Параметры тонкой структуры, зеемановское расщепление, его особенности и гиромагнитные отношения конфигураций 1s ng (n = 5-10) атома гелия

© Г.П. Анисимова¹, Ю.И. Анисимов¹, А.П. Горбенко¹, О.А. Долматова², И.Р. Крылов¹, Г.А. Цыганкова¹, М. Чоффо³

¹ Санкт-Петербургский государственный университет,

198504 Санкт-Петербург, Петергоф, Россия

² Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А.Бонч-Бруевича,

193232 Санкт-Петербург, Россия

³ Department of Physics, Faculty of Science, University of Dschang,

Po Box 479 Dschang, Cameroon

e-mail: olgadolmatova@gmail.com

Поступила в редакцию 08.04.2018 г. В окончательной редакции 26.07.2018 г.

Полуэмпирическим методом выполнен расчет параметров тонкой структуры 6 конфигураций 1sng гелия с новыми уточненными энергиями. При диагонализации матрицы оператора энергии второго ранга (уровни ${}^{3}G_{4}$ и ${}^{1}G_{4}$) разности между расчетными и экспериментальными энергиями (невязки) оказались практически равными нулю. Основное внимание в работе уделено исследованию зеемановской структуры с целью определения гиромагнитных отношений всех четырех уровней конфигураций. Это представляется актуальным, так как для исследуемых конфигураций отсутствуют аналогичные экспериментальные данные. Гиромагнитные отношения можно рассчитывать только в линейной области. Эта область установлена для всех рассматриваемых конфигураций. Также изучены особенности зеемановского расщепления — пересечения и антипересечения магнитных подуровней. Полученные данные являются прогнозом для дальнейших экспериментальных исследований.

DOI: 10.21883/OS.2018.12.46930.103-18

Введение

К конфигурациям атома гелия мы обращались ранее ([1-3]), однако весь гелий был пересчитан с новыми уточненными энергиями из [4] — точность 10^{-9} cm⁻¹.

Во всех литературных источниках классификация уровней конфигураций 1snl гелия дана в приближении LS-связи. Это оправдано для конфигураций 1snp и 1snd (см. табл. 1 в статье [1]), которые представляют собой узкий триплет и значительно удаленный от него синглетный уровень. При этом расположение уровней в обращенном триплете правильное.

Иная картина у всех высоковозбужденных конфигураций 1snl $(l \ge 3)$, в том числе 1snf [1] и 1sni [5]. Спектр конфигураций 1sng качественно такой же, как в вышеперечисленных конфигурациях. А именно триплетная система расширяется, а верхний синглетный уровень ${}^{1}G_{4}$ приближается к ней настолько, что получается квартет. Известно, что уровни с одинаковым значением квантового числа J (полный электронный момент атома) взаимодействуют (отталкиваются). Верхний уровень ${}^{1}G_{4}$ настолько сильно отталкивает уровень ${}^{3}G_{4}$, что последний перемещается на самую нижнюю позицию, нарушая правильное расположение уровень ${}^{1}G_{4}$ все же остается верхним. Квартетная структура характерна для *LK*-связи, т.е. здесь налицо значительное отступление

от LS-связи, что увидим дальше по коэффициентам промежуточной связи и гиромагнитным отношениям. Матрица оператора энергии конфигурации 1fng опубликована в [2], зеемановское расщепление двух нижних конфигураций 1s5g и 1s6g рассмотрено в работе [3], но расчеты были выполнены с другими энергиями с точностью 10^{-4} сm⁻¹, поэтому мы повторим матрицу оператора энергии и систему уравнений, из которой определены параметры тонкой структуры.

Матрица оператора энергии и система уравнений для определения параметров тонкой структуры

Расчет матричных элементов для конфигураций с *s*-электроном не представляет значительных трудностей как в представлении несвязанных моментов [6], так и в *LSJM*-представлении (подробнее см. [7]), поэтому сразу запишем матрицу оператора энергии в *LSJM*-представлении и прокомментируем ее. В указанной матрице учтены следующие взаимодействия: электростатическое, спин-орбита (своя и чужая) и спин-спин. Взаимодействие орбита-орбита не удалось учесть отдельно от электростатического, так как в нем прямые радиальные интегралы Марвина отсутствуют, а угловой коэффициент обменной части такой же, как у обменного радиального интеграла электростатического взаимодействия *G*₄.

В *LSJM*-представлении (приближение *LS*-связи) матрица оператора энергии конфигураций *nsn'g* имеет вид

$${}^{3}G_{4}^{3}G_{4} = F_{0} - \frac{1}{9}G_{4} - \frac{1}{2}\xi_{g} + 3S_{2}^{*}$$

$$- 2S_{2} + \frac{2}{3}S_{4} - \frac{1}{9}(I + II) = C_{1},$$

$${}^{3}G_{5}^{3}G_{5} = F_{0} - \frac{1}{9}G_{4} - 2\xi_{g} - 12S_{2}^{*}$$

$$+ \frac{8}{11}S_{2} - \frac{8}{3}S_{4} - \frac{1}{9}(I + II) = C_{2},$$

$${}^{3}G_{3}^{3}G_{3} = F_{0} - \frac{1}{9}G_{4} - \frac{5}{2}\xi_{g} + 15S_{2}^{*}$$

$$+ \frac{10}{7}S_{2} + \frac{10}{3}S_{4} - \frac{1}{9}(I + II) = C_{3},$$

$${}^{1}G_{4}^{1}G_{4} = F_{0} + \frac{1}{9}G_{4} + \frac{1}{9}(I + II) = C_{4},$$

$${}^{3}G_{4}^{1}G_{4} = -\sqrt{5}(\xi_{g} + 2S_{2}^{*}) = C_{5}.$$
(1)

Здесь F₀ и G₄ — прямой и обменный радиальные интегралы Слэтера соответственно (электростатическое взаимодействие), ξ_g — параметр взаимодействия спинсвоя орбита, S₂ — прямой радиальный интеграл Марвина $M_{k-1}(n'l', nl)$ при k = 1, относящийся к взаимодействиям спин-чужая орбита (помечен звездочкой) и спин-спин, S₄ — обменный радиальный интеграл Марвина K_k [6], относящийся только к взаимодействию спин-чужая орбита. Последнее слагаемое в матричных элементах (1) с римскими цифрами — это совокупность радиальных интегралов, относящихся к взаимодействию орбита-орбита. Из (1) видно, что угловые коэффициенты при радиальных интегралах G_4 и (I + II) с точностью до множителя одинаковы, поэтому в полуэмпирическом расчете параметров тонкой структуры взаимодействие орбита-орбита нельзя учесть отдельно от электростатического. В диагональных матричных элементах S₂ и S₂^{*} — это один и тот же прямой радиальный интеграл Марвина, поэтому их нужно объединить.

В основу численного расчета параметров тонкой структуры положена матрица оператора энергии (1). Так как параметров тонкой структуры 5 (F_0 , G_4 , ξ_g , S_2 и S_4), а уровней исследуемой конфигурации 4, то в численном расчете использовалась следующая система уравнений:

$$C_{1} + C_{2} - (\varepsilon_{1} + \varepsilon_{4}) = 0,$$

$$C_{2} - \varepsilon_{2} = 0,$$

$$C_{3} - \varepsilon_{3} = 0,$$

$$C_{1}C_{4} - C_{5}^{2} - \varepsilon_{1}\varepsilon_{4} = 0,$$

$$\alpha_{11}(C_{1} - \varepsilon_{1}) + \alpha_{12}C_{5} = 0,$$

$$\alpha_{12}(C_{1} - \varepsilon_{4}) - \alpha_{11}C_{5} = 0,$$

$$\alpha_{11}^{2} + \alpha_{12}^{2} = 1.$$
(2)

Здесь ε_i — экспериментальные энергии, C_1 и C_5 — элементы недиагональной эрмитовой матрицы (1).

Четырехуровневая система с *s*-электроном является самой удобной для численного расчета параметров тонкой структуры, так как в системе (2) первые три уравнения на правило сумм диагональных элементов Слэтера, из которых сразу можно определить три основных параметра: F_0 , G_4 и ξ_g . Четвертое уравнение — парное произведение корней векового уравнения второй степени (теорема Виета). Поскольку неизвестных величин 5, то пришлось ввести два аналитических уравнения (пятое и шестое в (2)) на унитарное преобразование недиагональной эрмитовой матрицы 2-го ранга к диагональному виду [1]. При этом появились еще две неизвестные величины — коэффициенты унитарного преобразования α_{11} и α_{12} . Для соответствия числа уравнений числу неизвестных введено уравнение нормировки коэффициентов связи (седьмое в (2)).

Система уравнений (2) решалась по методу итераций Ньютона, которому требуются нулевые приближения. Нулевые приближения получены из первых трех линейных уравнений, для параметров F_0 , G_4 и ξ_g . Затем значения этих параметров подставлялись в матрицу второго ранга, и проводилась ее диагонализация, в результате которой определяются не только энергии уровней тонкой структуры (собственные числа), но и собственные векторы (коэффициенты связи). Поэтому можно определить численные значения величин C_1 (пятое и шестое уравнения в системе (2)). В результате получим систему 6 линейных уравнений для 5 неизвестных параметров тонкой структуры. Эта система решалась методом наименьших квадратов (МНК), из которой найдены нулевые приближения для двух остальных параметров тонкой структуры: S₂ и S₄. Итераций МНК требовалось немного: 1-2, после чего метод итераций Ньютона быстро сходился. Определенные таким образом параметры тонкой структуры (радиальные интегралы) представлены в табл. 1. Из табл. 1 видно, что с ростом главного квантового числа д-электрона изменение всех параметров плавное. Это говорит о том, что наложение конфигураций отсутствует. Коэффициенты связи и гиромагнитные отношения в табл. З показывают значительное отступление от LS-связи.

Расчетные энергии с параметрами тонкой структуры из табл. 1 представлены в табл. 2, а коэффициенты промежуточной связи и гиромагнитные отношения в отсутствие магнитного поля — в табл. 3.

Зеемановское расщепление, его особенности и гиромагнитные отношения

Магнитное поле полностью снимает вырождение уровней по квантовому числу *M*. Взаимодействие атома с магнитным полем имеет вид [8]:

$$W = -\mu H. \tag{3}$$

Таблица 1. Параметры тонкой структуры (в ст $^{-1}$) конфигураций 1sng (n = 5-10)

	1 <i>s</i> 5 <i>g</i>	1 <i>s</i> 6 <i>g</i>	1 <i>s</i> 7 <i>g</i>	1 <i>s</i> 8 <i>g</i>	1 <i>s</i> 9 <i>g</i>	1 <i>s</i> 10 <i>g</i>
F_0	0.0041321795	0.0023899967	0.0015043740	0.0010074281	0.0007073097	0.0005155085
ξ_g	-0.0028748975	-0.0016617176	-0.0010454096	-0.0006997816	-0.0001740040	-0.0003578687
S_2 S_4	0.0007506887 -0.0052022018	0.0004331137 - 0.0030029998	0.0002720567 - 0.0018871432	0.0001818765 - 0.0012620663	0.0001275031 - 0.0008850551	0.0000928318 - 0.0006445323

Таблица 2. Расчетные энергии уровней тонкой структуры (в ст⁻¹)

	Абсолютные энергии						
	1s5g	1 <i>s</i> 6g	1s7g	1 <i>s</i> 8 <i>g</i>	1 <i>s</i> 9 <i>g</i>	1s 10g	
${}^{3}G_{4}$ ${}^{3}G_{5}$ ${}^{3}G_{3}$ ${}^{1}G_{4}$	193921.614948739 193921.617719262 193921.620238142 193921.621933101	195262.723082377 195262.724684231 195262.726141773 195262.727124343	196071.368738129 196071.369746173 196071.370663981 196071.371283543	196596.209 656481 196596.210 331441 196596.210 946275 196596.211 361727	196956.03786250 196956.038337114 196956.038768917 196956.039060906	197213.420160634 197213.420505980 197213.420820757 197213.421033729	
		(Этносительные энері	тии (интервалы)			
	1 <i>s</i> 5 <i>g</i>	1 <i>s</i> 6 <i>g</i>	1 <i>s</i> 7 <i>g</i>	1 <i>s</i> 8 <i>g</i>	1 <i>s</i> 9 <i>g</i>	1s 10g	
${}^{3}G_{4}$ ${}^{3}G_{5}$ ${}^{3}G_{3}$ ${}^{1}G_{4}$	0 0.002770523 0.005289403 0.006984362	0 0.001601854 0.003059396 0.004041966	0 0.001008044 0.001925852 0.002545414	0 0.000674960 0.001289794 0.001705246	0 0.000473864 0.000905667 0.001197656	0 0.000345346 0.000660123 0.000873095	
_			Невязк	СИ			
	1 <i>s</i> 5 <i>g</i>	1 <i>s</i> 6 <i>g</i>	1 <i>s</i> 7 <i>g</i>	1 <i>s</i> 8 <i>g</i>	1 <i>s</i> 9 <i>g</i>	1s 10g	
${}^{3}G_{4}$ ${}^{3}G_{5}$ ${}^{3}G_{3}$ ${}^{1}G_{4}$	$\begin{array}{c} 2.9E-11\\ 5.15E-11\\ -8.8E-11\\ -1.1E-10 \end{array}$	$3.1E - 11 \\ -1.5E - 10 \\ 2.2E - 10 \\ 2.3E - 12$	$-2.0E - 11 \\ 8.5E - 11 \\ -4.8E - 12 \\ 5.3E - 11$	-3.5E - 11 -3.5E - 10 $3.0E - 10 2.0E - 12$	$-2.4E - 11 \\ 1.6E - 10 \\ -1.8E - 10 \\ -9.5E - 12$	$2.5E - 11 \\ 3.6E - 11 \\ -1.9E - 10 \\ -7.5E - 11$	

Таблица 3. Коэффициенты связи и гиромагнитные отношения в отсутствие поля

	^{3}G	4	$^{1}G_{4}$			
	$lpha_{11}$	g	α_{12}	g		
1s5g	0.8590535154	1.036984252	-0.5118857858	1.013131748		
1 <i>s</i> 6 <i>g</i>	0.858689072	1.0369528784	-0.5124969051	1.0131631216		
1s7g	0.8583670094	1.0369251642	-0.5130361364	1.0131908358		
1s8g	0.8580883665	1.0369011948	-0.5135020499	1.0132148052		
1 <i>s</i> 9 <i>g</i>	0.8578260226	1.0368786346	-0.5139401862	1.0132373654		
1s10g	0.85765113453	1.0368636171	-0.5142316305	1.0132523829		

Примечание. $g^{LS}({}^{3}G_{4}) = 1.050116; g^{LS}({}^{1}G_{4}) = 1.0.$

Пренебрегая ядерным магнитным моментом из-за его малости, для магнитного момента атома μ можно записать

$$\mu = -\mu_0 g J, \tag{4}$$

где μ_0 — магнетон Бора, выполняющий роль радиального интеграла; J — полный электронный момент атома. Если направить ось z по направлению поля H, то по-

лучим, что энергия взаимодействия атома с магнитным полем имеет вид:

$$W = \mu_0 g J H. \tag{5}$$

Матричные элементы оператора (5) в *LSJM*-представлении взяты из [9]. Выпишем их.

Диагональные матричные элементы: $\Delta J = \Delta S = \Delta L = 0.$

$$|W_{ii}| = \left(\frac{J(J+1) + L(L+1) - S(S+1)}{2J(J+1)}g_{l} + \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)}g_{s}\right)\mu_{0}HM.$$
(6)

Недиагональные матричные элементы: $\Delta S = \Delta L = 0$, $\Delta J = \pm 1$.

$$|W_{ij}| = \sqrt{\frac{(J - L + S + 1)(J + L - S + 1)}{\times (J + L + S + 2)(L + S - J)}}{4(J + 1)^2(2J + 1)(2J + 3)}} \times \sqrt{[(J + 1)^2 - M^2]}(g_l - g_s)\mu_0 H.$$
(7)

В [9] у недиагонального матричного элемента нет множителя $(g_l - g_s)$, а у квадратного корня нет знака. Указанный множитель появился в результате расчета матричных элементов в представлении несвязанных моментов, где оператор *J* представлен как сумма орбитальных и спиновых операторов отдельных электронов, к которым применена теорема Эккарта–Вигнера, с дальнейшим переводом в *LSJM*-представление с помощью матрицы коэффициентов Клебша–Гордана.

Итоговая матрица оператора энергии взаимодействия атома с магнитным полем для всех значений квантового числа *M* в *LSJM*-представлении конфигурации 1*sng* имеет вид

$$M = \pm 5 \qquad M = \pm 4 \qquad M = \pm 3$$

$${}^{3}G_{5}{}^{3}G_{5} \ \pm (4g_{l} + g_{s}) \ \pm \frac{4}{5}(4g_{l} + g_{s}) \ \pm \frac{3}{5}(4g_{l} + g_{s})$$

$${}^{3}G_{4}{}^{3}G_{4} \ \pm \frac{1}{5}(19g_{l} + g_{s}) \ \pm \frac{3}{20}(19g_{l} + g_{s})$$

$${}^{3}G_{3}{}^{3}G_{3} \ \pm \frac{3}{4}(5g_{l} - g_{s})$$

$${}^{1}G_{4}{}^{1}G_{4} \ \pm 4g_{l} \ \pm 3g_{l}$$

$${}^{3}G_{5}{}^{3}G_{4} \ \frac{2}{5}(g_{l} - g_{s}) \ \frac{8}{15}(g_{l} - g_{s})$$

$${}^{3}G_{4}{}^{3}G_{3} \ \frac{\sqrt{35}}{12}(g_{l} - g_{s})$$

$$M = \pm 2 \qquad M = \pm 1 \qquad M = 0$$

$${}^{3}G_{5}{}^{3}G_{5} \ \pm \frac{2}{5}(4g_{l} + g_{s}) \ \pm \frac{1}{5}(4g_{l} + g_{s}) \ 0$$

$${}^{3}G_{4}{}^{3}G_{4} \ \pm \frac{1}{10}(19g_{l} + g_{s}) \ \pm \frac{1}{20}(19g_{l} + g_{s}) \ 0$$

$${}^{3}G_{3}{}^{3}G_{3} \ \pm \frac{1}{2}(5g_{l} - g_{s}) \ \pm \frac{1}{4}(5g_{l} - g_{s}) \ 0$$

$${}^{1}G_{4}{}^{1}G_{4} \ \pm 2g_{l} \ \pm g_{l} \ 0$$

$${}^{3}G_{5}{}^{3}G_{4} \ \frac{2\sqrt{21}}{15}(g_{l} - g_{s}) \ \frac{4\sqrt{6}}{15}(g_{l} - g_{s}) \ \frac{2}{3}(g_{l} - g_{s})$$

$${}^{3}G_{4}{}^{3}G_{3} \ \frac{\sqrt{15}}{6}(g_{l} - g_{s}) \ \frac{5\sqrt{3}}{12}(g_{l} - g_{s}) \ \frac{\sqrt{5}}{3}(g_{l} - g_{s}).$$
(8)

Каждый элемент матрицы (8) необходимо умножить на $\mu_0 H$, где магнетон Бора $\mu_0 = 4.6686437 \cdot 10^{-5}$ [10], $g_l = 1, g_s = 2.00232$ с учетом аномального эффекта Зеемана.

При исследовании зеемановской структуры необходимо элементы матрицы (8) добавить к матрице (1) и

Таблица 4. Коэффициенты преобразования волновых функций *LSJM*- представления через волновые функции представления несвязанных моментов

	1	2	3	4
	01	00-+	0 -1 + +	00+-
${}^{3}G_{5}$	$\frac{\sqrt{2}}{3}$	$\frac{\sqrt{5}}{3\sqrt{2}}$	$\frac{\sqrt{2}}{3}$	$\frac{\sqrt{5}}{3\sqrt{2}}$
${}^{3}G_{4}$	$\frac{1}{\sqrt{2}}$	0	$-\frac{1}{\sqrt{2}}$	0
${}^{3}G_{3}$	$\frac{\sqrt{5}}{3\sqrt{2}}$	$-\frac{\sqrt{2}}{3}$	$\frac{\sqrt{5}}{3\sqrt{2}}$	$-\frac{\sqrt{2}}{3}$
$^{1}G_{4}$	0	$-\frac{1}{\sqrt{2}}$	0	$\frac{1}{\sqrt{2}}$

затем провести численную диагонализацию суммарной матрицы с параметрами тонкой структуры из табл. 1.

Докажем справедливость выражений (8), в том числе множителя $(g_l - g_s)$, в недиагональных матричных элементах на примере расчета матрицы с M = 0 в представлении несвязанных моментов. Для этого сначала приведем переводную матрицу коэффициентов Клебша–Гордана из представления несвязанных моментов в *LSJM*-представление. Она имеет вид, представленный в табл. 4. Здесь в первой строке таблицы записаны волновые функции представления несвязанных моментов в такой последовательности: m_{l1}, m_{l2} , спиновые проекции обозначены знаками.

В представлении несвязанных моментов отличны от нуля только два матричных элемента: $\lambda_1 \lambda_1 = \frac{2}{9}(g_1 - g_s)\mu_0 H$; $\lambda_3 \lambda_3 = \frac{2}{9}(g_s - g_l)\mu_0 H$. Результаты перевода в *LSJM* представление по формуле $\sum_{i,j=1}^{4} \alpha_{ik} \alpha_{ki} \lambda_{ik}$ с помощью табл. 4 следующие:

$${}^{3}G_{5}{}^{3}G_{5} = \left[\frac{2}{9}(g_{l} - g_{s}) + \frac{2}{9}(g_{s} - g_{l})\right]\mu_{0}H = 0,$$

$${}^{3}G_{4}{}^{3}G_{4} = \left[\frac{1}{2}(g_{l} - g_{s}) + \frac{1}{2}(g_{s} - g_{l})\right]\mu_{0}H = 0,$$

$${}^{3}G_{3}{}^{3}G_{3} = \left[\frac{5}{18}(g_{l} - g_{s}) + \frac{5}{18}(g_{s} - g_{l})\right]\mu_{0}H = 0.$$
(9)

Матричный элемент ${}^{1}G_{4}{}^{1}G_{0}$ с очевидностью равен нулю.

$${}^{3}G_{5}{}^{3}G_{4} = \left[\frac{1}{3}(g_{l} - g_{s}) - \frac{1}{3}(g_{s} - g_{l})\right]\mu_{0}H$$

$$= \frac{2}{3}(g_{l} - g_{s})\mu_{0}H,$$

$${}^{3}G_{4}{}^{3}G_{4} = \left[\frac{\sqrt{5}}{6}(g_{l} - g_{s}) - \frac{\sqrt{5}}{6}(g_{s} - g_{l})\right]\mu_{0}H$$

$$= \frac{\sqrt{5}}{3}(g_{l} - g_{s})\mu_{0}H.$$
 (10)

Оптика и спектроскопия, 2018, том 125, вып. 6

Антипересекающиеся	H. Oe	ΔH_{\star} Oe	$\Delta E. \ \mathrm{cm}^{-1}$
полуровни	, 00	, ot	, em
подуровни	1.50		I
	18.58		Γ
$+3({}^{3}G_{3}) - +3({}^{3}G_{5})$	39.27	0.01	0.000169346
$+2({}^{3}G_{3}) - +2({}^{3}G_{5})$	56.77	0.03	0.000434529
$-3({}^{1}G_{4})3({}^{3}G_{3})$	32.84	0.04	0.000885725
$-2({}^{1}G_{4})2({}^{3}G_{3})$	28.37	0.06	0.001282701
$+4({}^{1}G_{4}) - +4({}^{3}G_{5})$	85.30	0.06	0.001971988
	1 <i>s</i> 6 <i>g</i>		
$+3(^{3}G_{3}) - +3(^{3}G_{5})$	22.72	0.01	0.000097831
$+2(^{3}G_{3})$ - $+2(^{3}G_{5})$	32.86	0.03	0.000251040
$-3({}^{1}G_{4})3({}^{3}G_{3})$	19.02	0.03	0.000513873
$-2(^{1}G_{4})2(^{3}G_{3})$	16.41	0.03	0.000743958
$+4(^{1}G_{4}) - +4(^{3}G_{5})$	49.38	0.04	0.001143119
	1s7g		
$+3(^{3}G_{3}) - +3(^{3}G_{5})$	14.310	0.007	0.000061500
$+2(^{3}G_{3}) - +2(^{3}G_{5})$	20.69	0.02	0.000157822
$-3({}^{1}G_{4})3({}^{3}G_{3})$	11.99	0.02	0.000324258
$-2(^{1}G_{4})2(^{3}G_{3})$	10.34	0.03	0.000469318
$+4({}^{1}G_{4}) - +4({}^{3}G_{5})$	31.10	0.03	0.000720880
	1s8g		
$+3(^{3}G_{3}) - +3(^{3}G_{5})$	9.586	0.007	0.000041132
$+2(^{3}G_{3})$ - $+2(^{3}G_{5})$	13.87	0.01	0.000105557
$-3(^{1}G_{4})3(^{3}G_{3})$	8.035	0.02	0.000217571
$-2(^{1}G_{4})2(^{3}G_{3})$	6.92	0.02	0.000314831
$+4({}^{1}G_{4}) - +4({}^{3}G_{5})$	20.84	0.03	0.000483495
	1 <i>s</i> 9 <i>g</i>		
$+3(^{3}G_{3}) - +3(^{3}G_{5})$	6.733	0.006	0.000028837
$+2({}^{3}G_{3}) - +2({}^{3}G_{5})$	9.74	0.01	0.000074007
$-3(^{1}G_{4})3(^{3}G_{3})$	5.64	0.01	0.000153006
$-2(^{1}G_{4})2(^{3}G_{3})$	4.86	0.02	0.000221356
$+4({}^{1}G_{4}) - +4({}^{3}G_{5})$	14.63	0.03	0.000339920
$+3({}^{1}G_{4}) - +3({}^{3}G_{5})$	6.575	0.01	0.000570803
	1s10g		
$+3(^{3}G_{3}) - +3(^{3}G_{5})$	4.908	0.005	0.000020999
$+2(^{3}G_{3}) - +2(^{3}G_{5})$	7.10	0.01	0.000053893
$-3(^{1}G_{4})3(^{3}G_{3})$	4.12	0.01	0.000111644
$-2({}^{1}G_{4})2({}^{3}G_{3})$	3.53	0.01	0.000161495
$+4({}^{1}G_{4}) - +4({}^{3}G_{5})$	10.67	0.03	0.000247976
$+3(^{1}G_{4}) - +3(^{3}G_{5})$	4.79	0.01	0.000416248

Таблица 5. Минимальные энергетические интервалы и соответствующие им значения магнитных полей в шейке антипересечений

Таблица 6. Поля пересечений (*H*, Oe) конфигураций 1*sng* атома Не

Конфигурация

Пересекающиеся

	подур							
	верхний	нижний	1 <i>s</i> 5 <i>g</i>	1 <i>s</i> 6g	1s7g	1 <i>s</i> 8 <i>g</i>	1 <i>s</i> 9 <i>g</i>	1s10g
	$^{1}G_{4}$	${}^{3}G_{3}$			Н,	Oe		
)	+1	+3	32.26	18.71	11.80	7.91	5.56	4.06
)	0	+2	26.24	15.22	9.60	6.44	4.53	3.30
i	-1	+1	22.03	12.77	8.06	5.40	3.80	2.77
	-1	0	51.37	29.83	18.84	12.65	8.90	6.50
;	-2	0	18.86	10.93	6.89	4.62	3.25	2.37
	-2	-1	35.70	20.72	13.07	8.77	6.17	4.50
	-3	-1	16.36	9.48	5.98	4.01	2.82	2.06
	-3	-2	26.41	15.31	9.66	6.48	4.55	3.32
)	-4	-2	14.35	8.32	5.24	3.52	2.47	1.80
	-4	-3	20.60	11.94	7.53	5.05	3.55	2.59
	$^{1}G_{4}$	${}^{3}G_{5}$			Н,	Oe		
<u> </u>	+3	+5	31.19	18.06	11.38	7.63	5.36	3.91
	+2	+4	33.63	19.48	12.27	8.23	5.78	4.21
)	+1	+3	36.66	21.23	13.38	8.97	6.30	4.60
2	0	+2	39.82	23.06	14.53	9.74	6.84	4.99
	${}^{3}G_{3}$	${}^{3}G_{5}$			Н,	Oe	<u></u>	
	+3	+5	14.39	8.33	5.24	3.51	2.47	1.80
	+3	+4	21.06	12.19	7.67	5.14	3.61	2.63
	+2	+4	16.28	9.42	5.93	3.97	2.79	2.04
2	+2	+3	25.38	14.69	9.25	6.20	4.35	3.17
,	+1	+3	18.70	10.82	6.81	4.56	3.21	2.34
	+1	+2	31.64	18.31	11.53	7.72	5.42	3.95
	0	+2	21.86	12.65	7.97	5.34	3.75	2.73
	0	+1	40.99	23.72	14.93	10.00	7.03	5.12
	-1	+1	26.12	15.12	9.52	6.38	4.48	3.26
	-2	0	31.97	18.50	11.65	7.80	5.48	4.00
,	-3	-1	39.89	23.09	14.54	9.74	6.84	4.99
	${}^{3}G_{5}$	${}^{3}G_{4}$	H, Oe					
)	+2	+4	36.54	21.13	13.30	8.90	6.25	4.56
	+1	+3	36.05	20.84	13.11	8.78	6.16	4.49
	0	+2	34.35	19.85	12.49	8.36	5.87	4.28
•	-1	+1	31.92	18.45	11.61	7.77	5.46	3.98
	-2	0	29.17	16.86	10.61	7.10	4.99	3.63
)	-3	-1	26.39	15.26	9.60	6.43	4.51	3.29
	-4	-2	23.78	13.74	8.65	5.79	4.06	2.96
, 	-4	-3	46.17	26.68	16.78	11.23	7.88	5.75
ſ	-5	-3	21.41	12.38	7.79	5.21	3.66	2.67
	-5	-4	33.89	19.59	12.33	8.25	5.79	4.22

гональных матричных элементах (8) доказано. Повидимому, авторы [9] положили $g_1 = 1$; $g_s = 2$ и не указали знак квадратного корня недиагональных матричных элементов. Вообще говоря, орбитальное g_1 и спиновое g_s гиромагнитные отношения лучше разделить, так как эти величины постоянно уточняются и в зависимости от этого можно получить несколько разные результаты.

Таким образом, наличие множителя $(g_l - g_s)$ в недиа-

Особенности зеемановской структуры (антипересечения и пересечения магнитных компонент)

Особенностями зеемановского расщепления являются антипересечения и пересечения магнитных подуровней. Для нахождения минимального энергетического расстояния между магнитными подуровнями с M = 0 в шейке антипересечения и соответствующего ей значения

				• •				
		$\Delta E(H)^{+1 \to 0}$	$\Delta E(H)^{-1 \to 0}$	$\Delta E(H)^{+1 \to 0}$	$\Delta E(H)^{-1 \to 0}$	$\Delta E(H)^{+1 \to 0}$	$\Delta E(H)^{-1 \to 0}$	
Уровни	Энергии			1.	1s5g			
		$H_1 =$	0.1 Oe	$H_2 =$	0.4 Oe	$H_3 = 1$ Oe		
${}^{3}G_{4}$	193921.614948739	0.000004842	0.000004841	0.000019369	0.000019 362	0.000048434	0.000048393	
${}^{3}G_{5}$	193921.617719262	0.000005604	0.000005605	0.000022417	0.000022 419	0.000056036	0.000056053	
${}^{3}G_{3}$	193921.620238142	0.000003499	0.000003499	0.000013995	0.000013 995	0.000034990	0.000034988	
${}^{1}G_{4}$	193921.621933101	0.000004730	0.000004730	0.000018918	0.000018 922	0.000047284	0.000047312	
				1.	56g			
		$H_1 =$	0.1 Oe	$H_2 =$	0.3 Oe	$H_3 =$	0.7 Oe	
${}^{3}G_{4}$	195262.723082377	0.000004842	0.000004841	0.000014527	0.000014 520	0.000033906	0.000033871	
${}^{3}G_{5}$	195262.724684231	0.000005604	0.000005605	0.000016812	0.000016 815	0.000039224	0.000039238	
${}^{3}G_{3}$	195262.726141773	0.000003499	0.000003499	0.000010497	0.000010 496	0.000024494	0.000024492	
$^{1}G_{4}$	195262.727124343	0.000004730	0.000004730	0.000014188	0.000014 192	0.000033098	0.000033121	
				15	s7g			
		$H_1 = 0$	0.1 Oe	$H_2 = 0.15$ Oe		$H_3 = 0.35$ Oe		
${}^{3}G_{4}$	196071.368738129	0.000004842	0.000004840	0.000007263	0.000007 260	0.000016951	0.000016937	
${}^{3}G_{5}$	196071.369746173	0.000005604	0.000005605	0.000008406	0.000008 407	0.000019613	0.000019618	
${}^{3}G_{3}$	196071.370663981	0.000003499	0.000003499	0.000005248	0.000005 248	0.000012247	0.000012246	
$^{1}G_{4}$	196071.371283543	0.000004730	0.000004731	0.000007094	0.000007 096	0.000016551	0.000016560	
				1.	58g			
		$H_1 = 0$).09 Oe	$H_2 =$	0.1 Oe	$H_3 = 0.32$ Oe		
${}^{3}G_{4}$	196596.209656481	0.000004357	0.000004356	0.000004842	0.000004 840	0.000015500	0.000015482	
${}^{3}G_{5}$	196596.210331441	0.000005044	0.000005044	0.000005604	0.000005 605	0.000017931	0.000017937	
${}^{3}G_{3}$	196596.210946275	0.000003149	0.000003149	0.000003499	0.000003 499	0.000011197	0.000011196	
$^{1}G_{4}$	196596.211361727	0.000004257	0.000004258	0.000004730	0.000004 731	0.000015131	0.000015142	
				1s9g				
		$H_1 = 0$	0.06 Oe	$H_2 = 0$	0.07 Oe	$H_{3} = 0$	0.26 Oe	
${}^{3}G_{4}$	196956.037863250	0.000002905	0.000002904	0.000003389	0.000003 388	0.000012595	0.000012578	
${}^{3}G_{5}$	196956.038337114	0.000003363	0.000003363	0.000003923	0.000003 923	0.000014568	0.000014574	
${}^{3}G_{3}$	196956.038768917	0.000002099	0.000002099	0.000002449	0.000002 449	0.000009098	0.000009097	
$^{1}G_{4}$	196956.039060906	0.000002838	0.000002839	0.000003311	0.000003 312	0.000012293	0.000012304	
				1s10g				
		$H_1 = 0$).04 Oe	$H_2 = 0$	$H_2 = 0.05$ Oe		0.14 Oe	
${}^{3}G_{4}$	197213.420160634	0.000001937	0.000001936	0.000002421	0.000002 420	0.000006780	0.000006774	
${}^{3}G_{5}$	197213.420505980	0.000002242	0.000002242	0.000002802	0.000002 802	0.000007845	0.000007847	
${}^{3}G_{3}$	197213.420820757	0.000001400	0.000001400	0.000001749	0.000001 749	0.000004899	0.000004898	
$^{1}G_{4}$	197213.421033729	0.000001892	0.000001892	0.000002365	0.000002 366	0.000006620	0.000006625	

Таблица 7. Доказательство линейности при трех значениях магнитного поля Н

магнитного поля в программе MathCad использовался ряд специальных функций, т.е. определялся минимум разности двух функций $E_i - E_k$, где *i* и *k* — антипересекающиеся компоненты. Дополнительно исследовалась окрестность вблизи поля антипересечения, т.е. тот интервал, в котором минимальный энергетический интервал ΔE одинаков со всеми приведенными в табл. 5 знаками. Эта величина составляет ошибку ΔH . Фрагменты некоторых антипересечений магнитных подуровней для

всех шести исследованных конфигураций представлены на рисунке и в табл. 5.

Пересечения зеемановских подуровней с $\Delta M = \pm 1, \pm 2$ определялись при условии $E_i(H) - -E_k(H) = 0$ с точностью 10^{-9} сm⁻¹, где *i* и *k* — пересекающиеся подуровни.

Поля пересечений зеемановских компонент с $\Delta M = \pm 1, \pm 2$ представлены в табл. 6 в области изменения магнитного поля $0 \sim 40$ Oe.

Фрагменты зависимостей энергий зеемановских подуровней с $\Delta M = 0$ в области антипересечений.

В табл. 5 и 6 значения магнитных полей расположены не по возрастанию, а для одинаковых во всех 6 конфигурациях пар пересекающихся или антипересекающихся зеемановских подуровней. Из табл. 6 видно, что пересечения начинаются при небольших значениях напряженности магнитного поля H у конфигурации 1s10g. По мере уменьшения главного квантового число n g-электрона эти значения возрастают, но вполне доступны для экспериментального определения. Указанные выше нулевые невязки по энергиям позволяют надеяться, что данные табл. 5 и 6 верные.

Гиромагнитные отношения уровней, рассчитанные по зеемановскому расщеплению

Гиромагнитные отношения уровней при $H \neq 0$ можно определять только в линейной области. Условие линейности такое: расстояние между зеемановскими

компонентами с положительными и отрицательными значениями M по отношению к M = 0 должны быть одинаковы. Мы провели такое исследование для трех значений магнитного поля H. Результаты представлены в табл. 7, из которой видно, что области линейности для разных конфигураций разные. Лучше всего линейность наблюдается для минимального поля в каждой конфигурации. С усилением магнитного поля согласие ухудшается в последних знаках после запятой.

Гиромагнитные отношения рассчитывались по известной формуле:

$$g_i = \sum_{i,k=1}^4 \alpha_{ik}^2 g^k,$$
 (11)

где i — номер строки, k — номер столбца, g^k — *LS*-связные гиромагнитные отношения, α_{ik} — коэффициенты промежуточной связи, полученные при численной диагонализации матрицы оператора энергии с учетом взаимодействия атома с магнитным полем. Она

Vровни	8								
э ровни		1 <i>s</i>	5g		1 <i>s</i> 6 <i>g</i>				
H, Oe	0	0.1	0.4	1.0	0	0.1	0.3	0.7	
${}^{3}G_{4}$	1.03698	1.03698	1.03698	1.03699	1.03695	1.03695	1.03695	1.03696	
${}^{3}G_{5}$	1.20046	1.20046	1.20046	1.20045	1.20046	1.20046	1.20046	1.20044	
${}^{3}G_{3}$	0.74942	0.74942	0.74943	0.74945	0.74942	0.74942	0.74943	0.74947	
$^{1}G_{4}$	1.01313	1.01313	1.01313	1.01312	1.01316	1.01316	1.01316	1.01314	
		1s	7 <i>g</i>			1s	8 <i>g</i>		
H, Oe	0	0.1	0.15	0.35	0	0.09	0.10	0.32	
${}^{3}G_{4}$	1.03692	1.03692	1.03692	1.03693	1.03690	1.03690	1.03690	1.03691	
${}^{3}G_{5}$	1.20046	1.20046	1.20046	1.20045	1.20046	1.20046	1.20046	1.20043	
${}^{3}G_{3}$	0.74942	0.74942	0.74943	0.74945	0.74942	0.74942	0.74943	0.74948	
${}^{1}G_{4}$	1.01319	1.01319	1.01319	1.01318	1.01321	1.01321	1.01321	1.01319	
		1s	9 <i>g</i>		1s 10g				
H, Oe	0	0.06	0.07	0.26	0	0.04	0.05	0.14	
${}^{3}G_{4}$	1.03688	1.03688	1.03688	1.03689	1.03686	1.03686	1.03686	1.03687	
${}^{3}G_{5}$	1.20046	1.20046	1.20046	1.20042	1.20046	1.20046	1.20046	1.20044	
${}^{3}G_{3}$	0.74942	0.74942	0.74943	0.7495	0.74942	0.74942	0.74943	0.74946	
$^{1}G_{4}$	1.01324	1.01324	1.01324	1.0132	1.01325	1.01325	1.01325	1.01323	
	g ^{LS}					g	LK		
${}^{3}G_{4}$		1.05	0116		1.027842				
${}^{3}G_{5}$	1.200464				1.200464				
${}^{3}G_{3}$		0.74	9420			0.74	9420		
$^{1}G_{4}$		1	.0		1.022274				

Таблица 8. Гиромагнитные отношения, рассчитанные по зеемановскому расщеплению, в сравнении с векторными аналогами

Таблица 9. Коэффициенты промежуточной связи для конфигурации 1s5g в магнитном поле H = 0.1 Ое

Уровень	${}^{3}G_{4}$	${}^{3}G_{5}$	3G_3	$^{1}G_{4}$
${}^{3}G_{4}$ ${}^{3}G_{5}$ ${}^{3}G_{3}$ ${}^{1}G_{4}$	$\begin{array}{r} 0.859045638037374 \\ -6.238222762223521\cdot 10^{-4} \\ 5.043816621034121\cdot 10^{-5} \\ 0.51189862284511 \end{array}$	$\begin{array}{r} 9.47492322738317\cdot 10^{-4} \\ 0.999999482161454 \\ -6.125711856311596\cdot 10^{-8} \\ -3.713961752675956\cdot 10^{-4} \end{array}$	$\begin{array}{r} 5.486128972742757\cdot 10^{-4} \\ -8.370732870807664\cdot 10^{-7} \\ 0.999999330136817 \\ -1.019190417202997\cdot 10^{-3} \end{array}$	$\begin{array}{c} -0.511897834583375\\ 8.040658501646243\cdot 10^{-4}\\ 1.156365818373531\cdot 10^{-3}\\ 0.859045181143026\end{array}$

имеет вид (см.
$$(1)$$
) и (8) для $M = +1$):

$${}^{3}G_{4} \qquad {}^{3}G_{5}$$

$${}^{3}G_{4} \qquad C_{1} + \frac{1}{20}(19g_{l} + g_{s})\mu_{0}H \qquad \frac{4\sqrt{6}}{15}(g_{l} - g_{s})\mu_{0}H$$

$${}^{3}G_{5} \qquad \frac{4\sqrt{6}}{15}(g_{l} - g_{s})\mu_{0}H \qquad C_{2} + \frac{1}{5}(4g_{l} + g_{s})\mu_{0}H$$

$${}^{3}G_{3} \qquad \frac{5\sqrt{3}}{12}(g_{l} - g_{s})\mu_{0}H \qquad C_{5}$$

$${}^{3}G_{4} \qquad \frac{5\sqrt{3}}{12}(g_{l} - g_{s})\mu_{0}H \qquad C_{5}$$

$${}^{3}G_{5} \qquad (12)$$

$${}^{3}G_{3} \qquad C_{3} + \frac{1}{4}(5g_{l} - g_{s})\mu_{0}H \qquad C_{4} + g_{l}\mu_{0}H$$

$$C_4 + g_l \mu$$

Гиромагнитные отношения рассчитаны по формуле (9) для всех трех исследованных значений напряженности магнитного поля Н и представлены в табл. 8. В нижней части табл. 8 приведены векторные значения гиромагнитных отношений в LS- и LK-типах связей. В этой таблице все величины округлены до пяти значащих цифр после запятой, хотя на самом деле они считались с точностью 10^{-9} . Из табл. 8 видно, что с точностью 10^{-5} *g*-факторы одинаковы для всех трех значений напряженности магнитного поля (ошибка составляет несколько единиц последнего знака). Неожиданным является то, что гиромагнитные отношения для 6 конфигураций 1sng одинаковы. В конфигурациях 1snf было не так [1]. Там с ростом главного квантового числа *n f*электрона гиромагнитные отношения уровней возрастали. Кроме того, гиромагнитные отношения уровней ${}^{3}G_{4}$

7	2	2
1	2	2

Уровень	3G_4	${}^{3}G_{5}$	${}^{3}G_{3}$	$^{1}G_{4}$
${}^{3}G_{4}$	-0.859053516250295	0	0	0.511885784348427
${}^{3}G_{5}$	0	1	0	0
${}^{3}G_{3}$	0	0	1	0
$^{1}G_{4}$	-0.511885784348427	0	0	-0.859053516250295

Таблица 10. Коэффициенты промежуточной связи для конфигурации 1s5g в магнитном поле H = 0 Oe

и ${}^{1}G_{4}$ совпали с таковыми при диагонализации матрицы оператора энергии 2-го ранга в *LSJM* представлении в отсутствие поля. Это понятно из анализа матрицы оператора энергии (12). В линейной области магнитные поля очень малы и умноженные на магнетон Бора эти элементы становятся практически нулями. В итоге мы получаем квазидиагональную матрицу типа (1). Сказанное подтверждается результатами численной диагонализации матрицы оператора энергии (12). В качестве иллюстрации приведем коэффициенты промежуточной связи для конфигурации 1*s*5*g* при гарантированном линейном магнитном поле H = 0.1 Ое. Соответствующие коэффициенты промежуточной связи приведены в табл. 9. Для сравнения приведем коэффициенты промежуточной связи приведены в табл. 9. Для сравнения приведем коэффициенты промежуточной связи приведены в табл. 9. Для сравнения приведем коэффициенты промежуточной связи приведены в табл. 9. Для сравнения приведем коэффициенты промежуточной связи приведены в табл. 9. Для сравнения приведем коэффициенты промежуточной связи приведены в табл. 9.

Видно, что на главной диагонали коэффициентов промежуточной связи расположены большие числа, что говорит о том, что матрица оператора энергии (12) записана правильно. Самые большие коэффициенты, близкие к единице, относятся к уровням ${}^{3}G_{5}$ и ${}^{3}G_{3}$ с единственным значением квантового числа Ј в рассматриваемых конфигурациях. Поэтому и гиромагнитные отношения этих уровней оказались равными LS-связным аналогам. Коэффициенты уровней ${}^{3}G_{4}$ и ${}^{1}G_{4}$ значительно меньше единицы, поэтому соответствующие гиромагнитные отношения отличаются от LS-связных аналогов (табл. 8). Большинство величин в таблице 9 практически нули, что подтверждает проведенный выше анализ матрицы оператора (12). Также из сравнения табл. 9 и 10 видно, что магнитное поле в линейной области незначительно влияет на коэффициенты промежуточной связи и гиромагнитные отношения.

Характер связи в исследованных конфигурациях 1sng таков: гиромагнитное отношение уровня ${}^{3}G_{4}$ находится где-то посередине между LS- и LK-типами связи (табл. 8), гиромагнитное отношение уровня ${}^{1}G_{4}$ ближе к LS-связи. Гиромагнитные отношения уровней с единственным значением J оказались точно LS связными. Таким образом, рассматриваемые системы в целом ближе к LS-связи. Поэтому классификация всех конфигураций гелия в приближении LS-связи оправдана [4].

В заключение сформулируем основные результаты, полученные в настоящей работе. Исследована тонкая структура и зеемановское расщепление высоковозбужденных конфигураций 1sng ($n = 5 \div 10$). Определены параметры тонкой структуры в отсутствие поля с нулевыми невязками по энергиям. Исследовано зеемановское

расщепление и определены его особенности (пересечения и антипересечения магнитных подуровней). В линейной области определены гиромагнитные отношения по зеемановскому расщеплению. Показано, что по коэффициентам промежуточной связи в отсутствие поля наблюдаются значительные отступления от LS-связи, а сравнение гиромагнитных отношений, определенных по зеемановскому расщеплению, показало близость 3-х уровней к LS-связи, и только один уровень ${}^{3}G_{4}$ занимает промежуточное положение между LS- и LK-типами связей. Сделан вывод, что в линейной области магнитное поле незначительно влияет на коэффициенты промежуточной связи, и как следствие — на гиромагнитные отношения.

Список литературы

- Анисимова Г.П., Горбенко А.П., Долматова О.А., Крылов И.Р., Машек И.Ч., Цыганкова Г.А. // Опт. и спектр. 2016. Т. 120. № 2. С. 192; Anisimova G.P., Gorbenko A.P., Dolmatova O.A., Krylov I.R., Mashek I.Ch., Tsygankova G.A. // Opt. Spectrosc. 2016. V. 120. N 2. P. 184.
- [2] Анисимова Г.П., Волкова Л.А., Жихарева Н.В., Капелькина Е.Л. // Опт. и спектр. 2001. Т. 90. № 6. С. 885; Anisimova G.P., Volkova L.A., Zhikhareva N.V., Kapel'kina E.L. // Opt. Spectrosc. 2001. V. 90. N 6. P. 795.
- [3] Анисимова Г.П., Волкова Л.А., Семенов Р.И. // Опт. и спектр. 2002. Т. 92. № 4. С. 543; Anisimova G.P., Volkova L.A., Semenov R.I. // Opt. Spectrosc. 2002. V. 92. N 4. P. 492.
- [4] NIST ASD Levels Output (2013).
- [5] Anisimova G.P., Mashek I.Ch., Dolmatova O.A., Gorbenko A.P., Semenov R.I., Tchoffo M.L., Tsygankova G.A. // Am. J. Mod. Phys. 2014. V. 3. N 4. P. 143.
- [6] Юцис А.П., Савукинас А.Ю. Математические основы теории атома. Вильнюс. 1973. 479 с.
- [7] Анисимова Г.П., Семенов Р.И., Тучкин В.И., Чаблин Р.В. // Опт. и спектр. 1994. Т. 76. № 4. С. 551; Anisimova G.P., Semenov R.I., Tuchkin V.I, Chablin R.V. // Opt. Spectrosc. 1994. V. 76. N 4. P. 489.
- [8] Собельман И.И. Введение в теорию атомных спектров. М.: Изд. физ.-мат. лит., 1963. 640 с.
- [9] Green J.B., Eichelberger J.F. // Phys. Rev. 1939. V. 56. N 1.
 P. 51.
- [10] Kaufman V., Sugar J. // J. Phys. Chem. Ref. Data. 1988. V. 17. N 4. P. 1679.