Собственная фтор-ионная проводимость кристаллических матриц фторидных супериоников: BaF₂ (тип флюорита) и LaF₃ (тип тисонита)

© Н.И. Сорокин, Б.П. Соболев

Институт кристаллографии им. А.В. Шубникова ФНИЦ "Кристаллография и фотоника" РАН, Москва, Россия

E-mail: nsorokin1@yandex.ru

04

(Поступила в Редакцию 2 июля 2018 г.)

Собственная фтор-ионная проводимость σ_{lat} кристаллов BaF₂ (тип флюорита — CaF₂) и LaF₃ (тип тисонита) исследована методом импедансной спектроскопии. Эти соединения представляют два основных структурных типа, на основе которых образуются лучшие нестехиометрические фторпроводящие твердые электролиты. Проводимость σ_{lat} , обусловленная термоактивированными дефектами, проявляется в области высоких температур, где кондуктометрические измерения осложнены пирогидролизом. Проведение экспериментов в инертной атмосфере и использование методики импеданса позволили впервые получить надежные значения σ_{lat} фторидных кристаллов в условиях подавления пирогидролиза (BaF₂) или частичного пирогидролиза (LaF₃). Значения σ_{lat} при 773 К для кристаллов BaF₂ и LaF₃, выращенных из расплава методом Бриджмена по вакуумной технологии, составляют 2.2 · 10⁻⁵ и 8.5 · 10⁻³ S/сm, различаясь в ~ 400 раз. На основе анализа энергетических характеристик процессов образования и миграции анионных дефектов обоснована предпочтительность структурного типа тисонита для создания высокопроводящих фторидных твердых электролитов.

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по Государственному заданию ФНИЦ "Кристаллография и фотоника" РАН

DOI: 10.21883/FTT.2019.01.46893.181

1. Введение

Наибольший интерес среди фторпроводящих твердых электролитов (ФТЭЛ) представляют нестехиометрические кристаллы $M_{1-x}R_xF_{2+x}$ и $R_{1-y}M_yF_{3-y}$, принадлежащие к двум структурным типам — флюорита (тип CaF₂) и тисонита (тип LaF₃) соответственно [1–6]. Их основами являются однокомпонентные матрицы, кристаллизующиеся в этих типах структуры. К простым фторидам со структурой флюорита относятся дифториды CaF₂, SrF₂, BaF₂, CdF₂, SmF₂, EuF₂, YbF₂, HgF₂ и высокотемпературная форма α -PbF₂. Структуру тисонита имеют трифториды LaF₃, CeF₃, PrF₃, NdF₃ и высокотемпературные формы α -SmF₃, α -EuF₃, α -GdF₃. Флюоритовые и тисонитовые ФТЭЛ являются униполярными ионными проводниками, электропроводность которых определяется ионами фтора.

Нестехиометрические фазы $M_{1-x}R_xF_{2+x}$ И переменным $R_{1-y}M_{y}F_{3-y}$ числом атомов с В элементарной ячейке образуются в бинарных системах $MF_2 - RF_3$ (M = Ca, Sr, Ba, Cd, Pb; R — редкоземельные элементы — РЗЭ) [7]. Они являются гетеровалентными твердыми растворами на основе компонентов, поэтому электрофизические характеристики двухкомпонентных ФТЭЛ должны наследовать аналогичные свойства соответствующих компонентов.

По величине фтор-ионной проводимости нестехиометрических кристаллов $M_{1-x}R_xF_{2+x}$ и $R_{1-y}M_yF_{3-y}$ предпочтение следует отдавать кристаллам с тисонитовой структурой. Об этом свидетельствуют данные разных исследователей, обобщенные в недавнем обзоре [3].

Можно полагать, что причина такого соотношения проводимостей нестехиометрических кристаллов разного типа структур кроется в процессах дефектообразования в однокомпонентных кристаллических матрицах — MF_2 и RF_3 .

Температурные зависимости ионной электропроводности σ_{crys} для номинально "чистых" ионных кристаллов (в том числе MF_2 и RF_3) содержат протяженные низкотемпературные участки σ_{imp} , которые определяются неконтролируемыми примесями. Верхняя граница таких "примесных" участков σ_{imp} , как правило, достигает температур 400–500°С. В результате, собственная проводимость σ_{lat} ($\sigma_{crys} = \sigma_{lat} + \sigma_{imp}$) фторидных кристаллов проявляется в области высоких температур, где их исследования осложнены пирогидролизом (взаимодействием с парами воды), приводящим к конверсии фторидов в оксофториды и оксиды.

Выбор монокристаллов BaF_2 и LaF_3 из всех фторидов MF_2 и RF_3 определялся их кондуктометрическими характеристиками. Кристалл BaF_2 обладает наилучшей ионной проводимостью среди фторидов щелочноземельных элементов (Ca, Sr, Ba). Кристалл LaF_3 из трифторидов РЗЭ по величине проводимости лишь незначительно уступает CeF₃. Являясь наиболее изученным из фторидов РЗЭ, LaF₃ обладает высокой фтор-ионной проводимостью и применяется в коммерческих фторидселективных электродах для определения концентрации ионов фтора в водных растворах [8] и фтор-ионных источниках тока нового поколения [9,10].

Существующие в литературе экспериментальные данные по высокотемпературным исследованиям σ_{lat} кристаллов BaF₂ [11–16] и LaF₃ [17–20] значительно различаются для каждого. Причинами этого являются неконтролируемые факторы в проведенных экспериментах (примесный состав реактивов, рост кристаллов при разных условиях, термическая предыстория выращенных кристаллов, неконтролируемый пирогидролиз), которые необходимо учитывать при изучении процессов образования и миграции термических дефектов.

Целью работы является сравнение энергетических характеристик образования и миграции анионных дефектов в кристаллических матрицах ФТЭЛ BaF_2 (тип флюорита) и LaF_3 (тип тисонита), полученных из измерений высокотемпературной фтор-ионной проводимости кристаллов, выращенных по одинаковой вакуумной технологии. Предварительные результаты работы докладывались на Первом Российском кристаллографическом конгрессе (Москва, 2016) [21].

2. Эксперимент

Для сравнения кристаллов BaF_2 и LaF_3 по σ_{lat} использовали монокристаллы, полученные при одинаковых условиях кристаллизации. Рост кристаллов оптического качества проводился из расплава методом направленной кристаллизации Бриджмена по вакуумной технологии в Государственном оптическом институте (Санкт-Петербург). Методика роста кристаллов приведена в [22,23]. Содержание кислорода в кристаллах BaF_2 и LaF_3 не превышало 120 и 700 *ppmw* соответственно (метод вакуум-плавления [7,24]).

Измерения электропроводности σ_{dc} (dc — direct current) выполнены методом импедансной спектроскопии в диапазоне частот $10^{-1}-10^7$ Hz (прибор Solartron 1260, 30 mV). В качестве электродов применяли серебряную пасту Leitsilber. Эксперименты проведены в защитной атмосфере азота или в вакууме ~ 10^{-3} Ра при температурах 170–1073 К. Пирогидролиз кристаллов контролировали в ходе температурных кондуктометрических измерений по спектрам комплексного импеданса.

Величину σ_{dc} рассчитывали по формуле:

$$\sigma_{dc} = h/(R_b S),\tag{1}$$

где R_b — объемное сопротивление кристалла. Описание экспериментальной установки дано в [25]. Наличие в спектрах импеданса блокирующего эффекта от инертных (Ag) электродов указывает на преимущественный ионный характер электропроводности. Вкладом электронной и катионной проводимостей в общую электропроводность кристаллов BaF_2 и LaF_3 можно пренебречь [26–28]. Собственная электропроводность σ_{lat} кристаллов BaF_2 и LaF_3 связана со структурным и динамическим разупорядочением анионной (фторной) подрешетки [13,20,29].

Параметры ионного транспорта определяли из температурной зависимости $\sigma_{dc}(T)$ по формуле Аррениуса– Френкеля

$$\sigma_{dc}(T) = A \exp(-\Delta H_{\sigma}/kT), \qquad (2)$$

где A и ΔH_{σ} — предэкспоненциальный множитель и энтальпия активации ионной проводимости соответственно.

3. Результаты и их обсуждение

Собственная проводимость кристаллов BaF₂

Образец для электрофизических измерений изготавливался в виде плоскопараллельной монокристаллической пластины толщиной h = 1 mm и площадью $S = 28 \text{ mm}^2$. Кристаллографическую ориентацию образца не проводили, поскольку кристаллы BaF₂ имеют кубическую симметрию и изотропны по отношению к электрофизическим свойствам.

В табл. 1 приведены термохимические характеристики для BaF₂. Все кристаллы структурного типа CaF₂ характеризуются "размытым" (диффузным) фазовым переходом типа "порядок-беспорядок", локализующимся в анионной подрешетке. Температура размытого перехода для BaF₂ составляет $T_{tr} = 1240$ K по [33] и 1275 K по [34], температура плавления равна $T_{fus} = 1627 \pm 5$ K. При переходе из низкотемпературной формы *l*-BaF₂ ($T < T_{tr}$) в высокотемпературную форму *h*-BaF₂ ($T > T_{tr}$) флюоритовая структура кристаллов (пр. гр. $Fm\bar{3}m$) сохраняется.

Для BaF₂ энтропия плавления $\Delta S_{fus} = 13.5 \text{ J/(mol} \cdot \text{K})$ и энтропия "размытого" фазового перехода $\Delta S_{tr} = 14 - 16 \text{ J/(mol} \cdot \text{K})$ по величине практически совпадают. Приведенная в табл. 1 для сравнения ΔS_{fus} кристалла MgF₂ (структурный тип рутила TiO₂,

Таблица 1. Температура, энтальпия и энтропия плавления $(T_{fus}, \Delta H_{fus} \text{ и } \Delta S_{fus})$ и "размытого" перехода $(T_{tr}, \Delta H_{tr} \text{ и } \Delta S_{tr})$ для кристаллов MF_2 (Ba, Mg) и RF_3 (La, Sc)

	Пла	авление	зление [7,30–32] Фазовый переход [32–3			еход [32–35]
Кристалл	$T_{fus},$ K	$\Delta H_{fus},$ kJ/mol	$\Delta S_{fus}, J/(\mathrm{mol} \cdot \mathrm{K})$	T _{tr} , K	$\Delta H_{tr},$ kJ/mol	$\frac{\Delta S_{tr},}{J/(\text{mol} \cdot \text{K})}$
BaF ₂	1627	22	13.5	1275	18.4	14.4
				1200	18.8	15.7
MgF_2	1533	58.2	38.0	-	_	_
LaF ₃	1773	50.3	28.5	1650	?	?
ScF_3	1825	62.6	34.3	—	—	—

Рис. 1. Температурная зависимость $\sigma_{dc}(T)$ для кристалла BaF₂ при 450–1073 К: σ_{crys} — проводимость кристалла, σ_{lat} — собственная проводимость анионной подрешетки.

пр. гр. P4/mmm), не обладающего "размытым" переходом, составляет ~ 38 J/(mol·K) [36], что значительно больше ΔS_{fus} кристалла BaF₂. В [32] указывалось, что низкая энтропия плавления ΔS_{fus} может использоваться как поисковый критерий для супериоников. Низкая энтропия плавления ΔS_{fus} во флюоритовых кристаллах MF_2 (M = Ca, Sr, Ba) свидетельствует о значительном разупорядочении анионной подрешетки при "размытом" фазовом переходе.

Согласно нейтронодифракционным данным [37,38] в кристаллах BaF₂ примерно 20–40% фторов смещены из регулярных позиций из-за ангармонических колебаний. Однако, несмотря на значительное разупорядочение анионной подрешетки в высокотемпературном состоянии *h*-*M*F₂ (*M* = Ca, Sr, Ba), число носителей заряда, принимающих участие в ионном переносе при $T > T_{tr}$, сравнительно невелико и составляет 1–5% от общего числа фторов [15,16].

Верхняя граница (1073 К) проведенного температурного исследования ниже температуры T_{tr} на ~ 200 К и не захватывает область сильного разупорядочения анионной подрешетки BaF₂. Данные по σ_{dc} показали хорошую воспроизводимость в режиме нагрев-охлаждение. Из этого можно сделать вывод, что в ходе измерений пирогидролиз образца практически не наблюдался. Температурная зависимость ионной проводимости номинально "чистого" кристалла BaF₂ при 450–1073 К показана на рис. 1. Протяженность температурного диапазона кондуктометрических измерений равна $\Delta T_{meas} \approx 620$ К. Математическая обработка зависимости $\sigma_{dc}(T)$ проводилась в соответствии с уравнением Френкеля–Аррениуса.

Температурный интервал собственной проводимости σ_{lat} матрицы BaF₂ составляет 645–1073 К ($\Delta T_{cond} \approx 430$ K). В этом диапазоне температур выполняется $\sigma_{crys} = \sigma_{lat}$ и значения σ_{lat} изменяются от 2.0 · 10⁻⁷ до 1.6 · 10⁻² S/cm (на 5 порядков). Для участка собственной электропроводности $\sigma_{lat}(T)$ параметры уравнения Френкеля–Аррениуса равны $A = 6.8 \cdot 10^8$ S · K/cm и $\Delta H_{\sigma} = 1.64 \pm 0.03$ eV.

Структурный тип флюорита (пр. гр. $Fm\bar{3}m$, Z = 4) — 3D-шахматная пространственная архитектура из фторных кубов с параметром a/2 (a — параметр элементарной ячейки), половина которых заполнена катионами. Структура флюорита является весьма "рыхлой". Плотность упаковки анионов в кристалле можно оценить, если использовать приведенный объем элементарной ячейки на один анион Θ_F [2]. В случае BaF₂ объем элементарной ячейки на один фтор равен $\Theta_F = a^3/2Z = 29.8$ Å³. Для сравнения плотнейшая упаковка ионов фтора, реализующаяся во фторидах высокозарядных катионов U⁴⁺, Th⁴⁺, U⁵⁺ и U⁶⁺, составляет $\Theta_F = 17-18$ Å³ (структурные данные взяты из [39]).

Термостимулированные дефекты в кристаллах фторидов со структурой типа CaF₂ образуются в анионной подрешетке по механизму Френкеля [36]

$$BaF_2 \to F_i^- + V_F^+, \tag{3}$$

где антифренкелевская пара дефектов F_i^- — междоузельный ион фтора и V_F^+ — вакансия фтора. Энтальпия активации анионного переноса равна

$$\Delta H_{\sigma} = \Delta H_f / 2 + \Delta H_m, \tag{4}$$

где ΔH_f — энтальпия образования антифренкелевской пары дефектов и ΔH_m — энтальпия активации миграции носителей заряда.

Согласно [25] в кристалле BaF_2 подвижными носителями заряда в примесной области являются междоузельные ионы фтора F_i^- . Величина энтальпии активации междоузельных ионов фтора F_i составляет $\Delta H_m = 0.73 \pm 0.02$ eV [13,25]. Подставив значение ΔH_m в выражение (4), получим энтальпию образования антифренкелевской пары дефектов $\Delta H_f = 1.82 \pm 0.03$ eV. Полученная величина ΔH_f хорошо согласуется с приведенными в литературе значениями $\Delta H_f = 1.81-1.83$ [40,41], 1.9 ± 0.1 eV [11,13,14].

Собственная проводимость кристаллов LaF₃

Образец изготавливался в виде плоскопараллельной пластины с размерами h = 1.4 mm и $S = 25 \text{ mm}^2$. Анизотропия электропроводности тригонального кристалла LaF₃ мала, и ею можно пренебречь [20,42], поэтому кристаллографическую ориентацию монокристаллического образца не проводили.

В табл. 1 приведены термохимические характеристики кристалла LaF₃. Как и в случае флюоритовых *M*F₂, разупорядочение анионной подрешетки в тисонитовых

кристаллах RF_3 (R = La - Eu) сопровождается, согласно термохимическим данным [35], "размытым" фазовым переходом (по [30,31] измерениями теплоемкости LaF₃ между 100°С и плавлением фазовые превращения не обнаружены). Температура размытого перехода в LaF₃ равна $T_{tr} = 1377 \pm 25$ К по [35] и 1423 К по [43], а температура плавления составляет $T_{fus} = 1773 \pm 10 \, \mathrm{K}$ [7]. Значения T_{tr} и T_{fus} для LaF₃ превышают на 100–170°С и ~ 150 К соответствующие характеристики для BaF₂. Высокотемпературный "размытый" переход в тисонитовых кристаллах RF₃ практически не исследован. Предполагается, что при этом переходе происходит симметризация тисонитовой структуры: низкотемпературная тригональная форма *l*-LaF₃ (пр. гр. $P\bar{3}c1$, Z=6) трансформируется в высокотемпературную гексагональную форму *h*-LaF₃ (пр. гр. $P6_3/mmc$, Z = 2) [44].

В кристаллах нестехиометрических тисонитовых фаз R_{1-y} Sr_yF₃₋₁ (R = La–Nd) этот переход хорошо фиксируется структурным анализом. Его положение зависит от содержания SrF₂(y) [45,46]. Морфотропный переход l- R_{1-y} Sr_yF_{3-y} \rightarrow h- R_{1-y} Sr_yF_{3-y} от большой ячейки (Z = 6) к малой (Z = 2) наблюдается при y = 0.05–0.1.

В табл. 1 приведена для сравнения энтропия плавления $\Delta S_{fus} = 34.3 \text{ J/(mol} \cdot \text{K})$ [30,31] кристалла ScF₃ (структурный тип ReO₃, пр. гр. $Pm\bar{3}m$), не обладающего "размытым" переходом, которая лишь незначительно превосходит $\Delta S_{fus} = 28.5 \text{ J/(mol} \cdot \text{K})$ для кристалла LaF₃. Это указывает (в отличие от "размытого" перехода в BaF₂) на малость изменения энтальпии и энтропии при размытом переходе в LaF₃ (в [35] такие изменения энтальпии не обнаружены).

В кондуктометрических экспериментах наблюдалась начальная стадия пирогидролиза кристалла LaF₃ при нагреве до 1073 К. В эквивалентной электрической схеме, моделирующей спектры импеданса, пирогидролиз приводит к появлению поверхностного сопротивления R_s , параллельно к объемному сопротивлению R_b . Это зафиксировано также в работах [19,47,48]. Учет сопротивления R_s позволил выделить из спектров импеданса объемное сопротивление R_b . Для кристалла LaF₃ σ_{dc} -данные показали хорошую воспроизводимость в режиме нагрев-охлаждение с верхней границей измерений 923 К. В интервале 923–1073 К кондукометрические данные не воспроизводились.

Температурная зависимость ионной проводимости номинально "чистого" кристалла LaF₃ в интервале температур 170–923 К ($\Delta T_{meas} \approx 750$ К) приведена на рис. 2. На зависимости $\sigma_{dc}(T)$ наблюдаются три участка. Первые два низкотемпературных участка относятся к примесным областям σ_{imp} [1–3,17,18], а высокотемпературный отвечает собственной ионной проводимости σ_{lat} .

Температурный интервал собственной проводимости σ_{lat} исследованного кристалла LaF₃ незначителен и равен 773–923 К ($\Delta T_{cond} = 150$ К). В этом диапазоне температур значения σ_{lat} изменяются от $8.5 \cdot 10^{-3}$

до $3.9 \cdot 10^{-2}$ S/ст (в 4.6 раз). В области собственной электропроводности $\sigma_{lat}(T)$ параметры уравнения Френкеля–Аррениуса равны $A = 2.4 \cdot 10^5$ S · K/ст и $\delta H_{\sigma} = 0.70 \pm 0.03$ eV. Приведенные в литературе значения ΔH_{σ} для собственной электропроводности LaF₃ сильно различаются: 0.5 [17], 0.8 [19], 0.84 [18], 1.2 eV [20]. Основой причиной этого разброса в значениях ΔH_{σ} является, по-видимому, неконтролируемый пирогидролиз образцов LaF₃ в проведенных экспериментах.

В низкотемпературной тисонитовой форме l-LaF₃ ионы фтора распределены по трем различным позициям с соотношением F₁: F₂: F₃ = 12: 4: 2. Координация F₁ по катионам равна 4, координация F₂ и F₃ составляет 3. Кристаллохимические различия F₂ и F₃ невелики и полностью исчезают в высокотемпературной тисонитовой форме h-LaF₃ (две позиции F₂ и F₃ сливаются в одну). При интерпретации свойств их часто объединяют в общую позицию F_{2,3}, тогда соотношение F₁: F_{2,3} = 2: 1. В тисонитовой структуре наиболее вероятными являются перескоки ионов фтора в пределах одного слоя атомов F1 и между слоями атомов F1 через вакантные позиции атомов F_{2,3}. В собственной области проводимости в ионном переносе участвует вся фторная подрешетка (F₁, F₂, F₃) [3,20,29].

Структура тисонита (в отличие от флюорита) является плотноупакованной. Кристалл LaF₃ характеризуется высокой плотностью анионной упаковки $\Theta_{\rm F} = 0.866a^2c/3Z = 18.3$ Å³, которая практически совпадает с плотнейшей упаковкой ионов фтора во фторидах высокозарядных катионов ($\Theta_{\rm F} = 17-18$ Å³ [39]).

Принято считать, что собственные дефекты во фторидах со структурой тисонита образуются одновременно в анионной и катионной подрешетках по механизму Шоттки

$$LaF_3 \rightarrow 3V_F^+ + V_{La}^{3-}, \qquad (5)$$

где $V_{\rm F}^+$ — вакансия фтора и $V_{\rm La}^{3-}$ — вакансия лантана. Энтальпия активации ионного переноса равна

$$\Delta H_{\sigma} = \Delta H_f / 4 + \Delta H_m, \tag{6}$$

где ΔH_f — энтальпия образования дефектов Шоттки и ΔH_m — энтальпия активации миграции носителей заряда. Однозарядные вакансии $V_{\rm F}^+$ более подвижны, чем трехзарядные вакансии $V_{\rm La}^{3-}$.

Величина энтальпии активации миграции вакансии V_F^+ составляет $\Delta H_m = 0.26 \text{ eV}$ [18] и 0.28 eV [19]. Подставив среднее значение $\Delta H_m = 0.27 \text{ eV}$ в выражение (6), получим величину энтальпии активации образования дефектов Шоттки в матрице LaF₃ $\Delta H_f \approx 1.7 \text{ eV}$, которая является близкой к энтальпии образования дефектов Френкеля в матрице BaF₂.

Сравнение характеристик σ_{lat} кристаллов BaF₂ и LaF₃

Структурные и энергетические характеристики точечных дефектов и характеристики собственной фторионной проводимости кристаллов в BaF_2 и LaF_3 приведены в табл. 2. Общей особенностью кристаллов BaF_2 и LaF_3 является то, что они обладают "размытыми" фазовыми переходами, которые по характеру поведения ионной проводимости отличаются от полиморфных фазовых переходов 1-го рода в YF₃ и LuF₃ [49]. В кристаллах YF₃ и LuF₃ при полиморфных структурных переходах (тип β -YF₃ \rightarrow тип α -UO₃ [7]) наблюдается скачок проводимости, обусловленный скачкообразным увеличением концентрации дефектов.

В противоположность сказанному о полиморфных реконструктивных превращениях $\beta \leftrightarrow \alpha$ -RF₃, с ростом температуры для кристаллов BaF₂ и LaF₃ характерен непрерывный монотонный рост концентрации дефектов и ионной проводимости. "Размытые" фазовые переходы приводят к быстрому фтор- ионному переносу в них при $T > T_{tr}$. Высокотемпературные суперионные формы h-BaF₂ и h-LaF₃ стабилизируются как вниз (прежде всего), так и вверх (немного) по температуре гетеровалентными замещениями: Ba²⁺ на R^{3+} в структуре типа флюорита и La³⁺ на M^{2+} в структуре типа тисонита.

Из сравнения характеристик σ_{lat} кристаллов BaF₂ и LaF₃ следует, что тисонитовая структура обладает более высокой фтор-ионной проводимостью, чем флюоритовая (табл. 2). Значения σ_{lat} кристаллов LaF₃ больше, чем кристаллов BaF₂ в ~ 20 раз при 1000 К и увеличиваются до ~ 400 раз при 773 К. Энтальпия активации σ_{lat} LaF₃ $\Delta H_{\sigma} = 0.7 \,\text{eV}$ значительно ниже, чем у BaF₂ $\Delta H_{\sigma} = 1.6 \,\text{eV}.$

Можно полагать, что причина этого — сильное различие в степени плотности анионной упаковки этих Таблица 2. Структурные характеристики, параметры собственной фтор-ионной проводимости и энергетические характеристики точечных дефектов в кристаллах BaF₂ и LaF₃

Характеристики	BaF_2	LaF ₃
Пространственная группа	Fm3m,	$P\bar{3}c1$,
	Z = 4	Z = 6
Параметры решетки, Å	a = 6.200	a = 7.186
		c = 7.352
Молярный объем, cm ³ /mol	35.87	32.99
Плотность, g/cm ³	4.89	5.94
Плотность упаковки	29.8	18.3
анионов $\Theta_{\rm F}$, Å ³		
Проводимость σ_{lat} , S/cm		
при 773 К	$2.2\cdot 10^{-5}$	$8.5 \cdot 10^{-3}$
при 1000 К	$3.5\cdot10^{-3}$	$6 \cdot 10^{-2}$
		(экстраполяция)
Энтальпия ΔH_{σ} , eV	1.6	0.7
Энтальпия ΔH_f , eV	1.8	1.7
Энтальпия $\Delta H_m(V_{\rm F}^+)$, eV	0.5-0.6 [11,13]	0.27 [18,19]
Энтальпия $\Delta H_m(\mathbf{F}_i^-)$, eV	0.73-0.76 [13,25]	—

структур. Для кристалла LaF₃ она совпадает с предельной упаковкой ионов фтора в высокозарядных фторидах ($\Theta_F = 17-18 \text{ Å}^3$), напротив, для кристалла BaF₂ она значительно выше ($\Theta_F \approx 30 \text{ Å}^3$). В результате в структурах тисонита и флюорита реализуются разные механизмы дефектообразования.

В плотноупакованной структуре тисонитового LaF₃ образуются анионные и катионные вакансии (шотткиевские дефекты), которые уменьшают плотность анионной упаковки. Носителями заряда для σ_{lat} являются подвижные вакансии фтора $V_{\rm F}^+$.

В "рыхлой" неплотной структуре флюоритового кристалла BaF_2 точечные дефекты образуются только в анионной подрешетке — междоузельные ионы F_i^- и вакансии V_F^+ (антифренкелевские дефекты), которые увеличивают плотность анионной упаковки. Носителями заряда для σ_{lat} являются оба типа дефектов F_i^- и V_F^+ .

Несмотря на близость энергии образования собственных дефектов в тисонитовой матрице LaF₃ ($\Delta H_f = 1.7 \,\mathrm{eV}$) и флюоритовой матрице BaF₂ ($\Delta H_f = 1.8 \,\mathrm{eV}$), энтальпии активации миграции анионных дефектов у них сильно различаются. [15,16]. Энтальпия активации вакансионного движения для тисонитовой структуры ($\Delta H_m(V_F^+) = 0.3 \,\mathrm{eV}$), по крайней мере, в 2 раза меньше, чем для флюоритовой структуры. Поэтому подвижность вакансий V_F^+ в тисонитовых фторидах значительно выше, чем во флюоритовых фторидах.

Заключение

Величина σ_{lat} кристаллов LaF₃ превышает фторионную проводимость кристаллов BaF₂ в ~ 400 раз и составляет 8.5 · 10⁻³ S/cm при 773 К. Это связано с тем, что подвижность носителей заряда в тисонитовых фторидах значительно выше, чем во флюоритовых фторидах.

Полученные результаты объясняют существенную предпочтительность тисонитовой кристаллической матрицы LaF₃ по величине собственной ионной электропроводности и энергетическим параметрам процесса миграции анионных дефектов для разработки перспективных ФТЭЛ в фундаментальной и прикладной ионике твердого тела.

На основе кристаллических матриц BaF_2 (тип флюорита) и LaF_3 (тип тисонита) образуются лучшие нестехиометрические фторпроводящие твердые электролиты с соответствующими типами структур. Собственная фтор-ионная проводимость σ_{lat} кристаллов BaF_2 и LaF_3 обусловлена термоактивированными дефектами и проявляется в области высоких температур, где кондуктометрические измерения осложнены пирогидролизом. Впервые получены надежные значения σ_{lat} фторидных кристаллов методом импедансной спектроскопии в условиях подавления пирогидролиза.

Авторы благодарят О.В. Глумова (СПбУ, Санкт-Петербург) за предоставленный для исследований кристалл LaF₃.

Список литературы

- [1] Н.И. Сорокин, Б.П. Соболев. Кристаллография. **52**, 870 (2007).
- [2] Б.П. Соболев, Н.И. Сорокин. Кристаллография 59, 891 (2014).
- [3] B.P. Sobolev, N.I. Sorokin, N.B. Bolotina. Photonic and electronic properties of fluoride materials / Eds A. Tressaud, K. Poeppelmeier. Elsevier, Amsterdam (2016). P. 465.
- [4] C. Rongeat, M. Anji Reddy, R. Witter, M. Fichtner. Appl. Mater. Interfaces 6, 2103 (2014).
- [5] A. Duvel, J. Bednarcik, V. Sepelak, P. Heitjans. J. Phys. Chem. 118, 7117 (2014).
- [6] J. Chable, B. Dieudonne, M. Body, C. Legein, M. Crosnier-Lopez, C. Galvin, F. Mauvy, E. Durand, S. Fourcade, D. Sheptyakov, M. Leblanc, V. Maisonneuve. Dalton Trans. 44, 19625 (2016).
- [7] B.P. Sobolev. The Rare Earth Trifluorides. Pt 1. The High Temperature Chemistry of Rare Earth Trifluorides, Institute of Crystallography, Moscow and Institut d'Estudis Catalans. Institut d'Estudis Catalans, Barcelona. Spain (2000). 520 p.
- [8] M.S. Frant, J.W. Ross. Science 154, 1553 (1966).
- [9] А.А. Потанин. Журн. Рос. хим. об-ва им. Д.И. Менделеева XLV, 58 (2001).
- [10] M. Anji Reddy, M. Fichtner. J. Mater. Chem. 21, 17059 (2011).
- [11] E. Barsis, A. Taylor. J. Chem. Phys. 48, 4357 (1968).
- [12] A. Hammou, M. Duclot, V.A. Levitskii. J. Phys. (Paris) 37, 7(1976).
- [13] D.R. Figueroa, A.V. Chadwick, J.H. Strange. J. Phys. C 11, 55 (1978).
- [14] J.D. Oberschmidt, D. Lazarus. Phys. Rev. B 21, 5823 (1980).
- [15] J. Schoonman. Solid State Ionics 1, 121 (1980).
- [16] A.V. Chadwick. Solid State Ionics 8, 209 (1983)

- [17] И.В. Мурин, О.В. Глумов, Ю.В. Амелин. ЖПХ 53, 1474 (1980).
- [18] A. Roos, A.F. Aalders, J. Schoonman, A.F.M. Arts, H.W. de Wijn. Solid State Ionics 9–10, 571 (1983).
- [19] A.V. Chadwick, D.S. Hope, G. Jaroszkiewicz, J.H. Strange. Fast ion transport in solids / Eds P. Vashishta, N. Mundy, G.K. Shenoy. Elsevier North Holland, Amsterdam (1979). P. 683.
- [20] V.V. Sinitsyn, O. Lips, A.B. Privalov, F. Fujara, I.V. Murin. J. Phys. Chem. Solids 64, 1201 (2003).
- [21] Н.И. Сорокин, Б.П. Соболев. Сб. тез. Первого Российского кристаллографического конгресса. М. (2016). С. 413.
- [22] И.В. Степанов, П.П. Феофилов. Рост кристаллов. Изд-во АН СССР, М. (1957). С. 229.
- [23] В.А. Соколов. Тр. ГОИ 54, 21 (1983).
- [24] Г.Г. Главин, Ю.А. Карпов. Завод. лаб. 30, 306 (1964).
- [25] N.I. Sorokin, M.W. Breiter. Solid State Ionics 99, 241 (1997).
- [26] S.N.S. Reddy, R.A. Rapp. J. Electrochem. Soc. 126, 2023 (1979).
- [27] A. Roos, J. Schoonman. Solid State Ionics 13, 205 (1984).
- [28] H.D. Wiemhofer, S. Harke, U. Vohrer. Solid State Ionics 40-41, 433 (1990).
- [29] A.F. Privalov, O. Lips, F. Fujara. J. Phys.: Condens. Matter. 14, 4525 (2002).
- [30] F.H. Spedding, D.C. Henderson. J. Chem. Phys. 54, 2476 (1971).
- [31] F.H. Spedding, B.J. Beaudry, D.C. Henderson, J. Moorman. J. Chem. Phys. **60**, 1578 (1974).
- [32] M. O'Keeffe, B.G. Hyde. Phil. Mag. 33, 219 (1976).
- [33] Р.И. Ефремова, Э.В. Матизен. Изв. СО АН СССР. Сер. хим. **2**, 3 (1970).
- [34] W. Shroter, J. Nolting. J. de Phys. 41, 6 (1980).
- [35] O. Greis, M.S.R. Cader. Thermochim. Acta 87, 145 (1985).
- [36] A.B. Lidiard. Crystals with the fluorite structure / Ed. W. Hayes. Clarendon Press, Oxford (1974). P. 101.
- [37] С.Х. Айтьян, А.К. Иванов-Шиц. ФТТ 32, 1360 (1990).
- [38] S.M. Shapiro. Superionic conductors / Eds G.D. Mahan, W.L. Roth. Plenum Press, N.Y. (1976). P. 261.
- [39] W.H. Zachariasen. Acta Cryst. 1, 265 (1948).
- [40] W. Bollmann. Cryst. Res. Technol. 16, 1039 (1981).
- [41] P.W.M. Jacobs, S.H. Ong. Cryst. Lattice Defects 8, 177 (1980).
- [42] J. Schoonman, G. Oversluizen, K.E.D. Wapenaar. Solid State Ionics 1, 211 (1980).
- [43] P.E. Ngoepe, W.M. Jordan, C.R. Catlow, J.D. Comins. Phys. Rew. B. 41, 3815 (1990).
- [44] O. Greis, D.J.M. Bevan. J. Solid State Chem. 24, 113 (1978).
- [45] Н.Б. Болотина, Т.С. Черная, А.И. Калюканов, И.А. Верин, Н.И. Сорокин, Л.Е. Фыкин, Н.Н. Исакова, Б.П. Соболев. Кристаллография 60, 391 (2015).
- [46] О.Н. Хрыкина, Н.И. Сорокин, И.А. Верин, Н.Б. Болотина, Б.П. Соболев. Кристаллография 62, 559 (2017).
- [47] Н.И. Сорокин, Б.П. Соболев, М. Брайтер. ФТТ 44, 272 (2002).
- [48] Н.И. Сорокин. Электрохимия 41, 1015 (2005).
- [49] M. O'Keeffe. Science **180**, 1276 (1973).

Редактор Т.Н. Василевская