А.П. Менушенкова и д.т.н. проф. В.С. Першенкова за обсуждение работы и сделанные замечания.

Список литературы

- А.С. Березин, О.Р. Мочалкина. Технология и конструирование интегральных микросхем (М., Радио и связь, 1992) гл. 6, с. 84.
- [2] P.S. Winokur, M.R. Schaneyfelt, T.L. Meisenheimer, D.M. Fleetwood. IEEE Trans. Nucl. Sci., 41 (3), 538 (1994).
- [3] Г.И. Зебрев, С.С. Ломакин. ПТЭ, 43, 92 (2000).
- [4] В.Д. Попов. ФТП, 50 (3), 354 (2016).
- [5] V.D. Popov. J. Mater. Sci. Res., 6 (2), 16 (2017).
- [6] F.W. Sexton, J.R. Schwank. IEEE Trans. Nucl. Sci., 32 (6), 3975 (1985).
- [7] S.N. Rashkeev, C.R. Cirba, D.M. Fleedwood, R.D. Schrimpf, S.C. Witczak, A. Michez, S.T. Pantelides. Trans. Nucl. Sci., 49 (6), 2650 (2002).
- [8] S.N. Rashkeev, D.M. Fleedwood, R.D. Schrimpf, S.T. Pantelides. Trans. Nucl. Sci., 48 (6), 2650 (2001).
- [9] N.S. Saks, R.B. Klein, D.L. Griscom. Trans. Nucl. Sci., 35 (6), 1234 (1988).

Редактор Г.А. Оганесян

Effect of electric regime and γ -irradiation on the formation of surface defects on interface Si-SiO₂ in MOS transistor

N.A. Kulikov, V.D. Popov

National Research Nuclear University "Moscow Engineering Physics Institute", 115409 Moscow, Russia

Abstract The results of an experimental study of the process of formation of surface defects under the action of gamma radiation with a dose rate $P = 0.1 \operatorname{rad}(\operatorname{Si})/\operatorname{s}$ on MOS transistors with an *n*-channel in passive and active modes are presented. Two stages of surface defect formation were observed. A qualitative model of the effect of voltage on the drain of the transistor on the defect formation process is proposed.