10,04

Структура и динамика решетки MeF_2 (Me = Ca, Sr, Ba, Pb) в кубической и орто-фазах: *ab initio* расчет

© В.А. Чернышев¹, В.С. Рюмшин¹, П.А. Агзамова²

¹ Уральский федеральный университет им. Б.Н. Ельцина, Екатеринбург, Россия ² Институт физики металлов им. М.Н. Михеева УрО РАН,

Екатеринбург, Россия

E-mail: vladimir.chernyshev@urfu.ru

(Поступила в Редакцию 3 июля 2018 г.)

Кристаллы MeF_2 (Me = Ca, Sr, Ba, Pb) претерпевают структурный фазовый переход из кубической в орторомбическую фазу в интервале 1–10 GPa. Кубическая фаза флюоритов хорошо исследована экспериментально, тогда как данных по орторомбической фазе мало. В научной печати имеются отрывочные данные по KP-спектрам, данные по ИК-спектрам отсутствуют. В данной работе проведено исследование кристаллической структуры и фононного спектра кристаллов MeF_2 (Me = Ca, Sr, Ba, Pb) как в кубической, так и в орторомбической фазах. Исследование проведено в рамках МО ЛКАО-подхода, с использованием гибридных DFT функционалов, учитывающих вклад нелокального обмена в формализме Хартри-Фока. Определены частоты и типы фундаментальных колебаний, активных в ИК и KP, а также частоты "молчащих" мод. Впервые проведен расчет упругих постоянных для орторомбической фазы. Расчеты проводились в программе CRYSTAL14, предназначенной для моделирования периодических структур в рамках МО ЛКАО-подхода.

Работа выполнена в рамках государственного задания ФАНО РФ (тема "Диагностика" ("Diagnostics"), номер госрегистрации АААА-А18-118020690196-3) при частичной поддержке Министерства образования и науки РФ, проект № 3.9534.2017/8.9. При проведении работ был использован суперкомпьютер "Уран" ИММ УрО РАН.

DOI: 10.21883/FTT.2019.01.46904.188

1. Введение

Интерес к флюоритам обусловлен их разнообразным применением, в частности, в качестве оптических материалов при активации их редкоземельными ионами [1-3]. Под влиянием давления флюориты переходят из кубической β - в орторомбическую α -фазу [4–14]. В работе [4] переход из кубической в орто-фазу в CaF₂, SrF₂, BaF₂ исследован методом РСА под давлением. В работе [5] фазовый переход в BaF2 также исследован методом РСА и методом КР-спектроскопии, в работе [6] методом дифракции нейтронов. Результаты исследований [4-6] одинаково предсказывают фазовый переход в ВаF2 около 3 GPa. В CaF2 РСА-исследование [6] показало фазовый переход при 9.5 GPa, изменение КР-спектра при 8.5 GPa [10]. В работе [9] фазовый переход в CaF₂ был определен по изменению суперионной проводимости при $\sim 11\,\text{GPa.}$ В SrF₂ РСА-исследование показало фазовый переход при 8-8.5 GPa [8], тогда как изменение спектра КР — при 5 GPa [10]. Переход в PbF₂ был исследован с помощью дифракции нейтронов [13].

Спектры ИК и КР кубической фазы флюоритов исследованы достаточно давно [15–19], также как и упругие свойства [20–23], кристаллическая структура [24], ширина запрещенной щели [25,26] и диэлектрические свойства [27,28]. При этом орторомбическая фаза исследована мало. В научной печати отсутствует информация об ИК-спектре орто-фазы флюоритов, информация о спектре КР отрывочна, упругие свойства орто-фазы не исследованы.

В связи с этим представляет интерес в рамках единого *ab initio* подхода исследовать фононный спектр и упругие свойства этих материалов как в кубической, так и в орторомбической фазе.

2. Методы расчета

Ab initio расчеты были проведены в рамках теории функционала плотности (DFT) с гибридными функционалами (B3LYP [29], PBE0 [30]) учитывающим как локальный, так и нелокальный (в формализме Хартри–Фока) обмен. С использованием гибридных функционалов удается хорошо описывать зонную структуру и упругие свойства решетки соединений с ионной и ионно-ковалентной связью [31–33]. Расчеты проводились в программе CRYSTAL14 [34], предназначенной для моделирования периодических структур в рамках МО ЛКАО-подхода.

Для Sr и Ва были использованы псевдопотенциалы Хэя–Уадта (HAYWSC) [35], что соответствует рассмотрению в качестве валентных 4s-, 4p-, 5s-орбиталей Sr (конфигурация $4s^24p^65s^2$), и 5p-, 6s-орбиталей Ва. Согласно нашим расчетам, использование псевдопотенциала Хэя–Уадта для CaF₂ дает приемлемые результаты, позволяет хорошо описать кристаллическую структуру

орто-фазы, однако использование полноэлектронного базисного набора [36] существенно улучшает воспроизведение ИК- и КР-мод в кубической фазе, а также высокочастотной диэлектрической проницаемости ε_{∞} . В данной работе для Са был использован полноэлектронный базис [36]. Для Рb использовался псевдопотенциал НАҮWLC [35] с присоединенным валентным базисным набором, соответствующим рассмотрению в качестве валентных 6s-, 6p-орбиталей. Для F использовался полноэлектронный базисный набор TZVP-типа [37]. Была проведена оптимизация внешних орбиталей базиса F исходя из условия минимума энергии ячейки MeF₂. В результате было получено значение показателя экспоненты для внешней поляризационной орбитали, равное 0.203 (в исходном базисе [37] было 0.563), которое и использовалось в расчетах.

Для CaF₂, SrF₂, BaF₂ был использован гибридный функционал B3LYP. Для PbF₂, в котором химическая связь более ковалентна, использовался функционал PBE0, имеющий долю X Φ -обмена 25%.

В орторомбической фазе задавалась ориентация осей *Рпта* (возможные ориентации подробно рассмотрены в работе Баженова и др. [38]). Фононные моды в Г-точке:

$$\Gamma = 6A_g(R) + 3B_{1g}(R) + 6B_{2g}(R) + 3B_{3g}(R) + 3A_u + 6B_{1u}(IR) + 3B_{2u}(IR) + 6B_{3u}(IR).$$

Из них три моды — B_{1u} , B_{2u} и B_{3u} — трансляционные.

При расчетах проводилась оптимизация кристаллической структуры. Затем, для полученной кристаллической структуры, соответствующей минимуму энергии, выполнялся расчет фононного спектра (в Г-точке) или расчет упругих постоянных, расчет диэлектрической проницаемости.

3. Обсуждение результатов

Ab initio расчеты хорошо воспроизводят постоянные решетки кубической и ортромбической фаз MeF_2 (табл. 1, 2). Расчеты позволили определить величину зазора "HOMO–LUMO". Согласно расчетам, ширина запрещенной щели в орто-фазе близка к ширине щели в кубической фазе (табл. 3). Расчеты предсказывают для орто-фазы прямую щель (Γ – Γ) в MeF_2 (Me = Ca, Sr, Ba). Для кубической фазы расчеты предсказывают прямую щель только в SrF₂.

Согласие рассчитанных частот фундаментальных колебаний кубической фазы MeF_2 (Me = Ca, Sr, Ba, Pb) (табл. 4) с экспериментом хорошее. Результаты расчета высокочастотной диэлектрической проницаемости ε_{∞} также хорошо согласуется с экспериментальными данными для всех четырех кристаллов (табл. 5). Расчет упругих постоянных кубической фазы согласуется с экспериментом удовлетворительно (табл. 6).

В работе были проведены расчеты кристаллической структуры *Me*F₂ в кубической фазе и в орторомбической

В.А. Чернышев, В.С. Рюмшин, П.А. Агзамова

Рис. 1. Зависимость модуля Юнга (GPa) от направления в кристалле. *а* — кубическая фаза, *b* — орторомбическая.

фазе (*Pnma*) при наложении гидростатического давления. Таким образом, была получена энтальпия, приходящаяся на одну формульную единицу в кубической и в орто-фазе при данном давлении. (Элементарная ячейка орто-фазы содержит 4 формульных единицы). Начиная с давления P_c энергетически более выгодной становилась орто-фаза MeF_2 (табл. 7). Для CaF₂ расчет дает результаты, наиболее близкие к результатам PCA [6,8]. Результаты расчета P_c для SrF₂ хорошо согласуются с величиной давления, при котором происходит изменение рамановского спектра [10]. Для BaF₂ как расчет, так и все экспериментальные методы дают одно значение P_c .

В орторомбической фазе элементарная ячейка содержит 12 атомов, четыре формульных единицы MeF_2 . Ячейка содержит 4 иона Me и 8 ионов фтора, двух симметрийно неэквивалентных типов — F_1 и F_2 . Все атомы находятся в позиции 4c.

Таблица 1. Постоянные решетки MeF₂, кубическая фаза, Å

CaF ₂ SrF ₂		BaF ₂		PbF ₂			
Расчет	Эксп. [24]	Расчет	Эксп. [24]	Расчет	Эксп. [24]	Расчет	Эксп. [38]
5.48	5.44	5.81	5.78	6.25	6.18	5.87	5.92

Таблица 2. Постоянные решетки MeF2, орторомбическая фаза (Pnma), Å

	CaF ₂		SrF ₂		Ba	ıF ₂	PbF ₂	
	Расчет $(P = 14 \mathrm{GPa})$	Эксп. [4] $(P \sim 14 \text{ GPa})$	Расчет $(P = 8 \text{ GPa})$	Эксп. [4] $(P \sim 8.5 \mathrm{GPa})$	Расчет $(P = 4.6 \text{ GPa})$	Эксп. [6] $(P = 4.6 \text{ GPa})$	Расчет $(P = 0 \text{ GPa})$	Эксп. [12] $(P = 0 \text{ GPa})$
Α	5.72	5.70	6.10	6.00	6.58	6.50	6.40	6.44
В	3.44	3.40	3.68	3.70	3.99	3.98	3.84	3.90
С	6.83	6.80	7.35	7.30	7.93	7.85	7.79	7.65

Таблица 3. Ширина запрещенной щели MeF2 eV

Фаза	CaF ₂		SrF_2		BaF ₂		PbF ₂	
<i>Pusu</i>	Расчет	Эксп. [25]	Расчет	Эксп. [25]	Расчет	Эксп. [25]	Расчет	Эксп. [26]
Куб.	11.17	12.10	11.13	11.25	10.43	10.57	6.32	6.63
Орт.	11.2 $(P = 14 \mathrm{GPa})$	—	10.9 $(P = 8 \text{ GPa})$	—	9.72 $(P = 3.5 \text{GPa})$	—	6.22 $(P = 3.5 \text{GPa})$	—

Таблица 4. Частоты фундаментальных колебаний *Me*F₂ (кубическая фаза), ст⁻¹

	CaF ₂		SrF ₂		BaF_2		CaF ₂	
	Расчет	Эксп. [15,16]	Расчет	Эксп. [15,18]	Расчет	Эксп [15,16]	Расчет	Эксп. [19]
F_{1u}	268	268	232	228	194	192	108	103
F_{2g}	325	325	281	285	243	246	255	257

Таблица 5. Диэлектрическая проницаемость, ε_{∞}

	CaF ₂			SrF ₂		BaF ₂		PbF ₂	
	Расчет	Эксп. [27]	Расчет	Эксп. [27]	Расчет	Эксп. [27]	Расчет	Эксп. [28]	
ε_∞	2.00	2.05	1.96	2.08	2.03	2.18	2.96	3.08	

Таблица 6. Упругие постоянные, GPa. Кубическая фаза MeF₂.

	CaF ₂		SrF ₂		BaF ₂		PbF ₂	
_	Расчет	Эксп. [22]	Расчет	Эксп. [20]	Расчет	Эксп. [21]	Расчет	Эксп. [23]
C_{11}	172	171	128	129	95	98	117	109
C_{12}	52	47	57	48	49	45	54	55
C_{44}	35	36	34	33	25	25	21	24

Кристалл	Расчет $(T = 0 \text{ K})$	Эксперимент
CaF ₂	8.4	
SrF ₂	5.8	$5 \pm 0.2 \ (T = 300 \mathrm{K}) \ [10] \ 8 - 8.5 \ [8]$
BaF ₂	3.1	$3 (T = 300 \mathrm{K}) [6]$
PbF ₂	0.4	0.6 $(T = 295 \text{ K})$ [13]

Таблица 7. Давление *P*_c фазового перехода из кубической в орто-фазу в *Me*F₂, GPa

Например, для PbF₂ их координаты (в долях постоянных решетки) следующие: F₁ (0.85854, 0.25000, -0.06125), F₂ (-0.03162, 0.25000, 0.34484), Pb (0.75538, 0.25000, 0.60412). (Приведены результаты расчета структуры PbF₂ при давлении 3.5 GPa).

Для орторомбической фазы MeF_2 , при давлении выше P_c , был проведен расчет упругих постоянных (табл. 8) и частот фундаментальных колебаний (табл. 9–13). Согласно расчетам, в кубической фазе, упругие постоянные MeF_2 уменьшаются в ряду Ca–Sr–Ba (за исключением C_{12}). Упругие постоянные PbF₂ по своей величине находятся между SrF₂ и BaF₂. В орторомбической фазе, согласно расчетам, уменьшение упругих постоянных происходит в ряду Ca–Sr–Ba–Pb (за исключением C_{66} , которая увеличивается). Анизотропию упругих свойств орторомбической фазы иллюстрирует зависимость модуля Юнга от направления в кристалле (рис. 1). Для построения 3D-зависимости использовалась программа ELATE [39,40].

Для орто-фазы был рассчитан фононный спектр в Г-точке, определены интенсивности ИК- и КР-мод. Из анализа векторов смещений, полученных из ab initio расчета, охарактеризовано участие ионов в каждой колебательной моде (табл. 9–13). При колебаниях B_{2u}, B_{1g}, B_{3g} и A_{μ} ("молчащая" мода) ионы смещаются вдоль постоянных решетки. При этом их смещения направлены противоположно. Например, в высокочастотной *В*_{2и}-моде в противоположных направлениях смещаются F1 и F2, в низкочастотной B_{2u} — противоположны направления смещений Me и ионов F. Такие смещения в табл. 9-13 условно обозначены "трансл.". В высокочастотной Ag-моде движение фтора F2 имеет такой же характер. Согласно расчетам, частоты ИК- и КР-мод в орторомбической фазе MeF₂ уменьшаются в ряду Ca-Ba-Pb, так же, как и в кубической фазе.

Интенсивность ИК-мод в орто-фазе уменьшается от Са к Ва (табл. 9–11). В ИК-спектре PbF_2 (табл. 13) содержатся более интенсивные моды, чем в MeF_2 (Me = Ca, Sr, Ba). Согласно расчетам, большой интенсивностью в ИК-спектре характеризуется низкочастот-

ная B_{2u} -мода, в которой проявляется сильное участие F2 (частоты 257–104 сm⁻¹ в ряду Ca–Ba–Pb). Также большой интенсивностью характеризуется B_{3u} -мода у MeF_2 (Me =Ca, Sr, Ba) (частоты 280, 240, 208 сm⁻¹), в которой также участвует фтор. Во всех интенсивных ИК-модах проявляется участие фтора, чаще всего силь-

Сравнение результатов расчета с имеющимися научной печати результатами КР-экспериментов дает следующее.

ное участие F2.

В работе [14] был измерен КР-спектр поликристаллов PbF₂ и BaF₂ в орто-фазе. Интерпретация спектра (сопоставление пиков с типами колебаний) BaF₂ и PbF₂ была сделана из сравнения со спектром изоструктурного соединения BaBr₂. При интерпретации спектра PbF₂ также было проведено сравнение с PbCl₂ и PbBr₂. Ограниченные возможности такого подхода, низкая интенсивность некоторых пиков и близкие частоты не позволили сделать однозначное сопоставление. Например, низколежащий пик в спектре PbF₂ (58 cm⁻¹) был соотнесен с колебаниями нескольких типов — A_g , B_{1g} , B_{3g} . Пик около 68 cm⁻¹ в спектре BaF₂ был соотнесен с колебаниями B_{1g} и B_{3g} типов и т.д. (В работе [14] использовалась *Pbnm* ориентация системы координат, в данной работе — *Pnma*.)

В нашей работе из *ab initio* расчета были получены векторы смещений, что позволило определить типы мод и степень участия иона в том или ином колебании. В работе [14] при сравнении со спектром PbCl₂ упоминается, что в PbCl₂ в первых шести по частоте модах участвует тяжелый катион — Pb. Согласно нашим расчетам, в PbF₂ участие катиона Pb также существенно проявляется в первых шести по частоте модах 54–132 сm⁻¹, (рис. 2, табл. 13). Из них максимальной интенсивностью, согласно расчетам, обладает третья по частоте мода, что согласуется с результатами эксперимента (рис. 2). Это мода с симметрией A_g . В остальных КР-модах, с более высокими частотами, в основном участвуют легкие анионы F, участие катиона в них мало. Согласно

Рис. 2. КР-спектр PbF₂ (Эксп. T = 77 К, P = 3.5 GPa [14]). Рассчитанные частоты мод обозначены штрихами.

	CaF ₂	SrF ₂	BaF ₂	PbF ₂
	Расчет (14 GPa)	Расчет (8 GPa)	Расчет (4.6 GPa)	Расчет (3.5 GPa)
C_{11}	211	150	106	94
C_{12}	92	76	56	45
C_{13}	96	82	64	35
C_{22}	212	170	123	108
C_{23}	109	91	70	39
C_{33}	258	199	144	95
C_{44}	41	26	14	8
C_{55}	68	50	34	23
C_{66}	75	46	26	40

Таблица 8. Упругие постоянные *Me*F₂, GPa. Орторомбическая фаза (*Pnma*)

Таблица 9. Частоты фундаментальных колебаний CaF₂ (орто-фаза, *Pnma*, 8.7 GPa), cm⁻¹. Интенсивность ИК-мод в km/mole, КР-мод в отн. ед. (Интенсивность КР-мод рассчитана для длины волны возбуждающего излучения 514 nm и T = 300 K)

Тип	Частота		Интенсивность		Ионы-участники			
	•	•	ИК-моды					
B _{1u}	149 270 294 390 428		113 218 329 1.37 447	F1, F2, Ca F1, F2, Ca F1, F2, Ca F1, F2, Ca ^W F1, F2, Ca				
B_{2u}	257 369		729 348	F1 ^w , F2 ^s , Ca ("трансл.") F1 ^s , F2, Ca ("трансл.")				
B _{3u}	172 280 326 355 461		184 763 13.02 78 19.41	F1, F2 ^S , Ca F1, F2, Ca F1, F2, Ca ^W F1, F2 ^W , Ca F1, F2, Ca				
КР-моды								
		I _{tot}	$I_{\rm par}$	I _{perp}				
A_g	162 225 246 273 384.5 420	473 280 608 871 615 915	358 162 414 499 360 537	115 118 194 372 255 378	F1, F2, Ca F1, F2, Ca F1, F2 ^S , Ca F1, F2, Ca F1, F2, Ca ^W F1, F2 ^W , Ca			
B_{1g}	180 242 409	224 633 41	128 362 24	96 271 18	F1, F2, Ca ("трансл.") F1 ^W , F2 ^S , Ca ^W ("трансл.") F1, F2, Ca ("трансл.")			
B _{2g}	249 294 325 354 385 444	362 561 7.81 156 181 230	207 321 4.46 89 103 131	155 240 3.35 67 78 99	F1, F2 ^s , Ca ^W F1, F2, Ca F1 ^W , F2, Ca F1, F2, Ca ^W F1, F2, Ca F1, F2, Ca			
<i>B</i> _{3g}	154 270 399	149 114 1000	85 65 571	64 49 429	F1, F2, Ca ^S ("трансл.") F1 ^W , F2 ^S , Ca ^W ("трансл.") F1 ^S , F2 ^W , Ca ^W ("трансл.")			
			"Молчащая" мода					
A_u	103 246 356				F1, F2, Ca F1 ^W , F2 ^S , Ca ^W ("трансл.") F1, F2 ^W , Ca ("трансл.")			

Тип	Частота		Интенсивность		Ионы-участники
			ИК-моды		
B _{1u}	126 208 252 347 370		49 308 184 17 342	F1, F2, Sr F1 ^S , F2, Sr F1, F2, Sr F1, F2, Sr ^W F1 ^S , F2, Sr	
B_{2u}	214 321		598 257		F1 ^w , F2 ^s , Sr ("трансл.") F1 ^s , F2, Sr ("трансл.")
B _{3u}	149 240 246 293 408		126 589 16 88 11	F1, F2 ^s , Sr F1, F2, Sr F1, F2, Sr F1 ^s , F2, Sr F1, F2, Sr ^W	
			КР-моды		
		I _{tot}	$I_{\rm par}$	Iperp	
A_g	111 155 204 (217) 237 (237) 325 (302) 358 (350)	110 88 570 715 793 922	71 53 394 414 454 537	39 35 176 301 339 385	F1, F2, Sr F1, F2, Sr F1, F2 ^S , Sr ^W F1, F2 ^S , Sr F1, F2, Sr ^W F1 ^S , F2 ^W , Sr
B_{1g}	120 210 340.7 (360)	57 594 79	33 339 45	24 255 34	F1, F2, Sr (,,трансл.") F1, F2 ^s , Sr ^w (,,трансл.") F1 ^s , F2, Sr ^w (,,трансл.")
B_{2g}	202 227 (217) 234 (237) 295 314 389	48 480 324 516 0.00 191	27 274 185 295 0.00 109	21 206 139 221 0.00 82	F1, F2, Sr F1 ^w , F2, Sr F1, F2 ^s , Sr F1, F2 ^s , Sr F1 ^s , F2, Sr ^w F1, F2, Sr ^w
B _{3g}	102 226 (237) 341 (323)	169 189 1000	97 108 571	72 81 429	F1, F2, Sr ("трансл.") F1 ^W , F2 ^S , Sr ^W ("трансл.") F1 ^S , F2 ^W , Sr ^W ("трансл.")
			"Молчащая" мода		
A_u	67 212 306		- - -		F1, F2, Sr ("трансл.") F1 ^w , F2 ^s , Sr ^w ("трансл.") F1 ^s , F2 ^w , Sr ("трансл.")

Таблица 10. Частоты фундаментальных колебаний SrF₂ (орто-фаза, *Pnma*, 6 GPa), cm⁻¹. Интенсивность ИК-мод в km/mole, КР-мод в отн. ед. Интенсивность КР-мод рассчитана для длины волны возбуждающего излучения 514 nm и T = 300 K. В столбце "Частота" в скобках приведены частоты мод, которые были определены на эксперименте [11]

расчетам, участие Pb преимущественно проявляется в модах ИК- и КР- с частотами до $130 \,\mathrm{cm^{-1}}$. Сравнение КР-спектра BaF₂, измеренного в работе [14], с результатами расчета (табл. 12), выполненного с учетом такого же давления, как и эксперимент, приведено на рис. 3. Можно отметить достаточно хорошее согласие рассчитанных частот с положениями пиков. Наиболее интенсивной, согласно расчетам, является B_{3g} -мода с

частотой $279 \,\mathrm{cm}^{-1}$, что хорошо согласуется с интенсивным пиком на спектре.

Расчеты КР-спектров PbF_2 и BaF_2 , проведенные для сравнения с результатами работы [14], то есть с учетом такого же давления при расчете частот, с учетом такой же длины волны возбуждающего излучения и температуры при расчете интенсивности КР-мод, предсказывают наличие мод малой интенсивности в низкочастотной об-

Тип	Частота		Интенсивность		Ионы-участники
			ИК-моды		
B _{1u}	98 177 213 305 322		23 383 148 131 254		F1, F2, Ba F1, F2 ^S , Ba F1, F2, Ba F1, F2, Ba ^W F1, F2, Ba ^W
B 2 <i>u</i>	181 277		606 267		F1 ^w , F2 ^s , Ba ^w ("трансл.") F1 ^s , F2, Ba ^w ("трансл.")
B _{3u}	123 194 208 242 364	96 268 364 97 10			F1, F2 ^S , Ba F1 ^W , F2 ^S , Ba F1, F2, Ba F1 ^S , F2, Ba ^W F1 ^S , F2, Ba ^W
		I	КР-моды		1
		I _{tot}	I _{par}	Iperp	
A_g	80 116 176 204 269 303	54 66 556 684 866 932	39 42 361 403 495 541	15 24 196 281 371 391	F1, F2, Ba F1, F2, Ba F1, F2 ^S , Ba ^W F1, F2 ^S , Ba ^W F1, F2, Ba ^W F1 ^S , F2 ^W , Ba ^W ("трансл.")
B_{1g}	86 181 282	35 525 125	20 300 71	15 225 53	F1, F2, Ba ("трансл.") F1, F2 ^s , Ba ^W ("трансл.") F1 ^s , F2, Ba ^W
B _{2g}	152 172 209 246 261 346	35 149 517 667 31 129	20 85 295 381 17 74	15 64 222 286 13 55	F1, F2 ^W , Ba F1 ^W , F2, Ba F1, F2 ^S , Ba ^W F1, F2, Ba ^W F1, F2, Ba ^W F1, F2, Ba ^W
B _{3g}	73 195 290	149 257 1000	85 147 571	64 110 429	F1, F2, Ba ("трансл.") F1 ^w , F2 ^s , Ba ^w ("трансл.") F1 ^s , F2 ^w , Ba ^w ("трансл.")
			Молчащая" мода		
A_u	46 181 262				F1, F2, Ba ("трансл.") F1 ^W , F2 ^S , Ba ("трансл.") F1 ^S , F2 ^W , Ba ^W ("трансл.")

Таблица 11. Частоты фундаментальных колебаний BaF_2 (орто-фаза, *Pnma*, 4.6 GPa), cm⁻¹. Интенсивность ИК-мод в km/mole, КР мод в отн. ед. (Интенсивность КР мод рассчитана для длины волны возбуждающего излучения 514 nm и T = 300 K)

ласти, связанной с колебаниями катионов (табл. 12–13). При этом на эксперименте (рис. 2, 3) в этой области присутствуют интенсивные пики. В работе [14] отмечается, что при измерении в области частот ниже $85 \, {\rm cm}^{-1}$ использовались пары йода, с чем можно связать увеличение интенсивности этих мод на эксперименте.

В более поздней работе [10] был измерен КР-спектр CaF_2 и BaF_2 в орто-фазе (рис. 4, 5). Ориентация кристаллов не проводилась, соответственно, КР-спектры в

какой-либо поляризации не снимались. Для определения типов колебаний в этой работе также было сделано сравнение со спектром $BaBr_2$. Авторы [10] отмечают присутствие орто-фазы в образце BaF_2 даже при отсутствии давления. У CaF_2 спектр был снят в области 200–450, у $BaF_2 - 150-320 \text{ cm}^{-1}$ (спектр в более низкочастотной области не измерялся). Для КР-мод в CaF_2 и BaF_2 расчет предсказывает интервалы 154–444 и 73–346 cm⁻¹ соответственно. В работе [10] отмечалось,

Тип	Частота		Интенсивность	Ионы-участники	
		I _{tot}	I _{par}	Iperp	
A_g	78	48	35	13	F1, F2, Ba
	115	37	22	15	F1, F2, Ba
	165	464	298	166	F1, F2 ^s , Ba ^w
	199	649	383	266	F1, $F2^{S}$, Ba^{W}
	262	835	477	358	F1, F2, Ba^W
	289	987	573	414	F1 ^s , F2 ^w , Ba ^w ("трансл.")
B_{1g}	85	32	18	14	F1, F2, Ba ("трансл.")
	170	465	266	199	F1, F2 ^S , Ba ^W ("трансл.")
	271	134	77	57	F1 ^s , F2, Ba ^W
B _{2g}	148	22	13	9	F1, F2 ^w , Ba
	168	99	57	42	F1 ^W , F2, Ba
	198	483	276	207	F1, F2 ^S , Ba ^W
	241	613	350	263	F1, F2, Ba ^W
	255	67	38	29	F1, F2, Ba ^W
	355	137	78	59	F1, F2, Ba ^W
B_{3g}	69	78	44	33	F1, F2, Ba ("трансл.")
	184	242	138	104	F1 ^W , F2 ^S , Ba ^W ("трансл.")
	279	1000	571	429	F1 ^s , F2 ^w , Ba ^w ("трансл.")

Таблица 12. КР-моды ВаF₂, ст⁻¹. Расчет при 2.6 GPa. Интенсивность в отн. ед. (Интенсивность КР-мод рассчитана для длины волны возбуждающего излучения 514 nm и T = 77 K)

Рис. 3. КР-спектр BaF_2 (Эксп. T = 77 K, P = 2.6 GPa [14]). Рассчитанные частоты мод обозначены штрихами.

что в спектре CaF₂ можно выделить шесть KP-групп, в спектре BaF₂ — семь (рис. 4, 5). Согласно расчетам, семь KP-мод BaF₂ обладают большой интенсивностью. Их частоты хорошо согласуются с пиками, соответствующими наблюдаемым группам. Максимальной интенсивностью обладает B_{3g} -мода с частотой 290 cm⁻¹, что согласуется с максимальным по величине пиком в области 285 cm⁻¹ (рис. 5). Другие интенсивные моды — 176, 204, 269, 303 (A_g), 181 (B_{1g}), 246 (B_{2g}) cm⁻¹ также соответствуют наблюдаемым пикам. Вблизи ин-

Рис. 4. КР-спектр CaF₂ (Эксп. T = 300 K, P = 8.7 GPa [10]). Рассчитанные частоты мод обозначены штрихами.

Рис. 5. КР-спектр BaF_2 (Эксп. T = 300 K, P = 4.3 GPa [10]). Рассчитанные частоты мод обозначены штрихами.

Тип	Частота		Интенсивность	Ионы-участники						
ИК-моды										
B _{1u}	58 124 160 242 330		39 126 871 104 72	F1, F2, Pb F1 ^s , F2 ^s , Pb F1, F2 ^s , Pb ^W F1, F2, Pb ^W F1, F2, Pb ^W						
B_{2u}	104 258		1201 108	F1, F2 ^s , Pb ^W ("трансл.") F1, F2, Pb ^W ("трансл.")						
B _{3u}	65 117 197 215 375		574 558 75 59 1.08	F1, F2 ^S , Pb F1, F2, Pb F1, F2, Pb ^W F1, F2, Pb ^W F1, F2, Pb ^W						
КР-моды										
	-	$I_{\rm tot}$	I par	I _{perp}						
A_{g}	63 98 144 185 247 265	426 9 31 1000 72 138	406 5 21 950 47 93	20 4 10 50 25 45	F1, F2, Pb F1, F2, Pb F1, F2 ^S , Pb ^W F1, F2 ^S , Pb ^W F1 ^S , F2, Pb ^W F1, F2, Pb ^W					
B_{1g}	54 173 266	19 28 23	11 16 13	8 12 10	F1 ^w , F2, Pb ("трансл.") F1, F2 ^s , Pb ^w ("трансл.") F1 ^s , F2, Pb ^w ("трансл.")					
B _{2g}	120 132 181 226 261 319	7 104 7 91 0.86 0.07	4 59 4 52 0.49 0.04	3 45 3 39 0.37 0.03	F1 ^W , F2 ^W , Pb F1, F2, Pb F1, F2 ^S , Pb ^W F1, F2, Pb ^W F1, F2, Pb ^W F1, F2, Pb ^W					
B _{3g}	49 204 281	0.02 71 15	0.01 41 9	0.01 30 6	F1, F2 ^w , Pb ("трансл.") F1, F2 ^s , Pb ^w ("трансл.") F1 ^s , F2 ^w , Pb ^w ("трансл.")					
"Молчащая" мода										
A_u	26 160 226			F1, F2, Pb ^S ("трансл.") F1, F2 ^S , Pb ^W ("трансл.") F1 ^S , F2, Pb ^W ("трансл.")						

Таблица 13. Частоты фундаментальных колебаний PbF₂ (орторомбическая фаза, ориентация *Pnma*, 3.5 GPa), см⁻¹. Интенсивности ИК-мод в km/mole, КР-мод в отн. ед. (Интенсивность КР-мод рассчитана для длины волны возбуждающего излучения 514 nm и T = 77 K)

Примечание. В таблицах 9–13 в последнем столбце S — сильное, W — слабое смещение иона в колебательной моде.

тенсивного пика около $120 \,\mathrm{cm}^{-1}$ расчет предсказывает A_g -моду, однако ее интенсивность мала и в ней в существенной степени участвует катион — Ва. Участие катиона (Ва) проявляется в первых шести по частоте модах (73–176 cm⁻¹).

В CaF₂ согласно расчетам, наиболее интенсивной является B_{3g} -мода с частотой 399 cm⁻¹, что хорошо

согласуется с КР-пиком (рис. 4). Вблизи интенсивного пика около 220 сm⁻¹ расчет предсказывает A_g -моду, в которой участвует Са. Интенсивность этой моды, согласно расчетам, в несколько раз меньше других пиков. Участие катионов (Са) в существенной степени проявляется в четырех низкочастотных модах, в диапазоне до 225 сm⁻¹.

Расчеты позволили описать низкочастотные моды, в которых участвует катион, измерение соответствующего диапазона КР-спектра в CaF₂ и BaF₂ было затруднительно, но о наличии таких мод упоминалось [10].

КР-спектры SrF₂ при гидростатическом сжатии (до 7 GPa) были измерены в работе [11]. Частоты некоторых КР-колебаний и их зависимость от давления были определены в данной работе. Была определена зависимость шести частот от давления. Каждая из частот была соотнесена с колебаниями нескольких типов. Например, частота 217 ст⁻¹ (значение при 6 GPa) была соотнесена как с A_g , так и с B_{2g} колебаниями и т.д. (В работе [11] использовалась Рbnm ориентация осей, у нас — Рпта.) Соотнесение было сделано из сравнения с ранее измеренными спектрами PbF₂, ВаF₂ и ВаBr₂. Полученные на эксперименте значения частот достаточно хорошо согласуются с результатами расчета. В табл. 10 в столбце "Частота" в скобках приведены экспериментальные значения частот из работы [11]. Одна и та же частота сопоставлена с колебаниями разных типов в соответствии с работой [11]. За исключением того, что в [11] частота 302 cm⁻¹ была сопоставлена также с колебанием B_{1g} , а частота $350 \,\mathrm{cm^{-1}}$ — с колебанием B_{2g} -типа. Расчет не предсказывает B_{1g}- и B_{2g}-колебаний с частотами, близкими к этим. Расчет предсказывает наиболее интенсивную B_{1g} -моду с частотой $210 \,\mathrm{cm}^{-1}$, а наиболее интенсивную B_{2g} — с частотой 295 ст⁻¹. С ними можно соотнести экспериментальные значения 217 и 302 см⁻¹, которые в работе [11] были отнесены к колебаниям других типов.

Но во всех остальных случаях определение типов колебаний, сделанное в работе [11], подтверждается *ab initio* расчетами. Например, все наиболее интенсивные, согласно расчетам, *A_g*-моды согласуются с идентификацией этой работы. Таким образом, расчет достаточно хорошо согласуется с имеющимися КР-данными [11].

Из расчетов следует, что катион (Sr) участвует в первых шести по частоте КР-модах, с частотами $106-232 \,\mathrm{cm}^{-1}$. В ИК-спектре он участвует в модах с частотами до 250 cm⁻¹.

Согласно расчетам, в CaF₂, SrF₂, BaF₂ наиболее интенсивной КР-модой является высокочастотная B_{3g} -мода (290, 350, 399 cm⁻¹), близка к ней по интенсивности высокочастотная A_g -мода (420, 369, 303 cm⁻¹). У PbF₂ высокочастотная B_{3g} -мода напротив, имеет малую интенсивность, наибольшую интенсивность имеет мода A_g (185 cm⁻¹).

Расчеты согласуются с имеющимися экспериментальными КР-данными, и дополняют низкочастотную область для CaF₂ и BaF₂. Именно низкочастотные моды, в которых участвует Me, представляют интерес, поскольку РЗ-ион замещает ион Me. Эти моды в существенной степени определяют динамическую составляющую КП на примесном ионе и электрон-фононное взаимодействие, то есть оптический спектр активированного кристалла [41].

4. Заключение

В рамках теории функционала плотности, с использованием гибридного функционала B3LYP, учитывающего вклад нелокального ХФ-обмена, и МО ЛКАО-подхода удается описать структуру и динамику решетки флюоритов MeF_2 как в кубической, так и в орто-фазе. Из анализа векторов смещений, полученных из *ab initio* расчета, удалось охарактеризовать степень участия иона в той или иной моде. Результаты могут быть использованы для интерпретации ИК- и КР-спектров изоструктурных кристаллов.

Список литературы

- C.W.E. van Eijk. In: Tenth Feofilov Symposium on Spectroscopy of Crystals Activated by Rare-Earth Transitional-Metal Ions / Ed. A.I. Ryskin, V.F. Masterov. Proc. SPIE 2706 (1996). C. 158.
- [2] K. Kawano, R. Nakata. Proc. of the 1st Asia-Pacific EPR/ESR Symp. Hong Kong, (1997). C. 423.
- [3] E.V. Vilejshikova, P.A. Loiko, G.E. Rachkovskay, G.B. Zakharevich, K.V. Yumashev. J. Appl. Spectroscopy 83, 723 (2016).
- [4] S.M. Dorfman, F. Jiang, Z. Mao, A. Kubo, Y. Meng, V.B. Prakapenka, T.S. Duffy. Phys. Rev. B 81, 174121 (2010).
- [5] J.S. Smith, S. Desgreniers, J.S. Tse, J. Sun, D.D. Klug, Y. Ohishi. Phys. Rev. B 79, 134104 (2009).
- [6] J.M. Leger, J. Haines, A. Atouf, O. Schulte. Phys. Rev. B 52, 18, 13247 (1995).
- [7] L. Gerward, J. Staun Olsen, S. Steenstrup, M. Malinowski, S. Asbrink, A. Waskowska. J. Appl. Crystallogr. 25, 578 (1992).
- [8] D.P. Dandekar, J.C. Jamieson Trans. Am. Crystallogr. Ass. 5, 19 (1969).
- [9] C. Cazorla, D. Errandonea. Phys. Rev. Lett. **113**, 235902 (2014).
- [10] G.A. Kourouklis, E. Anastassakis. Phys. Status Solidi B 152, 1, 89 (1989).
- [11] G.A. Kourouklis, E. Anastassakis. Phys. Rev. B 34, 1233 (1986).
- [12] J. Haines, J.M. Leger, O. Schhulite. Phys. Rev. B 57, 13, 7551 (1998).
- [13] S. Hull, D.A. Keen. Phys. Rev. B 58, 22, 14837 (1998).
- [14] J.R. Kessler, E. Monberg, M. Nicol. J. Chem. Phys. 60, 12, 5057 (1974).
- [15] P. Denham, G.R. Field, P.L.R. Morse, G.R. Wilkinson, W.C. Price. Proc. Roy. Soc. Lond. 317, 55 (1970).
- [16] R.P. Lownders. J. Phys. C 4, 3083 (1971).
- [17] N. Krishnamurthy, V. Soots. Canad. J. Phys. 48, 1104 (1970).
- [18] A.D. Papadopoulos, Y.S. Raptis, E. Anastassakis. Solid State Commun. 58, 645 (1986).
- [19] M.H. Dickens, M.T. Hutchings. J. Physics C 11, 461 (1978).
- [20] D. Gerlich. Phys. Rev. A 136, 1366 (1964).
- [21] D. Gerlich. Phys. Rev. A 135, 1331 (1964).
- [22] P.S. Ho, A.L. Ruoff. Phys. Rev. 161, 864 (1967).
- [23] M.H. Dickens, W. Hayes, M.T. Hutchings, W.G. Kleppmann. J. Phys. C 12, 17 (1979).
- [24] J.D. Axe. Phys. Rev. 139, 1215 (1965).
- [25] G.W. Rubloff. Phys. Rev. B 5, 662 (1972).

- [26] M. Fujita, M. Itoh, Y. Bokumoto, H. Nakagawa, D.L. Alov, M. Kitaura. Phys. Rev. B 61, 15731 (2000).
- [27] R.P. Lownders. J. Phys. C 2, 1595 (1969).
- [28] G.A. Samara. Phys. Rev. B 13, 4529 (1976).
- [29] A.D. Becke. J. Chem. Phys. 98, 5648 (1993).
- [30] J.P. Perdew, M. Ernzerhof, K. Burke. J. Chem. Phys. 105, 9982 (1996).
- [31] Р.А. Эварестов, А.В. Бандура, В.Е. Александров. ФТТ **47**, 2157 (2005).
- [32] Д.В. Корабельников, Ю.Н. Журавлев. ФТТ 58, 1129 (2016).
- [33] Ю.М. Басалаев, Н.И. Гордиенок. Изв. вузов. Физика 60, 140 (2017).
- [34] http://www.crystal.unito.it/index.php
- [35] S. Piskunov, E. Heifets, R.I. Eglitis, G. Borstel. Comp. Mater. Sci. 29, 165 (2004).
- [36] L. Valenzano, F.J. Torres, K. Doll, F. Pascale, C.M. Zicovich-Wilson, R. Dovesi. Z. Phys. Chem. 220, 893 (2006).
- [37] M.F. Peintinger, D.V. Oliveira, T. Bredow. J. Comp. Chem. 34, 451 (2013).
- [38] А.В. Баженов, И.С. Смирнова, Т.Н. Фурсова, М.Ю. Максимук, А.Б. Кулаков, И.К. Бдикин. ФТТ 42, 40 (2000).
- [39] http://progs.coudert.name/elate
- [40] R. Gaillac, P. Pullumbi, F.X. Coudert. J. Phys. Condens. Matter 28, 275201 (2016).
- [41] Н.В. Знаменский, Ю.В. Малюкин. Спектры и динамика оптических переходов редкоземельных ионов в кристаллах. Физматлит, М. (2008). 191 с.

Редактор Т.Н. Василевская