01,07

Структурные, упругие, электронные свойства и межатомные взаимодействия серии металлических тетраборидов MB_4 (M = Ru, Rh, Pd, Os, Ir, Pt), полученные из FLAPW-GGA-расчетов

© Д.В. Суетин

Институт химии твердого тела УрО РАН, Екатеринбург, Россия E-mail: suetin@ihim.uran.ru

(Поступила в Редакцию 5 июля 2018 г.)

Представлены результаты систематических первопринципных FLAPW–GGA-расчетов серии металлических тетраборидов MB_4 (где M = Ru, Rh, Pd, Os, Ir, Pt) с Pmmn-, Immm-, R-3m и Pnnm-пространственными группами. Их равновесные структурные параметры, энергии когезии и формирования, упругие константы, модули сжатия, сдвига и Юнга, индикатор Пуга, отношение Пуассона, коэффициенты Ламе, индексы упругой анизотропии, микротвердость по Виккерсу, температуры Дебая, скорости звука, так же как и электронные свойства и межатомные взаимодействия были оценены и проанализированы по сравнению друг с другом и с имеющимися теоретическими данными.

Работа выполнена в рамках гос. задания РАН, тема № АААА-А16-116122810214-9.

DOI: 10.21883/FTT.2019.01.46890.185

1. Введение

Значительное внимание к боридам тяжелых M 4d-, 5d-металлов (M = Ru, Rh, Pd, Os, Ir, Pt), как в теоретическом, так и в экспериментальном плане, вызвано их превосходными механическими свойствами, такими как высокие модули упругости, твердость и низкая сжимаемость[1,2]. Кроме того, для создания новых сверхтвердых материалов с многообещающими функциональными возможностями был разработан соответствующий подход путем введения легких элементов с ковалентной связью (B, C, N, O) в решетку переходного металла с высокой валентной электронной плотностью [3–5]. После этого был получен ряд материалов, таких как WB₂, ReB₂, OsB₂, RhB_{1.1} и IrB_{1.35} [6–8], предложенных далее в качестве потенциальных сверхтвердых систем с высокой микротвердостью $H_V > 40$ GPa.

Недавно в гексагональной фазе был изготовлен тетраборид вольфрама WB₄ с очень большой микротвердостью (~ 46 GPa) [9]. Были выполнены *ab initio* расчеты [10], установившие, что замечательные механические свойства тетраборида связаны с сильными связями B–B в димерах B₂, кроме обычных сильных ковалентных связей B–B в слоях B. Как сверхтвердые материалы, были также предложены тетраборид осмия OsB₄ и тетраборид рения ReB₄ [10] со структурой WB₄, хотя данные системы не были синтезированы.

Следует отметить, что, несмотря на существенные усилия экспериментаторов, была успешно изготовлена только ограниченная группа боридов тяжелых 4*d*-, 5*d*-металлов. С теоретической точки зрения к сегодняшнему дню проведен широкий набор расчетов для прогнозирования свойств этих боридов, но большинство из них были посвящены моноборидам [11-15] или диборидам [16-23] тяжелых переходных металлов. Гораздо меньше информации имеется о вышеупомянутых тетраборидах *M*B₄. Новая орторомбическая структура Pmmn OsB₄ рассматривалась в [24]; тетраборид с этой структурой оказался ультрасжимаемым и твердым материалом. Квантово-химическое моделирование свойств OsB₄ под давлением [25] показало, что эта орторомбическая система устойчива при 50 GPa. Кроме того, в системе Re–B авторы рассчитали ряд фаз ReB₄ [26] и установили, что новая структура R-3m тетраборида механически и энергетически устойчива. Совсем недавно было предпринято несколько попыток провести сравнительное моделирование свойств тетраборида в кристаллических структурах ReB₄, TcB₄, MoB₄ или CrB₄ [27–29].

Перспективы практического применения твердых материалов на основе тетраборидов платиноидов в значительной степени определяются их механическими свойствами, и соответствующая информация представляет большой интерес. Дополнительно для применимости результатов расчетов следует отметить, что большинство из них посвящено поликристаллическим керамическим образцам.

Итак, основная цель настоящей работы в этом контексте заключается в сравнительном изучении свойств четырех серий тетраборидов переходных металлов MB_4 (где M = Ru, Rh, Pd, Os, Ir и Pt). В результате мы получили оптимизированные параметры решетки, теоретическую плотность, энергии когезии и формирования, независимые константы упругости (C_{ij}), модули упругости, а именно модули сжатия (B) и модули сдвига (G) в моно- и поликристаллическом состоянии, модули Юнга (Y), индексы упругой анизотропии и провели численные оценки отношения Пуассона (ν) и индикатора Пуга хрупко/пластичного поведения. Мы рассчитали также другие фундаментальные свойства тетраборидов, такие как температура Дебая (θ_D), средняя скорость звука (v_m) и коэффициенты электронной и решеточной теплоемкости (γ , β).

2. Модели и метод расчетов

Рассматриваемые тетрабориды MB_4 (M = Ru, Os, Rh, Ir, Pd, Pt) исследовались в четырех различных модельных структурах с пространственными группами Pmmn, Immm, R-3m и Pnnm. Первая исследуемая структура (Pmmn) является основной орторомбической структурой OsB₄ с иррегулярными додекаэдрами OsB₁₀, связанными ребрами [24,25]. Другие структуры, одна из которых имеет ромбоэдрическую (R-3m), а две оставшиеся — орторомбические (Immm, Pnnm) симметрии, ранее считались прототипами ReB₄ [26]. Фрагменты кристаллических структур MB_4 , использованные в *ab initio* расчетах, содержащие четырехугольные кольца из атомов B, показаны на рис. 1.

Исходные занимаемые позиции в тетраборидах MB_4 были взяты из [24,26]: (a) Pmmn M 2b (0.25; 0.75; 0.5051), B₁ 4f (0.4517; 0.25; 0.3074) и B₂ 4f (0.5961; 0.25; 0.9841); (b) Immm M 2c (0; 0; 0) и B 8n (0.6547; 0.1940; 0.5); (c) R-3m M 3a (0; 0; 0), B₁ 6c (1/3; 2/3; 0.9092) и B₂ 6c (1/3; 2/3; 0.5282); (d) Pnnm

Рис. 1. Фрагменты кристаллических структур тетраборидов MB_4 (M = Ru, Os, Rh, Ir, Pd, Pt), взятые из [24-26] с пространственными группами: Pmmn (a), Immm (b), Pnnm (c) и R-3m (d).

M 2b (0; 0; 0.5), B₁ 4g (0.6041; 0.8661; 0) и B₂ 4g (0.2205; 0.3276; 0.5).

Все расчеты были выполнены с использованием полного потенциального линеаризованного метода со смешанным базисом $APW + l_0$ (FLAPW), реализованного в программном пакете WIEN2k [30]. Для обменнокорреляционного потенциала мы применили обобщенную градиентную аппроксимацию (GGA) в широко используемой форме РВЕ [31]. Базисный набор волновых функций внутри каждой МТ-сферы подразделялся на остовную и валентную части. Остовная часть рассматривалась исключительно в рамках сферической части потенциала и предполагалась имеющей сферически симметричное распределение зарядовой плотности в МТсферах. Валентная часть рассматривалась с потенциалом, разложенным в ряд на сферические гармоники до l = 4. Валентные волновые функции внутри МТсфер были разложены вплоть до l = 12. Параметр плосковолнового расширения $R_{\rm MT} \cdot K_{\rm max}$ был принят равным 7, а полное число к точек в зоне Бриллюэна равнялось 1000. Значения МТ-радиусов были выбраны 2.00 а.и. для атомов М и 1.45 а.и. для атомов В. Учет релятивистских эффектов осуществлялся в рамках скалярно-релятивистского приближения. Сходимость самосогласованных итерационных расчетов задавалась через разность полных зонных энергий, полученных на соседних итерациях $E_{\rm tot} < 0.01 \, {\rm mRy}$, и значениям сил, действующих на атомы f_i < 1 mRy/a.u. Плотность электронных состояний (DOS) была получена с использованием модифицированного метода тетраэдров [32].

3. Результаты и обсуждение

Во-первых, были рассчитаны полные энергии (E_{tot}) в зависимости от объема ячейки для определения ее равновесных параметров, атомных координат и межатомных расстояний для рассмотренных фаз МВ4. Данные величины, полученные в ходе проведенной структурной оптимизации, суммированы в табл. 1, 2. Результаты FLAPW-GGA-расчетов для Pmmn OsB4 согласуются с другими имеющимися данными [24,25], различие составляет менее 0.5-1%. Нами также было обнаружено, что в зависимости от атомного номера d металла Z, параметры решетки изменяются различным образом: монотонно (для тетраборидов с пространственными группами R-3m и Pnnm), немонотонно (для тетраборидов с пространственной группой Pmmn) или смешанно монотонно/немонотонным образом (для Immm тетраборидов). Следовательно, исследуемые параметры могут изменяться противоположно (так, для *MB*₄ от $M = \operatorname{Ru}(\operatorname{Os})$ до Pd(Pt) параметр *a* уменьшается, *b* возрастает, и с — изменяется слабо). Таким образом, в этом случае происходит значительная анизотропная деформация. Однако для всех исследованных тетраборидов объемы элементарной ячейки также возрастают с ростом Z, табл. 1. Далее мы также оценили теоретические плотности ρ тетраборидов. Наибольшая плотность

Фаза	а	b	С	V	ρ
RuB ₄ Pmmn	0.70736	0.28775	0.39994	0.081405	5.887
RuB ₄ R-3m	0.29435	_	1.60028	0.040025	5.987
RuB ₄ Immm	0.54707	0.49555	0.31281	0.042401	5.651
RuB ₄ Pnnm	0.47558	0.55466	0.31220	0.082354	5.715
OsB ₄ Pmmn	0.71119	0.28947	0.40142	0.082640	9.381
	(0.7119 [24];	(0.2888 [24];	(0.4006 [24];	(0.082199 [24];	
	0.7106 [25]*)	0.2896 [25])	0.4015 [25])	0.082776 [25])	
OsB4R-3m	0.29881	_	1.59009	0.040985	9.558
OsB ₄ Immm	0.52758	0.57534	0.29787	0.045207	8.574
OsB ₄ Pnnm	0.48647	0.55868	0.30781	0.083657	9.267
RhB ₄ Pmmn	0.70159	0.29537	0.40174	0.083252	5.830
RhB ₄ R-3m	0.29443	_	1.62051	0.040553	5.921
RhB ₄ Immm	0.53428	0.54258	0.31017	0.044958	5.398
RhB ₄ Pnnm	0.48930	0.55308	0.30800	0.083352	5.823
IrB ₄ Pmmn	0.70464	0.29786	0.40428	0.084852	9.216
IrB ₄ R-3m	0.29984	—	1.60791	0.041730	9.369
IrB ₄ Immm	0.53223	0.55091	0.31306	0.045896	8.519
IrB ₄ Pnnm	0.49245	0.55240	0.31405	0.085431	9.153
PdB ₄ Pmmn	0.72358	0.29132	0.41673	0.087844	5.658
PdB ₄ R-3m	0.29422	—	1.65660	0.041397	6.003
PdB ₄ Immm	0.53561	0.57455	0.31024	0.047736	5.206
PdB ₄ Pnnm	0.51905	0.54679	0.30619	0.086900	5.720
PtB ₄ Pmmn	0.71762	0.29863	0.42282	0.090612	8.735
PtB ₄ R-3m	0.30315	—	1.62211	0.043033	9.196
PtB ₄ Immm	0.52283	0.59622	0.30950	0.048239	8.204
PtB ₄ Pnnm	0.53262	0.53809	0.31705	0.090866	8.710

Таблица 1. Оптимизированные параметры элементарной ячейки $(a, b \ u \ c, b \ nm)$, объемы элементарной ячейки $(V, b \ nm^3)$ и теоретические плотности $(\rho, b \ g/sm^3)$ для четырех исследованных фаз тетраборидов MB_4 (M = Ru, Os, Rh, Ir, Pd, Pt)

Примечание. * В скобках приведены другие теоретические результаты [24,25].

Таблица 2. Равновесные атомные координаты и межатомные расстояния ($d_{\text{M-B}}$, $d_{\text{B-B}}$, в nm) для различных фаз тетраборидов MB_4 (M = Ru, Os, Rh, Ir, Pd, Pt)

Фаза	атом	координаты (x, y, z)	$d_{ ext{M-B}}$	d _{B-B}
1	2	3	4	5
RuB ₄ Pmmn	Ru B ₁ B ₂	$\begin{array}{c} (0.25; 0.75; 0.50250) \\ (0.45362; 0.25; 0.31045) \\ (0.59661; 0.25; 0.98208) \end{array}$	0.21759 0.22211 0.22259	0.18881 0.21907
OsB4 Pmmn	$\begin{array}{c} \mathrm{Os} \\ \mathrm{B}_1 \\ \mathrm{B}_2 \end{array}$	(0.25;0.75;0.50503) (0.45152;0.25;0.30671) (0.59633;0.25;0.98385)	0.21869 0.22462 0.22533	0.18997 0.22312
RhB₄Pmmn	$egin{array}{c} { m Rh} \\ { m B}_1 \\ { m B}_2 \end{array}$	(0.25; 0.75; 0.48941) (0.45772; 0.25; 0.31966) (0.58465; 0.25; 0.97529)	0.21841 0.21894 0.21980	0.19166 0.21524
IrB ₄ Pmmn	$Ir \\ B_1 \\ B_2$	(0.25; 0.75; 0.49450) (0.45536; 0.25; 0.31759) (0.58494; 0.25; 0.97859)	0.22107 0.22211 0.22385	0.19320 0.21884
PdB₄Pmmn	Pd B_1 B_2	(0.25; 0.75; 0.46133) (0.46884; 0.25; 0.31597) (0.56816; 0.25; 0.96736)	0.22187 0.22352 0.22361	0.18941 0.21628
PtB₄Pmmn	Pt B_1 B_2	(0.25; 0.75; 0.44281) (0.47197; 0.25; 0.31739) (0.56525; 0.25; 0.96738)	0.21839 0.22390 0.22468	0.19367 0.21854

Таблица 2 (продолжение).

1	2	3	4	5
RuB ₄ R-3m	$egin{array}{c} { m Ru} \\ { m B}_1 \\ { m B}_2 \end{array}$	$\begin{array}{c} (0;0;0)\\ (0.24426;0.24426;0.24426)\\ (0.86144;\ 0.86144;0.86144)\end{array}$	0.22182 0.22174	0.16915 0.18749 0.19229
OsB ₄ R-3m	$egin{array}{c} \mathrm{Os} \ \mathrm{B}_1 \ \mathrm{B}_2 \end{array}$	(0;0;0) (0.24338;0.24338;0.24338) (0.86113; 0.86113;0.86113)	0.22394 0.22504	0.16936 0.18757 0.19286
RhB₄R-3m	$egin{array}{c} { m Rh} \\ { m B}_1 \\ { m B}_2 \end{array}$	(0;0;0) (0.24592;0.24592;0.24592) (0.85999; 0.85999;0.85999)	0.22154 0.22263	0.16842 0.19173 0.19222
IrB₄R-3m	$Ir \\ B_1 \\ B_2$	(0;0;0) (0.24519;0.24519;0.24519) (0.85988;0.85988;0.85988)	0.22373 0.22530	0.16894 0.19224 0.19302
PdB ₄ R-3m	Pd B_1 B_2	$\begin{array}{c} (0;0;0)\\ (0.24290;0.24290;0.24290)\\ (0.85988;0.85988;0.85988)\end{array}$	0.22651 0.23689	0.16552 0.18712 0.19089
PtB₄R-3m	$\operatorname{Pt} B_1 \\ B_2$	$\begin{array}{c} (0;0;0) \\ (0.24468;0.24468;0.24468) \\ (0.85804;0.85804;0.85804) \end{array}$	0.22652 0.23028	0.16662 0.19250 0.19522
RuB ₄ Immm	Ru B	(0.5;0.5;0) (0.65568;0.21370;0.5)	0.21610 0.22770	0.17034 0.19081
OsB ₄ Immm	Os B	(0.5;0.5;0) (0.65548;0.22657;0.5)	0.22367 0.23165	0.16406 0.18126
RhB ₄ Immm	Rh B	(0.5;0.5;0) (0.65274;0.21823;0.5)	0.22009 0.23256	0.16322 0.18984
IrB ₄ Immm	Ir B	(0.5;0.5;0) (0.65312;0.22216;0.5)	0.22150 0.23361	0.16299 0.18994
PdB₄Immm	Pd B	(0.5;0.5;0) (0.65311;0.21807;0.5)	0.22409 0.23880	0.16401 0.19022
PtB ₄ Immm	Pt B	(0.5;0.5;0) (0.65434;0.22321;0.5)	0.22443 0.24020	0.16139 0.18701
RuB ₄ Pnnm	$egin{array}{c} { m Ru} \\ { m B}_1 \\ { m B}_2 \end{array}$	(0;0;0.5) (0.65755;0.87829;0) (0.24233;0.31822;0.5)	0.21080 0.22259 0.22280	0.17309 0.19307 0.19625
OsB ₄ Pnnm	$egin{array}{c} \mathrm{Os} \ \mathrm{B}_1 \ \mathrm{B}_2 \end{array}$	(0;0;0.5) (0.64985;0.87932;0) (0.24402;0.31768;0.5)	0.21352 0.22264 0.22411	0.17537 0.19468 0.19613
RhB₄Pnnm	$egin{array}{c} { m Rh} \\ { m B}_1 \\ { m B}_2 \end{array}$	(0;0;0.5) (0.63488;0.88518;0) (0.24781;0.31551;0.5)	0.21250 0.22216 0.22300	0.17452 0.19118 0.19832
IrB4Pnnm	$Ir \\ B_1 \\ B_2$	(0;0;0.5) (0.63417;0.88362;0) (0.25119;0.31903;0.5)	0.21531 0.22197 0.22285	0.17407 0.19310 0.20094
PdB ₄ Pnnm	Pd B_1 B_2	(0;0;0.5) (0.62131;0.88656;0) (0.25263;0.31026;0.5)	0.21442 0.22055 0.22514	0.17924 0.19825 0.19853
PtB₄Pnnm	$\begin{array}{c} Pt \\ B_1 \\ B_2 \end{array}$	(0;0;0.5) (0.60802;0.88793;0) (0.26836;0.31983;0.5)	0.21653 0.22305 0.22371	0.17895 0.20379 0.20485

получена для систем с группой симметрии R-3m, а наименьшая — с группой симметрии Immm. Конечно, как и следовало ожидать, у тетраборидов, содержащих 5*d*-атомы, плотность в 1.5–1.6 раза выше, чем у таких, содержащих 4*d*-атомы.

На следующем шаге мы оценили энергетическую стабильность данных тетраборидов, содержащих металлы платиновой группы. С этой целью были вычислены энергии формирования (E_{form}) для MB_4 из чистого *d*-металла M и наиболее стабильной аллотропной модификации B (α -B₁₂) в формальных реакциях $M + 1/3(\alpha$ -B₁₂) \rightarrow MB_4 , которые определяются как

$$E_{\text{form}}(MB_4) = E_{\text{tot}}(MB_4) - [E_{\text{tot}}(M) + 1/3E_{\text{tot}}(\alpha - B_{12})],$$

где $E_{\rm tot}$ — полные зонные энергии соответствующих соединений (на формульную единицу) с оптимизированной геометрией, полученных из наших FLAPW-GGAрасчетов. Отметим, что в данном определении отрицательная $E_{\rm form}$ указывает на энергетическую выгодность для данных реагентов образовывать стабильные бориды. Наоборот, $E_{\rm form} > 0$ означает неустойчивость тетраборидов относительно механической смеси M и α -B₁₂.

Дополнительно также определялись энергии когезии $(E_{\rm coh})$ как мера силы межатомных взаимодействий, связывающая атомы в кристалле как

$$E_{\rm coh}(MB_4) = E_{\rm tot}(MB_4) - [E_{\rm at}(M) + 4E_{\rm at}(B)],$$

где $E_{\rm at}(M, B)$ — энергии свободных атомов d металла и бора.

Результаты проведенных нами FLAPW–GGAрасчетов представлены в табл. 3. Для RuB₄ и OsB₄ наиболее устойчивой структурой является Pmmn, тогда как для всех других тетраборидов — R-3m. Следует отметить, что для этих тетраборидов, кроме PtB₄, $E_{\rm form} < 0$ и эти образцы должны быть стабильными относительно смеси составляющих реагентов. Таким образом, синтез вышеупомянутых боридов возможен при нормальных условиях. Этот вывод совпадает с результатами [24,25], где было установлено, что OsB₄ с пространственной группой Pmmn будет энергетически стабильным.

В то же время для всех тетраборидов наиболее неустойчивая структура имеет пространственную группу Ітт, табл. 3. Соответствующие значения E_{form} преимущественно положительны, и подготовка образцов с этой структурой будет достаточно проблематичной. Кроме того, для OsB₄ и PdB₄ были найдены максимальные и минимальные значения $|E_{\text{coh}}|$, см. табл. 3.

Значения пяти независимых упругих констант для ромбоэдрических тетраборидов (C_{ij} , а именно C_{11} , C_{12} , C_{13} , C_{33} и C_{44} , а $C_{66} = 1/2(C_{11} - C_{12}))$ и девяти упругих констант (C_{ij} , а именно C_{11} , C_{22} , C_{33} , C_{12} , C_{13} , C_{23} , C_{44} , C_{55} , C_{66}) для орторомбических тетраборидов представлены в табл. 4. Эти константы были найдены путем приложения различных деформаций (моноклинного, триклинного, гексагонального и орторомбического

Таблица 3. Рассчитанные энергии формирования из M и α -B₁₂ (E_{form} , в eV/form.unit) и энергии когезии (E_{coh} , в eV/form.unit) для MB_4 -фаз (M = Ru, Os, Rh, Ir, Pd, Pt)

Фаза	$E_{ m form}$	$E_{ m coh}$
RuB ₄ Pmmn	-0.87	-35.79
RuB_4R-3m	-0.83	-35.76
RuB ₄ Immm	-0.13	-35.06
RuB ₄ Pnnm	-0.47	-35.39
OsB ₄ Pmmn	-0.82	-38.45
OsB ₄ R-3m	-0.42	-38.05
OsB ₄ Immm	+0.40	-37.23
OsB ₄ Pnnm	+0.02	-37.61
RhB ₄ Pmmn	-0.27	-33.10
RhB ₄ R-3m	-0.63	-33.46
RhB ₄ Immm	+0.56	-32.27
RhB ₄ Pnnm	+0.06	-32.77
IrB ₄ Pmmn	-0.36	-35.78
IrB_4R-3m	-0.26	-35.69
IrB ₄ Immm	+0.55	-34.87
IrB ₄ Pnnm	+0.27	-35.16
PdB ₄ Pmmn	+1.12	-29.20
PdB ₄ R-3m	-0.05	-30.37
PdB ₄ Immm	+1.85	-28.46
PdB ₄ Pnnm	+1.26	-29.06
PtB ₄ Pmmn	+0.72	-31.85
PtB ₄ R-3m	+0.13	-32.44
PtB ₄ Immm	+1.49	-31.08
PtB ₄ Pnnm	+1.13	-31.43

типов, см. [33,34]) к равновесной решетке гексагональной или орторомбической элементарной ячейки и дальнейшим определением зависимости полной энергии от деформации. Рассчитанные значения C_{ij} позволяют проанализировать условия механической устойчивости исследуемых фаз с использованием хорошо известных обобщенных критериев [35] для механически стабильных гексагональных кристаллов

$$C_{11} > 0$$
, $(C_{11} - C_{12}) > 0$, $C_{44} > 0$

И

$$(C_{11} + C_{12})C_{33} - 2C_{13}^2 > 0$$

и для орторомбических кристаллов

$$C_{11} > 0, \quad C_{22} > 0, \quad C_{33} > 0, \quad C_{44} > 0, \quad C_{55} > 0,$$

$$C_{66} > 0, \quad C_{11} + C_{22} + C_{33} + 2(C_{12} + C_{13} + C_{23}) > 0,$$

$$(C_{11} + C_{22} - 2C_{12}) > 0, \quad (C_{11} + C_{33} - 2C_{13}) > 0$$

И

 $(C_{22} + C_{33} - 2C_{23}) > 0.$

Мы установили, что все исследованные тетрабориды удовлетворяют этим условиям. Таким образом, можно утверждать, что фазы *M*B₄ являются внутренне устойчивыми, то есть их полная энергия находится в локальном минимуме относительно малых структурных

Д.В. Суетин

Фаза	C_{11}	C_{22}	C_{33}	C_{12}	C_{13}	C_{23}	C_{44}	C 55	C_{66}
RuB ₄ Pmmn	604.5	558.0	639.8	96.3	238.3	47.3	160.2	363.9	209.7
RuB ₄ R-3m	471.9	_	917.6	146.1	115.8	_	198.5	_	162.9
RuB ₄ Immm	881.1	295.5	460.3	151.0	96.3	202.0	201.6	167.0	173.4
RuB_4Pnnm	397.2	819.0	389.9	173.8	196.7	106.9	159.0	195.9	228.9
OsB_4Pmmn	638.6	679.2	117.3	255.5	45.3	178.3	381.1	223.2	
	(612 [24];	(576 [24];	(630 [24];	(128 [24];	(245 [24];	(51 [24];	(152 [24];	(349 [24];	(178 [24];
	605 [25]*)	583 [25])	632 [25])	127 [25])	247 [25])	48 [25])	149 [25])	347 [25])	177 [25])
OsB ₄ R-3m	499.9	_	937.2	134.4	155.4	_	214.2	_	182.7
OsB ₄ Immm	740.9	258.6	436.4	194.3	46.4	183.3	167.1	216.5	195.2
OsB ₄ Pnnm	387.6	814.3	294.7	213.3	252.1	164.5	160.9	190.0	241.2
RhB_4Pmmn	507.5	441.1	530.5	138.4	223.7	103.6	129.4	257.0	196.1
RhB ₄ R-3m	394.5	—	790.4	155.7	132.2	—	163.5	—	119.4
RhB ₄ Immm	748.1	212.7	438.9	152.3	148.0	227.3	105.9	150.7	135.1
RhB_4Pnnm	325.3	656.9	340.0	257.5	136.5	149.1	127.3	108.7	222.5
IrB ₄ Pmmn	575.2	421.2	585.3	172.2	291.8	161.6	124.0	255.4	201.0
IrB ₄ R-3m	343.3	—	727.7	165.5	208.3	—	163.2	—	88.9
IrB ₄ Immm	763.5	230.7	361.6	182.9	94.4	201.0	98.6	155.1	159.9
IrB ₄ Pnnm	325.5	718.9	362.7	274.6	153.9	153.9	121.9	88.6	216.5
PdB ₄ Pmmn	397.7	429.0	457.3	142.5	192.3	97.4	71.7	129.2	176.1
PdB_4R-3m	378.1	—	663.7	116.2	154.4	—	150.5	—	130.9
PdB ₄ Immm	579.7	187.4	268.3	138.0	100.3	146.5	69.3	90.8	68.1
PdB_4Pnnm	306.7	560.2	305.1	244.6	133.0	136.2	74.8	109.3	191.3
PtB ₄ Pmmn	453.5	415.1	486.4	163.5	217.1	111.3	83.9	173.8	183.8
PtB ₄ R-3m	367.2	—	641.2	111.8	199.3	—	140.4	—	127.7
PtB ₄ Immm	645.7	259.3	310.9	119.1	100.9	153.8	72.8	131.3	106.4
PtB₄Pnnm	279.0	630.2	344.5	212.8	131.3	110.5	63.1	108.1	193.5

Таблица 4. Рассчитанные упругие константы (C_{ij} , в GPa) для всех исследованных MB_4 -фаз (M = Ru, Os, Rh, Ir, Pd, Pt)

Примечание. * В скобках приводятся результаты других теоретических расчетов [24,25].

деформаций. Это дает дополнительное подтверждение стабильности моделируемых материалов, напрямую связанной с возможностью их получения при нормальных условиях.

Выполненные оценки упругих констант позволяют нам получить макроскопические механические параметры монокристаллических фаз MB_4 , а именно их модули сжатия (B) и модули сдвига (G), используя два основных приближения, схемы Фойгта (V) [36] и Реусса (R) [37]. Для гексагональных кристаллов эти величины определяются как [33]:

$$B_{V} = \frac{2}{9} \left(C_{11} + C_{12} + 2C_{13} + \frac{1}{2}C_{33} \right),$$

$$G_{V} = \frac{1}{30} \left(C_{11} + C_{12} + 2C_{33} - 4C_{13} + 12C_{55} + 12C_{66} \right),$$

$$B_{R} = \frac{(C_{11} + C_{12})C_{33} - 2C_{13}^{2}}{C_{11} + C_{12} + 2C_{33} - 4C_{13}},$$

$$G_{R} = \frac{5}{2} \frac{\left[(C_{11} + C_{12})C_{33} - 2C_{13}^{2} \right]C_{55}C_{66}}{3B_{V}C_{55}C_{66} + \left[(C_{11} + C_{12})C_{33} - 2C_{13}^{2} \right](C_{55} + C_{66})}$$

Для орторомбических кристаллов модули сжатия и сдвига рассчитываются как [38]:

$$B_V = \frac{1}{9} \left(C_{11} + C_{22} + C_{33} + 2(C_{12} + C_{13} + C_{23}) \right),$$

Физика твердого тела, 2019, том 61, вып. 1

$$G_{V} = \frac{1}{15} \left(C_{11} + C_{22} + C_{33} - (C_{12} + C_{13} + C_{23}) + 3(C_{44} + C_{55} + C_{66}) \right),$$

$$B_{R} = \frac{1}{S_{11} + S_{22} + S_{33} + 2(S_{12} + S_{13} + S_{23})},$$

$$= 15$$

 $G_R = \frac{15}{4(S_{11} + S_{22} + S_{33}) - 4(S_{12} + S_{13} + S_{23}) + 3(S_{44} + S_{55} + S_{66})},$ где S_{ij} — элементы матрицы упругой податливости. Здесь в орторомбической системе коэффициенты S_{ij} и C_{ij} связаны выражениями [38]:

$$S_{11} = \frac{(C_{22}C_{33} - C_{23}^2)}{D}, \quad S_{22} = \frac{(C_{11}C_{33} - C_{13}^2)}{D},$$

$$S_{33} = \frac{(C_{11}C_{33} - C_{12}^2)}{D},$$

$$S_{12} = \frac{-(C_{12}C_{33} - C_{13}C_{23})}{D}, \quad S_{13} = \frac{(C_{12}C_{23} - C_{13}C_{22})}{D},$$

$$S_{23} = \frac{-(C_{11}C_{23} - C_{13}C_{12})}{D},$$

$$C_{44} = \frac{1}{C_{44}}, \quad S_{55} = \frac{1}{C_{55}}, \quad S_{66} = \frac{1}{C_{66}},$$

$$D = C_{11}C_{22}C_{33} + 2C_{12}C_{13}C_{23} - C_{23}^2C_{11}$$

$$-C_{12}^2C_{33} - C_{13}^2C_{22}.$$

Далее полезно оценить упругие модули для поликристаллических *M*B₄. Для этой цели было применено широко используемая аппроксимация Фойгта–Реусса– Хилла (VRH) [39]. Необходимо отметить, что наши расчеты проведены в приближении нулевой пористости керамики *M*B₄. Таким образом, модули упругости были получены из *B*_{V,R} и *G*_{V,R} в простых выражениях как

И

$$G_{\mathrm{VRH}} = rac{1}{2} \left(G_{\mathrm{V}} + G_{\mathrm{R}}
ight).$$

 $B_{\rm VRH} = \frac{1}{2} \left(B_{\rm V} + B_{\rm R} \right)$

В этом случае средняя сжимаемость, модули Юнга $(Y_{\rm VRH})$, отношение Пуассона (ν) и константы Ламе (μ, λ) для тетраборидов могут быть рассчитаны как [33]

$$Y_{\text{VRH}} = \frac{9B_{\text{VRH}}G_{\text{VRH}}}{3B_{\text{VRH}} + G_{\text{VRH}}},$$
$$\nu = \frac{3B_{\text{VRH}} - 2G_{\text{VRH}}}{2(3B_{\text{VRH}} + G_{\text{VRH}})},$$
$$\mu = \frac{Y_{\text{VRH}}}{2(1+\nu)}, \qquad \lambda = \frac{\nu Y_{\text{VRH}}}{(1+\nu)(1-2\nu)}$$

Вышеуказанные рассчитанные параметры приведены в табл. 5. Максимальный модуль сжатия В (который представляет собой сопротивление к изменению объема) и минимальная сжимаемость $\beta = 1/B$ получена для IrB₄ с пространственной группой Рттп IrB₄ (306.2 GPa), OsB₄ с этой же структурой (303.3 GPa) и OsB₄ со структурой типа R-3m (301.8 GPa), которые очень близки к значениям для орторомбического OsB4 с пространственной группой Рттп, рассмотренного в [24,25], табл. 5. В то же время минимальный В (максимальная β) был обнаружен для PdB₄ с пространственной группой Immm (186.4 GPa). В целом объемные модули сжатия тетраборидов изменяются в следующем порядке: (i) B(Pmmn) > B(R-3m) > B(Pnnm) > B(Immm)для фаз того же состава; (ii) $B(\operatorname{RuB}_4) > B(\operatorname{RhB}_4) >$ > B (PdB₄) и B (OsB₄) > B (IrB₄) > B(PtB₄) для ряда изоструктурных фаз.

Отметим, что объемные модули сжатия В для МВ4 связаны обратно с параметрами элементарной ячейки (или объемом V) согласно приближению Коэна $B \sim V^{-k}$ [40]. В свою очередь самый большой модуль сдвига G (который представляет собой сопротивление деформации сдвига против внешних сил) был обнаружен также для OsB4 и RuB4 с пространственной группой Рттп (246.5 и 231.0 GPa), тогда как PdB₄ с пространственной группой Immm (78.0 GPa) должен обладать самым слабым сопротивлением к деформациям сдвига. Тренд изменения модуля сдвига подобен такому для модуля сжатия рассмотренных тетраборидов, табл. 5. В целом для всех систем имеем соотношение B > G; это означает, что параметром, ограничивающим механическую стабильность этих материалов, является модуль сдвига G.

Интересной механической характеристикой материалов является их хрупкое/пластичное поведение, связанное с их обратимой остаточной деформацией и разрушающей способностью. Широко используемая критерий хрупкости/пластичности — индикатор Пуга (отношение G/B) [41]: как известно эмпирически, материал ведет себя как пластичный, если G/B < 0.5, и наоборот, если G/B > 0.5, материал демонстрирует хрупкость. Кроме того, из коэффициента Пуассона ν следует полезный показатель хрупкого/пластичного поведения: известно, что для хрупких ковалентных материалов эти значения малы, тогда как для пластичных металлических материалов ν обычно составляет 0.33 [42].

Из табл. 5, в которой приведены рассчитанные значения отношения G/B и коэффициента Пуассона v, мы можем разделить исследуемые тетрабориды МВ4 на три группы (согласно их хрупкому/пластичному поведению). Первая группа включает абсолютное большинство исследованных тетраборадов, которые сочетают хрупкость с металлическими свойствами (см. ниже). Здесь RuB₄ и предсказанный OsB4 с пространственной группой Рттп обладают максимальной хрупкостью, табл. 5. Вторая группа, состоящая из PdB₄ с пространственными группами Immm и Pnnm, RhB4 с пространственной группой Immm, а также IrB4 со структурами типа Immm, Pnnm и R-3m, объединяет пластичные металлические материалы. Наконец, третья группа представлена исключительно PtB₄ с пространственной группой Immm, который расположен на границе хрупкого/пластичного перехода. Анализ значений отношения Пуассона показывает доминирующий вклад ковалентных взаимодействий для всех рассмотренных тетраборидов.

Упругая анизотропия (УА) является важным механическим параметром, связанным с возможностью образования микротрещин в материалах. Существуют различные способы оценки УА в кристаллах [43], например, с использованием упругих констант, которые полезны для количественного анализа анизотропии по сжатию или по сдвигу в отдельности.

Для гексагональных кристаллов т.н. анизотропное отношение [44]

$$A = C_{44}/C_{66}$$

может быть использовано в качестве оценки УА по сдвигу; для изотропных материалов A = 1. Этот коэффициент показывает (табл. 6), что среди всех исследованных ромбоэдрических тетраборидов IrB₄ принимает максимальную УА, в то время как другие системы с A < 1.4 достаточно близки к изотропному пределу.

Более того, анизотропию по сжатию для гексагональных кристаллов можно оценить по соотношению между коэффициентами линейной сжимаемости k_c/k_a [45]:

$$k_c/k_a = (C_{11} + C_{12} - 2C_{13})/(C_{33} - C_{13}),$$

которое является степенью анизотропии для линейной сжимаемости вдоль направлений a и c; значение $k_c/k_a = 1$ соответствует изотропной сжимаемости.

Фаза	$B_{ m V}^{*}$	BR	$B_{ m VRH}$	$G_{ m V}$	$G_{ m R}$	$G_{ m VRH}$
RuB ₄ Pmmn	285.1	278.0	281.6	241.4	220.5	231.0
RuB₄R-3m	290.7	271.4	281.1	210.9	195.5	203.2
RuB₄Immm	281.7	249.9	265.8	187.6	151.1	169.3
RuB₄Pnnm	284.5	265.6	275.1	192.0	166.9	179.5
OsB ₄ Pmmn	306.7	299.9	303 3	256.9	236.1	246.5
000041 111111	500.7	277.5	(294 [24])	200.9	200.1	(218 [24])
			293 [25]**)			(210 [21])
$OsB_{2}R_{3}m$	314.1	289.4	301.8	2217	210.7	217 [23])
OsB dmmm	253.8	230.3	242.1	183.2	133 /	158.3
OsB (Pnnm	306.3	250.5	242.1	176.2	1147	145.5
RhB Pmmn	267.8	261.3	267.4	18/1	1726	178.3
RhB ₄ R ₋ 3m	267.8	201.5	259.2	166.6	1514	159.0
RhB Jmmm	200.8	249.0	239.5	136.5	88.2	112.4
RhB Pnnm	272.0	200.5	250.1	1/3.6	1247	13/1
IrB. Pmmn	207.0	297.6	306.2	179.8	166.8	173.3
$IrB_{r}B_{r}B_{-}3m$	286.5	250.6	268.6	138.5	122.5	130.5
IrB Immm	256.9	230.0	208.0	1/1 2	90.6	115.0
IrB. Pnnm	250.9	220.7	256.0	141.2	116.8	128.6
DdB Dmmn	285.8	240.5	200.1	132.2	110.0	125.0
$\mathbf{P}_{d}\mathbf{B}_{a}\mathbf{P}_{a}\mathbf{T}_{m}$	250.7	237.0	230.2	152.2	147.2	125.2
PdB Jmmm	200.5	1723	1867	89.0	67.0	78.0
DdB Dnnm	200.5	217.1	230.8	110.0	101.0	110
DtB. Dmmn	244.4	217.1	257.6	145.8	132.0	£130 /
$PtB_{R_{-}}3m$	255.5	235.4	251.0	130 /	135.0	137 /
PtB Immm	200.5	199.6	208.9	118.2	973	107.8
PtB₄Pnnm	240.3	213.8	200.9	126.2	100.8	113.5
i tD4i mmi	240.5	215.0	22/.1	120.2	100.0	115.5
	_					_
Фаза	β	$B_{\rm VRH}/G_{\rm VRH}$	Y	ν	μ	λ
Фаза RuB ₄ Pmmn	β 0.355	<i>B</i> _{VRH} / <i>G</i> _{VRH} 1.22	У 544.1	ν 0.178	μ 2.31	λ 1.28
Фаза RuB₄Pmmn RuB₄R-3m	β 0.355 0.356	В _{VRH} /G _{VRH} 1.22 1.38	<i>Y</i> 544.1 491.2	v 0.178 0.209	μ 2.31 2.03	λ 1.28 1.46
Фаза RuB₄Pmmn RuB₄R-3m RuB₄Immm	β 0.355 0.356 0.376	B _{VRH} /G _{VRH} 1.22 1.38 1.57	<i>Y</i> 544.1 491.2 419.0	v 0.178 0.209 0.237	μ 2.31 2.03 1.69	λ 1.28 1.46 1.53
Φaзa RuB₄Pmmn RuB₄R-3m RuB₄Immm RuB₄Pnnm	β 0.355 0.356 0.376 0.363	B _{VRH} /G _{VRH} 1.22 1.38 1.57 1.53	<i>Y</i> 544.1 491.2 419.0 442.2	v 0.178 0.209 0.237 0.232	μ 2.31 2.03 1.69 1.79	λ 1.28 1.46 1.53 1.56
Φaзa RuB₄Pmmn RuB₄R-3m RuB₄Immm RuB₄Pnnm OsB₄Pmmn	β 0.355 0.356 0.376 0.363 0.330	B _{VRH} /G _{VRH} 1.22 1.38 1.57 1.53 1.23	<i>Y</i> 544.1 491.2 419.0 442.2 581.9	v 0.178 0.209 0.237 0.232 0.180	μ 2.31 2.03 1.69 1.79 2.46	λ 1.28 1.46 1.53 1.56 1.39
Φa3a RuB ₄ Pmmn RuB ₄ R-3m RuB ₄ Immm RuB ₄ Pnnm OsB ₄ Pmmn	β 0.355 0.356 0.376 0.363 0.330	B _{VRH} /G _{VRH} 1.22 1.38 1.57 1.53 1.23 1.34 [24];	<i>Y</i> 544.1 491.2 419.0 442.2 581.9 524 [24];	v 0.178 0.209 0.237 0.232 0.180	μ 2.31 2.03 1.69 1.79 2.46	λ 1.28 1.46 1.53 1.56 1.39
Φa3a RuB ₄ Pmmn RuB ₄ R-3m RuB ₄ Immm RuB ₄ Pnnm OsB ₄ Pmmn	β 0.355 0.356 0.376 0.363 0.330	B _{VRH} /G _{VRH} 1.22 1.38 1.57 1.53 1.23 1.34 [24]; 1.35 [25]	<i>Y</i> 544.1 491.2 419.0 442.2 581.9 524 [24]; 522 [25]	v 0.178 0.209 0.237 0.232 0.180	μ 2.31 2.03 1.69 1.79 2.46	λ 1.28 1.46 1.53 1.56 1.39
Φa3a RuB ₄ Pmmn RuB ₄ R-3m RuB ₄ Immm RuB ₄ Pnnm OsB ₄ Pmmn OsB ₄ R-3m	β 0.355 0.356 0.376 0.363 0.330 0.331	$\frac{B_{\rm VRH}/G_{\rm VRH}}{1.22}$ 1.38 1.57 1.53 1.23 1.34 [24]; 1.35 [25] 1.40	<i>Y</i> 544.1 491.2 419.0 442.2 581.9 524 [24]; 522 [25] 523.6	v 0.178 0.209 0.237 0.232 0.180 0.211	μ 2.31 2.03 1.69 1.79 2.46 2.16	λ 1.28 1.46 1.53 1.56 1.39 1.58
Φa3a RuB ₄ Pmmn RuB ₄ R-3m RuB ₄ Immm RuB ₄ Pnnm OsB ₄ Pmmn OsB ₄ R-3m OsB ₄ Immm	$\begin{array}{c} \beta \\ 0.355 \\ 0.356 \\ 0.376 \\ 0.363 \\ 0.330 \\ \end{array} \\ \begin{array}{c} 0.331 \\ 0.413 \end{array}$	$\begin{array}{r} B_{\rm VRH}/G_{\rm VRH} \\ 1.22 \\ 1.38 \\ 1.57 \\ 1.53 \\ 1.23 \\ 1.34 \ [24]; \\ 1.35 \ [25] \\ 1.40 \\ 1.53 \end{array}$	<i>Y</i> 544.1 491.2 419.0 442.2 581.9 524 [24]; 522 [25] 523.6 390.0	v 0.178 0.209 0.237 0.232 0.180 0.211 0.231	μ 2.31 2.03 1.69 1.79 2.46 2.16 1.58	λ 1.28 1.46 1.53 1.56 1.39 1.58 1.36
Φaзa RuB₄Pmmn RuB₄R-3m RuB₄Immm RuB₄Pnnm OsB₄Pmmn OsB₄Pmmn OsB₄R-3m OsB₄Immm OsB₄Pnnm	$\begin{array}{c} \beta \\ 0.355 \\ 0.356 \\ 0.376 \\ 0.363 \\ 0.330 \\ \end{array} \\ \begin{array}{c} 0.331 \\ 0.413 \\ 0.348 \end{array}$	B _{VRH} /G _{VRH} 1.22 1.38 1.57 1.53 1.23 1.34 [24]; 1.35 [25] 1.40 1.53 1.98	<i>Y</i> 544.1 491.2 419.0 442.2 581.9 524 [24]; 522 [25] 523.6 390.0 373.4	v 0.178 0.209 0.237 0.232 0.180 0.211 0.231 0.283	μ 2.31 2.03 1.69 1.79 2.46 2.16 1.58 1.45	λ 1.28 1.46 1.53 1.56 1.39 1.58 1.36 1.90
Φa3a RuB4Pmmn RuB4R-3m RuB4Immm RuB4Pnnm OsB4Pmmn OsB4R-3m OsB4Immm OsB4Pnnm RhB4Pmmn	β 0.355 0.356 0.376 0.363 0.330 0.331 0.413 0.348 0.378	B _{VRH} /G _{VRH} 1.22 1.38 1.57 1.53 1.23 1.34 [24]; 1.35 [25] 1.40 1.53 1.98 1.48	<i>Y</i> 544.1 491.2 419.0 442.2 581.9 524 [24]; 522 [25] 523.6 390.0 373.4 436.9	v 0.178 0.209 0.237 0.232 0.180 0.211 0.231 0.283 0.220	μ 2.31 2.03 1.69 1.79 2.46 2.16 1.58 1.45 1.78	λ 1.28 1.46 1.53 1.56 1.39 1.58 1.36 1.90 1.46
Φa3a RuB4Pmmn RuB4R-3m RuB4Immm RuB4Pnnm OsB4Pnnm OsB4Pmmn OsB4Pnnm RhB4Pmmn RhB4Pmmn RhB4R-3m	β 0.355 0.356 0.376 0.363 0.330 0.331 0.413 0.348 0.378 0.386	B _{VRH} /G _{VRH} 1.22 1.38 1.57 1.53 1.23 1.34 [24]; 1.35 [25] 1.40 1.53 1.98 1.48 1.63	<i>Y</i> 544.1 491.2 419.0 442.2 581.9 524 [24]; 522 [25] 523.6 390.0 373.4 436.9 396.0	v 0.178 0.209 0.237 0.232 0.180 0.211 0.231 0.283 0.220 0.245 0.25	μ 2.31 2.03 1.69 1.79 2.46 2.16 1.58 1.45 1.78 1.59	λ 1.28 1.46 1.53 1.56 1.39 1.58 1.36 1.90 1.46 1.53
Φa3a RuB₄Pmmn RuB₄R-3m RuB₄Immm RuB₄Pnnm OsB₄Pmmn OsB₄R-3m OsB₄Pnnm OsB₄Pnnm RhB₄Pnnm RhB₄R-3m RhB₄R-3m RhB₄Immm	β 0.355 0.356 0.376 0.363 0.330 0.331 0.413 0.348 0.378 0.386 0.418	B _{VRH} /G _{VRH} 1.22 1.38 1.57 1.53 1.23 1.34 [24]; 1.35 [25] 1.40 1.53 1.98 1.48 1.63 2.13	Y 544.1 491.2 419.0 442.2 581.9 524 [24]; 522 [25] 523.6 390.0 373.4 436.9 396.0 291.5	v 0.178 0.209 0.237 0.232 0.180 0.211 0.231 0.283 0.220 0.245 0.297 0.271	μ 2.31 2.03 1.69 1.79 2.46 2.16 1.58 1.45 1.78 1.59 1.12	λ 1.28 1.46 1.53 1.56 1.39 1.58 1.36 1.90 1.46 1.53 1.65
Φa3a RuB₄Pmmn RuB₄R-3m RuB₄Immm RuB₄Pnnm OsB₄Pmmn OsB₄R-3m OsB₄Immm OsB₄Pnnm RhB₄Pnnm RhB₄Pmmn RhB₄Pmmn RhB₄Pnnm RhB₄Pnnm RhB₄Pnnm	β 0.355 0.356 0.376 0.363 0.330 0.331 0.413 0.348 0.378 0.386 0.418 0.400	B _{VRH} /G _{VRH} 1.22 1.38 1.57 1.53 1.23 1.34 [24]; 1.35 [25] 1.40 1.53 1.98 1.48 1.63 2.13 1.86	Y 544.1 491.2 419.0 442.2 581.9 524 [24]; 522 [25] 523.6 390.0 373.4 436.9 396.0 291.5 341.4	v 0.178 0.209 0.237 0.232 0.180 0.211 0.231 0.283 0.220 0.245 0.297 0.272 0.272	μ 2.31 2.03 1.69 1.79 2.46 2.16 1.58 1.45 1.78 1.59 1.12 1.34	λ 1.28 1.46 1.53 1.56 1.39 1.58 1.36 1.90 1.46 1.53 1.65 1.61
ΦasaRuB₄PmmnRuB₄R-3mRuB₄ImmmRuB₄PnnmOsB₄PmmnOsB₄R-3mOsB₄ImmmOsB₄PnnmRhB₄PnnmRhB₄R-3mRhB₄R-3mRhB₄ImmmRhB₄PnnmIrB₄PnnmIrB₄Pmmn	β 0.355 0.356 0.376 0.363 0.330 0.331 0.413 0.348 0.378 0.386 0.418 0.400 0.327	B _{VRH} /G _{VRH} 1.22 1.38 1.57 1.53 1.23 1.34 [24]; 1.35 [25] 1.40 1.53 1.98 1.48 1.63 2.13 1.86 1.77	Y 544.1 491.2 419.0 442.2 581.9 524 [24]; 522 [25] 523.6 390.0 373.4 436.9 396.0 291.5 341.4 437.4	v 0.178 0.209 0.237 0.232 0.180 0.211 0.283 0.220 0.245 0.297 0.272 0.262	μ 2.31 2.03 1.69 1.79 2.46 2.16 1.58 1.45 1.78 1.59 1.12 1.34 1.73	λ 1.28 1.46 1.53 1.56 1.39 1.58 1.36 1.90 1.46 1.53 1.65 1.61 1.91
Φa3a RuB₄Pmmn RuB₄R-3m RuB₄Pnnm RuB₄Pnnm OsB₄Pmmn OsB₄R-3m OsB₄Pnnm OsB₄Pnnm RhB₄Pmmn RhB₄R-3m RhB₄R-3m RhB₄R-3m RhB₄Pnnm IrB₄Pnnm IrB₄R-3m	β 0.355 0.356 0.376 0.363 0.330 0.331 0.413 0.348 0.378 0.386 0.418 0.400 0.327 0.372 0.372	B _{VRH} /G _{VRH} 1.22 1.38 1.57 1.53 1.23 1.34 [24]; 1.35 [25] 1.40 1.53 1.98 1.48 1.63 2.13 1.86 1.77 2.06	Y 544.1 491.2 419.0 442.2 581.9 524 [24]; 522 [25] 523.6 390.0 373.4 436.9 396.0 291.5 341.4 437.4 336.9	v 0.178 0.209 0.237 0.232 0.180 0.211 0.231 0.283 0.220 0.245 0.297 0.272 0.262 0.291	μ 2.31 2.03 1.69 1.79 2.46 2.16 1.58 1.45 1.78 1.59 1.12 1.34 1.73 1.31	λ 1.28 1.46 1.53 1.56 1.39 1.58 1.36 1.90 1.46 1.53 1.65 1.61 1.91 1.82
Φa3a RuB₄Pmmn RuB₄R-3m RuB₄Pnnm OsB₄Pnnm OsB₄Pmmn OsB₄Pnnm OsB₄Pnnm RhB₄Pmmn RhB₄Pnnm RhB₄Pnnm RhB₄R-3m RhB₄Pnnm IrB₄Pnnm IrB₄R-3m IrB₄R-3m IrB₄R-3m IrB₄R-3m IrB₄R-3m IrB₄R-3m IrB₄R-3m IrB₄R-3m	β 0.355 0.356 0.376 0.363 0.330 0.331 0.413 0.348 0.378 0.386 0.418 0.400 0.327 0.372 0.419 0.255	B _{VRH} /G _{VRH} 1.22 1.38 1.57 1.53 1.23 1.34 [24]; 1.35 [25] 1.40 1.53 1.98 1.48 1.63 2.13 1.86 1.77 2.06 2.06 2.06	Y 544.1 491.2 419.0 442.2 581.9 524 [24]; 522 [25] 523.6 390.0 373.4 436.9 396.0 291.5 341.4 437.4 336.9 299.3	v 0.178 0.209 0.237 0.232 0.180 0.211 0.231 0.283 0.220 0.245 0.297 0.272 0.262 0.291 0.291 0.291 0.292	μ 2.31 2.03 1.69 1.79 2.46 2.16 1.58 1.45 1.78 1.59 1.12 1.34 1.73 1.31 1.16	λ 1.28 1.46 1.53 1.56 1.39 1.58 1.36 1.90 1.46 1.53 1.65 1.61 1.91 1.82 1.62 1.62
ΦasaRuB₄PmmnRuB₄R-3mRuB₄ImmmRuB₄PnnmOsB₄PnnmOsB₄PmmnOsB₄PnnmRhB₄PnnmRhB₄R-3mRhB₄ImmmRhB₄PnnmIrB₄PnnmIrB₄R-3mIrB₄R-3mIrB₄PnnmIrB₄Pnnm	β 0.355 0.356 0.376 0.363 0.330 0.331 0.413 0.348 0.378 0.386 0.418 0.400 0.327 0.372 0.419 0.376 0.376	$\begin{array}{r} B_{\rm VRH}/G_{\rm VRH} \\ 1.22 \\ 1.38 \\ 1.57 \\ 1.53 \\ 1.23 \\ 1.34 \ [24]; \\ 1.35 \ [25] \\ 1.40 \\ 1.53 \\ 1.98 \\ 1.48 \\ 1.63 \\ 2.13 \\ 1.86 \\ 1.77 \\ 2.06 \\ 2.06 \\ 2.06 \\ 2.07 \\ 1.62 \end{array}$	Y 544.1 491.2 419.0 442.2 581.9 524 [24]; 522 [25] 523.6 390.0 373.4 436.9 396.0 291.5 341.4 437.4 336.9 299.3 332.2	v 0.178 0.209 0.237 0.232 0.180 0.211 0.231 0.283 0.220 0.245 0.297 0.272 0.262 0.291 0.291 0.292 0.292	μ 2.31 2.03 1.69 1.79 2.46 2.16 1.58 1.45 1.78 1.59 1.12 1.34 1.73 1.31 1.16 1.29	λ 1.28 1.46 1.53 1.56 1.39 1.58 1.36 1.90 1.46 1.53 1.65 1.61 1.91 1.82 1.62 1.80
Φa3aRuB4PmmnRuB4R-3mRuB4ImmmRuB4PnnmOsB4PnnmOsB4PmmnOsB4PnnmRhB4PnnmRhB4PnnmRhB4R-3mRhB4PnnmIrB4R-3mIrB4R-3mIrB4R-mmIrB4R-mmIrB4RnmRhB4Pnnm	β 0.355 0.356 0.376 0.363 0.330 0.331 0.413 0.348 0.378 0.386 0.418 0.400 0.327 0.372 0.419 0.376 0.420 0.412	$\begin{array}{r} B_{\rm VRH}/G_{\rm VRH} \\ \hline 1.22 \\ 1.38 \\ 1.57 \\ 1.53 \\ 1.23 \\ 1.34 [24]; \\ 1.35 [25] \\ 1.40 \\ 1.53 \\ 1.98 \\ 1.48 \\ 1.63 \\ 2.13 \\ 1.86 \\ 1.77 \\ 2.06 \\ 2.06 \\ 2.07 \\ 1.90 \\ 1.62 \end{array}$	Y 544.1 491.2 419.0 442.2 581.9 524 [24]; 522 [25] 523.6 390.0 373.4 436.9 396.0 291.5 341.4 437.4 336.9 299.3 332.2 319.7	v 0.178 0.209 0.237 0.232 0.180 0.211 0.231 0.283 0.220 0.245 0.297 0.272 0.262 0.291 0.291 0.292 0.276 0.211	μ 2.31 2.03 1.69 1.79 2.46 2.16 1.58 1.45 1.78 1.59 1.12 1.34 1.73 1.31 1.16 1.29 1.25	λ 1.28 1.46 1.53 1.56 1.39 1.58 1.36 1.90 1.46 1.53 1.65 1.61 1.91 1.82 1.62 1.80 1.55 1.55
Φa3aRuB4PmmnRuB4R-3mRuB4ImmmRuB4PnnmOsB4PnnmOsB4PmmnOsB4PnnmRhB4PnnmRhB4R-3mRhB4PnnmIrB4R-3mIrB4R-3mIrB4PnnmIrB4PnnmPdB4PnnmPdB4R-3mPdB4R-3m	β 0.355 0.356 0.376 0.363 0.330 0.331 0.413 0.348 0.378 0.386 0.418 0.400 0.327 0.372 0.419 0.376 0.420 0.412 0.525	B _{VRH} /G _{VRH} 1.22 1.38 1.57 1.53 1.23 1.34 [24]; 1.35 [25] 1.40 1.53 1.98 1.48 1.63 2.13 1.86 1.77 2.06 2.06 2.07 1.90 1.62 2.22	Y 544.1 491.2 419.0 442.2 581.9 524 [24]; 522 [25] 523.6 390.0 373.4 436.9 396.0 291.5 341.4 437.4 336.9 299.3 332.2 319.7 373.0 295.4	v 0.178 0.209 0.237 0.232 0.180 0.211 0.231 0.283 0.220 0.245 0.297 0.272 0.262 0.291 0.291 0.292 0.276 0.244 0.211	μ 2.31 2.03 1.69 1.79 2.46 2.16 1.58 1.45 1.78 1.59 1.12 1.34 1.73 1.31 1.16 1.29 1.25 1.50 0.50	λ 1.28 1.46 1.53 1.56 1.39 1.58 1.36 1.90 1.46 1.53 1.65 1.61 1.91 1.82 1.62 1.80 1.55 1.43
Φa3a RuB₄Pmmn RuB₄R-3m RuB₄Pnnm RuB₄Pnnm OsB₄Pnnm OsB₄Pnnm OsB₄Pnnm RhB₄Pmmn RhB₄Pnnm RhB₄Pnnm RhB₄R-3m IrB₄Pnnm IrB₄Pnnm IrB₄Pnnm PdB₄Pnnm PdB₄Pnnm PdB₄Pnnm PdB₄Pnnm PdB₄Pnnm	β 0.355 0.356 0.376 0.363 0.330 0.331 0.413 0.348 0.378 0.386 0.418 0.400 0.327 0.372 0.419 0.376 0.420 0.412 0.536 0.422	$\begin{array}{r} B_{\rm VRH}/G_{\rm VRH} \\ \hline 1.22 \\ 1.38 \\ 1.57 \\ 1.53 \\ 1.23 \\ 1.34 [24]; \\ 1.35 [25] \\ 1.40 \\ 1.53 \\ 1.98 \\ 1.48 \\ 1.63 \\ 2.13 \\ 1.86 \\ 1.77 \\ 2.06 \\ 2.07 \\ 1.90 \\ 1.62 \\ 2.39 \\ 2.10 \end{array}$	Y 544.1 491.2 419.0 442.2 581.9 524 [24]; 522 [25] 523.6 390.0 373.4 436.9 396.0 291.5 341.4 437.4 336.9 299.3 332.2 319.7 373.0 205.4 291.2	v 0.178 0.209 0.237 0.232 0.180 0.211 0.231 0.283 0.220 0.245 0.297 0.272 0.262 0.291 0.291 0.292 0.276 0.244 0.316 0.251	μ 2.31 2.03 1.69 1.79 2.46 2.16 1.58 1.45 1.78 1.59 1.12 1.34 1.73 1.31 1.16 1.29 1.25 1.50 0.78 1.22	λ 1.28 1.46 1.53 1.56 1.39 1.58 1.36 1.90 1.46 1.53 1.65 1.61 1.91 1.82 1.62 1.80 1.55 1.43 1.34 1.57
Φa3a RuB₄Pmmn RuB₄R-3m RuB₄Pnnm RuB₄Pnnm OsB₄Pnnm OsB₄Pnnm OsB₄Pnnm RhB₄Pmmn RhB₄Pnnm RhB₄Pnnm RhB₄Pnnm IrB₄Pnnm IrB₄Pnnm IrB₄Pnnm IrB₄Pnnm PdB₄Pnnm PdB₄Pnnm PdB₄Pnnm PdB₄Pnnm PdB₄Pnnm PdB₄Pnnm	β 0.355 0.356 0.376 0.363 0.330 0.331 0.413 0.348 0.378 0.386 0.418 0.400 0.327 0.372 0.419 0.376 0.420 0.412 0.536 0.433 0.232	B _{VRH} /G _{VRH} 1.22 1.38 1.57 1.53 1.23 1.34 [24]; 1.35 [25] 1.40 1.53 1.98 1.48 1.63 2.13 1.86 1.77 2.06 2.07 1.90 1.62 2.39 2.10	Y 544.1 491.2 419.0 442.2 581.9 524 [24]; 522 [25] 523.6 390.0 373.4 436.9 396.0 291.5 341.4 437.4 336.9 299.3 332.2 319.7 373.0 205.4 284.8	v 0.178 0.209 0.237 0.232 0.180 0.211 0.231 0.232 0.180 0.211 0.231 0.283 0.220 0.245 0.297 0.262 0.291 0.292 0.276 0.244 0.316 0.294	μ 2.31 2.03 1.69 1.79 2.46 2.16 1.58 1.45 1.78 1.59 1.12 1.34 1.73 1.31 1.16 1.29 1.25 1.50 0.78 1.10	λ 1.28 1.46 1.53 1.56 1.39 1.58 1.36 1.90 1.46 1.53 1.65 1.61 1.91 1.82 1.62 1.80 1.55 1.43 1.34 1.57 1.65
Φa3aRuB4PmmnRuB4R-3mRuB4ImmmRuB4PnnmOsB4PnnmOsB4PmmnOsB4PnnmRhB4PnnmRhB4R-3mRhB4R-3mIrB4R-3mIrB4R-3mIrB4PmmnIrB4PnnmPdB4PnnmPdB4R-3mPdB4R-3mPdB4R-3mPdB4R-3mPdB4R-3mPdB4R-3mPdB4R-3mPdB4R-3mPdB4R-3mPdB4R-3mPdB4R-3mPdB4R-3mPdB4PnnmPdB4PnnmPdB4PnnmPdB4PnnmPdB4PnnmPdB4PnnmPdB4PnnmPdB4Pnnm	β 0.355 0.356 0.376 0.363 0.330 0.331 0.413 0.348 0.378 0.386 0.418 0.400 0.327 0.372 0.419 0.376 0.420 0.412 0.536 0.433 0.388 0.388 0.322	$\begin{array}{r} B_{\rm VRH}/G_{\rm VRH} \\ \hline 1.22 \\ 1.38 \\ 1.57 \\ 1.53 \\ 1.23 \\ 1.34 [24]; \\ 1.35 [25] \\ 1.40 \\ 1.53 \\ 1.98 \\ 1.48 \\ 1.63 \\ 2.13 \\ 1.86 \\ 1.77 \\ 2.06 \\ 2.07 \\ 1.90 \\ 1.62 \\ 2.39 \\ 2.10 \\ 1.85 \\ 1.85 \\ 1.85 \\ 1.85 \\ 1.85 \\ 1.85 \\ 1.92 \\ 1.85 \\ 1.92 \\ 1.$	Y 544.1 491.2 419.0 442.2 581.9 524 [24]; 522 [25] 523.6 390.0 373.4 436.9 396.0 291.5 341.4 437.4 336.9 299.3 332.2 319.7 373.0 205.4 284.8 354.2	v 0.178 0.209 0.237 0.232 0.180 0.211 0.231 0.283 0.220 0.245 0.297 0.272 0.262 0.291 0.291 0.292 0.276 0.244 0.316 0.294 0.271 0.252	μ 2.31 2.03 1.69 1.79 2.46 2.16 1.58 1.45 1.78 1.59 1.12 1.34 1.73 1.31 1.16 1.29 1.25 1.50 0.78 1.10 1.39 1.27	λ 1.28 1.46 1.53 1.56 1.39 1.58 1.36 1.90 1.46 1.53 1.65 1.61 1.91 1.82 1.62 1.80 1.55 1.43 1.34 1.57 1.65
Φa3aRuB4PmmnRuB4R-3mRuB4ImmmRuB4PnnmOsB4PnnmOsB4PmmnOsB4PnnmRhB4PmmnRhB4R-3mRhB4R-3mIrB4R-3mIrB4PnnmIrB4PnnmPdB4PnnmPdB4PnnmPdB4PnnmPdB4R-3mPdB4R-3mPdB4R-3mPdB4R-3mPdB4R-3mPdB4R-3mPdB4PnnmPdB4R-3mPdB4PnnmPdB4PnnmPdB4PnnmPdB4PnmPdB4R-3mPdB4R-3mPdB4R-3m	β 0.355 0.356 0.376 0.363 0.330 0.331 0.413 0.348 0.378 0.386 0.418 0.400 0.327 0.372 0.419 0.376 0.420 0.412 0.536 0.433 0.388 0.398 0.475	$\begin{array}{r} B_{\rm VRH}/G_{\rm VRH} \\ \hline 1.22 \\ 1.38 \\ 1.57 \\ 1.53 \\ 1.23 \\ 1.34 [24]; \\ 1.35 [25] \\ 1.40 \\ 1.53 \\ 1.98 \\ 1.48 \\ 1.63 \\ 2.13 \\ 1.86 \\ 1.77 \\ 2.06 \\ 2.07 \\ 1.90 \\ 1.62 \\ 2.39 \\ 2.10 \\ 1.85 \\ 1.83 \\ 1.24 \end{array}$	Y 544.1 491.2 419.0 442.2 581.9 524 [24]; 522 [25] 523.6 390.0 373.4 436.9 396.0 291.5 341.4 437.4 336.9 299.3 332.2 319.7 373.0 205.4 284.8 354.2 348.7 275.2	v 0.178 0.209 0.237 0.232 0.180 0.211 0.231 0.232 0.180 0.211 0.231 0.283 0.220 0.245 0.297 0.262 0.291 0.292 0.276 0.244 0.316 0.294 0.271 0.269 0.271	μ 2.31 2.03 1.69 1.79 2.46 2.16 1.58 1.45 1.78 1.59 1.12 1.34 1.73 1.31 1.16 1.29 1.25 1.50 0.78 1.10 1.39 1.37 1.37	λ 1.28 1.46 1.53 1.56 1.39 1.58 1.36 1.90 1.46 1.53 1.65 1.61 1.91 1.82 1.62 1.80 1.55 1.43 1.34 1.57 1.65 1.60 1.27
Φa3aRuB₄PmmnRuB₄R-3mRuB₄ImmmRuB₄PnnmOsB₄PnnmOsB₄PmmnOsB₄PnnmRhB₄PmmnRhB₄PmmnRhB₄R-3mRhB₄R-3mIrB₄R-3mIrB₄R-3mIrB₄PnnmIrB₄PnnmPdB₄PnnmPdB₄PnnmPdB₄PnnmPdB₄PnnmPdB₄PnnmPdB₄PnnmPdB₄R-3mPdB₄R-3mPdB₄R-3mPdB₄R-3mPdB₄R-3mPtB₄R-3mPtB₄R-3mPtB₄R-3mPtB₄R-3mPtB₄R-3mPtB₄R-3mPtB₄R-3m	β 0.355 0.356 0.376 0.363 0.330 0.331 0.413 0.413 0.348 0.378 0.386 0.418 0.400 0.327 0.372 0.419 0.376 0.420 0.412 0.536 0.433 0.388 0.398 0.479 0.416	$\begin{array}{r} B_{\rm VRH}/G_{\rm VRH} \\ \hline 1.22 \\ 1.38 \\ 1.57 \\ 1.53 \\ 1.23 \\ 1.34 [24]; \\ 1.35 [25] \\ 1.40 \\ 1.53 \\ 1.98 \\ 1.48 \\ 1.63 \\ 2.13 \\ 1.98 \\ 1.48 \\ 1.63 \\ 2.13 \\ 1.86 \\ 1.77 \\ 2.06 \\ 2.06 \\ 2.07 \\ 1.90 \\ 1.62 \\ 2.39 \\ 2.10 \\ 1.85 \\ 1.83 \\ 1.94 \\ 2.20 \end{array}$	Y 544.1 491.2 419.0 442.2 581.9 524 [24]; 522 [25] 523.6 390.0 373.4 436.9 396.0 291.5 341.4 437.4 336.9 299.3 332.2 319.7 373.0 205.4 284.8 354.2 348.7 275.9 291.2	v 0.178 0.209 0.237 0.232 0.180 0.211 0.231 0.232 0.180 0.211 0.231 0.283 0.220 0.245 0.297 0.262 0.291 0.292 0.276 0.244 0.316 0.294 0.271 0.269 0.280	$\begin{array}{c} \mu \\ 2.31 \\ 2.03 \\ 1.69 \\ 1.79 \\ 2.46 \\ \end{array}$	λ 1.28 1.46 1.53 1.56 1.39 1.58 1.36 1.90 1.46 1.53 1.65 1.61 1.91 1.82 1.62 1.80 1.55 1.43 1.34 1.57 1.65 1.60 1.37

Таблица 5. Рассчитанные модули сжимаемость (B, в GPa) и сдвига (G, в GPa), сжатия (β , в 10⁻⁴ 1/GPa), модули Юнга (Y, в GPa), отношение Пуассона (ν), и коэффициенты Ламе (μ , λ) для различных фаз тетраборидов MB_4 (M = Ru, Os, Rh, Ir, Pd, Pt)

Примечание. * В приближениях Фойгта (V), Реусса (R) и Фойгта–Реусса–Хилла (VRH), см. текст. ** в скобках приведены результаты других теоретических расчетов [24,25].

Таблица 6. Рассчитанные индексы упругой анизотропии по сжатию или сдвигу (A_1 , A_2 , A_3 , A_{Ba} , A_{Bc} для орторомбических кристаллов, A и k_c/k_a для гексагональных кристаллов; A_B , A_G , A^U) для Pmmn, R-3m, Immm и Pnnm фаз тетраборидов MB_4 (M = Ru, Os, Rh, Ir, Pd, Pt)

Фаза	A_1	A_2	A_3	$A_{ m Ba}$	$A_{ m Bc}$	$A_{ m B}$	$A_{ m G}$	A^{U}
RuB ₄ Pmmn	0.835	1.319	0.865	1.557	1.412	1.270	4.535	0.501
RuB ₄ Immm	0.702	1.899	0.793	3.873	2.401	5.975	10.781	1.335
RuB ₄ Pnnm	1.616	0.787	1.054	0.515	0.424	3.412	6.984	0.821
OsB ₄ Pmmn	0.884	1.276	0.884	1.570	1.341	1.116	4.228	0.464
OsB ₄ Immm	0.616	2.637	1.278	4.442	2.330	4.843	15.719	1.967
OsB ₄ Pnnm	0.876	1.345	1.167	0.905	0.215	1.226	3.202	2.821
RhB ₄ Pmmn	0.876	1.345	1.167	1.661	1.492	1.226	3.202	0.356
RhB ₄ Immm	0.475	3.060	0.824	10.824	< 0	13.880	21.464	3.055
RhB ₄ Pnnm	1.299	0.622	1.905	0.138	0.138	7.008	7.072	0.912
IrB ₄ Pmmn	0.860	1.495	1.233	2.164	2.074	2.798	3.731	0.445
IrB ₄ Immm	0.421	3.261	1.018	7.739	3.909	7.579	21.823	2.956
IrB ₄ Pnnm	1.282	0.458	1.749	0.115	0.129	7.379	9.167	1.169
PdB4 Pmmn	0.609	0.747	1.300	1.216	1.238	0.236	5.545	0.592
PdB ₄ Immm	0.428	2.230	0.554	6.576	2.609	7.573	14.080	1.803
PdB ₄ Pnnm	0.866	0.738	2.026	0.185	0.165	5.914	8.141	1.012
PtB_4Pmmn	0.664	1.024	1.357	1.657	1.382	0.871	4.634	0.503
PtB ₄ Immm	0.386	2.001	0.638	2.962	1.408	4.448	9.719	1.170
PtB ₄ Pnnm	0.699	0.574	1.601	0.198	0.251	5.840	11.214	1.387
Фаза		Α		$k_c/$	k _a	A_{B}	$A_{ m G}$	A^{U}
RuB ₄ R-3m		1.218		0.4	82	3.429	3.801	0.466
OsB ₄ R-3m		1.172		0.4	14	4.098	2.545	0.347
RhB ₄ R-3m		1.369		0.4	34	3.712	4.755	0.576
IrB ₄ R-3m		1.836		0.1	78	6.675	6.150	0.798
PdB_4R-3m		1.149		0.3	64	3.990	1.828	0.269
PtB ₄ R-3m		1.100		0.1	82	5.996	1.443	0.274

Полученные значения k_c/k_a сравнимы между собой и изменяются в интервале от 0.178 до 0.482 (табл. 6). Это означает, что сжимаемость в этих тетраборидах вдоль оси c меньше, чем вдоль оси a.

Для орторомбических кристаллов мы рассчитали факторы анизотропии по сдвигу, которые представляют собой меру степени анизотропии межатомных связей в разных плоскостях. Фактор анизотропии по сдвигу для плоскости сдвига {100} между направлениями (011) и (010) равен [46]:

$$A_1 = 4C_{44}/(C_{11} + C_{33} - 2C_{13}),$$

для плоскости сдвига {010} между направлениями (101) и (001):

$$A_2 = 4C_{55}/(C_{22} + C_{33} - 2C_{23}),$$

и для плоскости сдвига {001} между направлениями (110) и (010):

$$A_3 = 4C_{66}/(C_{11} + C_{22} - 2C_{12}).$$

Если значения A_1 , A_2 и A_3 равны 1, кристалл является изотропным. Результаты расчетов факторов анизотропии по сдвигу (табл. 6) демонстрируют значительное различие соответствующих значений. Мы обнаружили, что

все тетрабориды существенно анизотропны, а минимальная анизотропия имеет место для RuB₄ и OsB₄.

Конечно, для полного описания анизотропии орторомбических кристаллов, необходимо рассмотреть ее по отношению к линейному модулю сжатия. Соответствующие коэффициенты анизотропии по модулю сжатия вдоль a и c осей по отношению к b оси могут оцениваться как [34]:

$$A_{\rm Ba} = B_{\rm a}/B_{\rm b} = \alpha,$$

и где

$$A_{\rm Bc} = B_{\rm c}/B_{\rm b} = \alpha/\beta,$$

$$\alpha = \frac{(C_{11} - C_{12})(C_{33} - C_{13}) - (C_{23} - C_{13})(C_{11} - C_{13})}{(C_{33} - C_{13})(C_{22} - C_{12}) - (C_{13} - C_{23})(C_{12} - C_{23})},$$

$$\beta = \frac{(C_{22} - C_{12})(C_{11} - C_{13}) - (C_{11} - C_{12})(C_{23} - C_{12})}{(C_{22} - C_{12})(C_{33} - C_{13}) - (C_{12} - C_{23})(C_{13} - C_{23})}.$$

Вычисленные значения A_{Ba} и A_{Bc} показаны в табл. 6. По результатам расчетов можно утверждать, что рассмотренные орторомбические тетрабориды должны быть сильно анизотропными, особенно с кристаллической структурой типов Immm и Pnnm. Помимо коэффициентов анизотропии, связанных с упругими константами, мы также приняли во внимание анизотропию, идущую от эффективных модулей упругости в пределах Фойгта и Реусса. Например, для количественного определения УА, был предложен так называемый универсальный индекс анизотропии [47]:

$$A^{\rm U} = 5G_{\rm V}/G_{\rm R} + B_{\rm V}/B_{\rm R} - 6,$$

для изотропных кристаллов $A^{U} = 0$, отклонения A^{U} от нуля определяют имеющуюся УА.

Наконец, долю УА для поликристаллических материалов по сжатию $(A_{\rm B})$ и сдвигу $(A_{\rm G})$ можно оценить следующим образом [48]:

$$A_{\rm B} = (B_{\rm V} - B_{\rm R})/(B_{\rm V} + B_{\rm R}) \times 100$$

И

$$A_{\rm G} = (G_{\rm V} - G_{\rm R}) / (G_{\rm V} + G_{\rm R}) \times 100.$$

В этих выражениях значения $A_B = 0$ и $A_G = 0$ соответствуют упругой изотропности кристалла, в то время как значения 100% определяют наибольшую возможную анизотропию.

Полученные значения A^U , A_B и A_G приведены в табл. 6. Показано, что минимальные значения A^U принимаются для тетраборидов с пространственными группами Рттп и R-3m, а наибольшая анизотропия имеет место для RhB₄ и IrB₄ с пространственной группой Immm. Также из табл. 6 видно, что для всех орторомбических MB_4 систем $A_B < A_G$, предполагая, что для всех этих тетраборидов анизотропия по сдвигу намного больше, чем анизотропия по сжатию. Противоположный случай реализуется в ромбоэдрических системах, для которых A_B превосходит или сопоставима с A_G .

На следующем шаге мы упрощенно оценили микротвердость по Виккерсу (H_V) тетраборидов. В настоящее время предложен набор эмпирических соотношений между H_V и модулями упругости [49,50]. Так, в модели Тетера [51] микротвердость оценивалась из модуля сдвига $H_{V1} = 0.1769G - 2.899$. Подобные линейные выражения были введены Джиангом и др. [52,53]: $H_{V2} = 0.1475G$, $H_{V3} = 0.0607Y$. Помимо этого, была предложена более реалистичная модель Чена и др. [54], чтобы предсказать микротвердость из соотношения Пуга (k = G/B) и модуля сдвига (G): $H_{V4} = 2(k^2G)^{0.585} - 3$. Результаты расчетов с использованием этих соотношений и соответствующие средние значения H_V составляют табл. 7.

Эти данные показывают, что для рассмотренных серий тетраборидов $H_V > 10$ GPa, то есть эти соединения являются твердыми материалами. В то же время все значения $H_V < 40$ GPa также меньше рекордного значения $H_V \sim 46$ GPa для приготовленного гексагонального WB₄ [9]. Это означает, что данные тетрабориды нельзя рассматривать как сверхтвердые материалы. Мы обнаружили, что OsB₄ с пространственной группой Pmmn ($H_V = 37.2$ GPa) и изоструктурный RuB₄

Таблица 7. Результаты различных оценок микротвердости по Виккерсу [54-57] и соответствующие средние значения (H_{Vi} и H_V , в GPa) для рассмотренных фаз тетраборидов MB_4 (M = Ru, Os, Rh, Ir, Pd, Pt)

Фаза	$H_{\rm V1}$	$H_{\rm V2}$	$H_{\rm V3}$	$H_{ m V4}$	$H_{ m V}$
RuB ₄ Pmmn	38.0	34.1	33.0	35.3	35.1
RuB ₄ R-3m	33.0	30.0	29.8	27.6	30.1
RuB ₄ Immm	27.1	25.0	25.4	20.7	24.6
RuB ₄ Pnnm	28.9	26.5	26.8	22.3	26.1
OsB ₄ Pmmn	40.7	36.4	35.3	36.3	37.2
OsB ₄ R-3m	35.3	31.9	31.8	28.4	31.9
OsB ₄ Immm	25.1	23.3	23.7	20.5	23.2
OsB ₄ Pnnm	22.8	21.4	22.7	13.6	20.1
RhB ₄ Pmmn	28.6	26.3	26.5	23.1	26.2
RhB ₄ R-3m	25.2	23.4	24.0	18.9	22.9
RhB ₄ Immm	17.0	16.6	17.7	10.1	15.3
RhB ₄ Pnnm	20.8	19.8	20.7	13.9	18.8
IrB ₄ Pmmn	27.8	25.6	26.6	18.0	24.5
IrB ₄ R-3m	20.2	19.2	20.4	11.9	17.9
IrB ₄ Immm	17.6	17.1	18.2	10.8	15.9
IrB ₄ Pnnm	19.9	19.0	20.2	11.6	17.7
PdB_4Pmmn	19.2	18.5	19.4	12.9	17.5
PdB_4R-3m	23.6	22.1	22.6	18.3	21.7
PdB ₄ Immm	10.9	11.6	12.5	6.2	10.3
PdB_4Pnnm	16.6	16.2	17.3	10.1	15.1
PtB_4Pmmn	21.8	20.6	21.5	14.5	19.6
PtB ₄ R-3m	21.4	20.3	21.2	14.6	19.4
PtB ₄ Immm	16.2	15.9	16.7	11.3	15.0
PtB ₄ Pnnm	17.2	16.7	17.7	11.2	15.7

 $(H_{\rm V}=35.1\,{\rm GPa})$ имеют максимальную твердость среди всех $M{\rm B}_4.$

Отметим, что наши данные для OsB4 с пространственной группой Pmmn выше, чем аналогичные результаты расчетов $H_V = 28 \text{ GPa}$ [24] на основе полуэмпирической модели Шимунека [55], в которой использовалось понятие прочности связей и предполагающейся более точной. Хорошо известно, что твердость является макроскопическим параметром, который экспериментально характеризуется глубиной проникновения индентора; он зависит от методов измерения, температуры и т.д. и управляется многими внутренними (сила связи, энергия когезии, тип кристаллической структуры и др.) и внешними (дефекты, примеси, поля напряжений, морфология и др.) условиями, см. [56-58]. Тем не менее мы надеемся, что проведенные оценки микротвердости являются информативными по крайней мере в контексте ее относительного изменения.

Рассчитанные упругие параметры тесно связаны с другими фундаментальными свойствами материалов, такими как температура Дебая (θ_D) и средняя скорость звука (v_m). Хорошо известно, что дебаевская температура относится к наиболее важным тепловым характеристикам кристаллов и разделяет области высоких и низких температур, когда при $T < \theta_D$ колебательные возбуждения возникают в основном из акустических

Фаза	v_t	v_l	ν	θ_D	β
RuB ₄ Pmmn	6264	10007	6899	1021	0.091
RuB ₄ R-3m	5825	9602	6437	958	0.110
RuB ₄ Immm	5474	9327	6068	886	0.140
RuB ₄ Pnnm	5604	9488	6209	909	0.129
OsB ₄ Pmmn	5126	8208	5647	832	0.169
	(5078 [25]*)	(8131 [25])	(5595 [25])	(781 [25])	
OsB ₄ R-3m	4756	7857	5257	779	0.205
OsB ₄ Immm	4297	7270	4761	680	0.308
OsB ₄ Pnnm	3962	7207	4416	648	0.357
RhB ₄ Pmmn	5531	9283	6123	900	0.133
RhB ₄ R-3m	5182	8921	5750	849	0.095
RhB ₄ Immm	4562	8493	5094	729	0.250
RhB ₄ Pnnm	4800	8583	5343	785	0.201
IrB ₄ Pmmn	4336	7635	4821	704	0.279
IrB ₄ R-3m	3732	6873	4164	611	0.425
IrB ₄ Immm	3689	6796	4116	585	0.484
IrB ₄ Pnnm	3748	6914	4182	609	0.430
PdB ₄ Pmmn	4705	8462	5239	756	0.225
PdB ₄ R-3m	4998	8585	5544	816	0.179
PdB ₄ Immm	3871	7469	4333	608	0.432
PdB ₄ Pnnm	4385	8123	4895	709	0.273
PtB ₄ Pmmn	3994	7125	4446	635	0.379
PtB ₄ R-3m	3866	6873	4301	625	0.398
PtB ₄ Immm	3624	6555	4038	565	0.539
PtB_4Pnnm	3610	6591	4025	574	0.513

Таблица 8. Рассчитанные поперечные, продольные и средние скорости звука (v_l , v_l , v_m , в m/s), температура Дебая (θ_D , в K) и коэффициенты решеточной теплоемкости (β , в 10⁻⁴ J/K⁴/mole) для исследованных фаз тетраборидов MB_4 (M = Ru, Os, Rh, Ir, Pd, Pt)

 Π римечание. * В скобках приводятся другие теоретические результаты [25].

Таблица 9. Полная ширина валентной зоны (E_v , в eV), полные и парциальные плотности электронных состояний на уровне Ферми ($N(E_F)$, $N^l(E_F)$, в states/eV/form.unit) и коэффициенты электронной теплоемкости (γ , в mJ/K²/mole) для четырех MB_4 фаз (M = Ru, Os, Rh, Ir, Pd, Pt)

Фаза	E_v	$N(E_{ m F})$	$N^{{ m Ms}^+p}~(E_{ m F})$	$N^{\mathrm{M}d}~(E_{\mathrm{F}})$	$N^{\mathrm{B2}p}~(E_\mathrm{F})$	γ
RuB ₄ Pmmn	15.21	0.221	0.001	0.090	0.048	0.523
RuB ₄ R-3m	16.58	1.094	0.005	0.753	0.072	2.591
RuB ₄ Immm	14.19	1.423	0.008	0.492	0.303	3.370
RuB ₄ Pnnm	15.12	0.953	0.010	0.342	0.196	2.257
OsB ₄ Pmmn	15.82	0.247	0.001	0.094	0.052	0.585
OsB ₄ R-3m	17.12	1.028	0.007	0.548	0.112	2.434
OsB ₄ Immm	14.16	1.130	0.010	0.301	0.279	2.676
OsB ₄ Pnnm	15.76	1.175	0.015	0.538	0.164	2.782
RhB ₄ Pmmn	15.51	1.096	0.017	0.452	0.202	2.595
RhB ₄ R-3m	16.23	1.790	0.024	0.876	0.280	4.239
RhB ₄ Immm	13.67	1.423	0.008	0.493	0.304	3.370
RhB ₄ Pnnm	14.80	2.066	0.025	0.765	0.442	4.892
IrB ₄ Pmmn	16.18	1.022	0.018	0.433	0.164	2.420
IrB ₄ R-3m	16.65	2.619	0.035	1.308	0.352	6.202
IrB ₄ Immm	14.33	1.815	0.018	0.518	0.427	4.298
IrB ₄ Pnnm	15.48	2.324	0.026	0.823	0.486	5.503
PdB ₄ Pmmn	15.47	0.952	0.015	0.257	0.210	2.253
PdB ₄ R-3m	16.37	0.682	0.012	0.162	0.172	1.614
PdB ₄ Immm	13.30	1.065	0.008	0.333	0.234	2.520
PdB ₄ Pnnm	14.42	1.281	0.015	0.404	0.284	3.032
PtB ₄ Pmmn	15.75	0.860	0.017	0.212	0.188	2.035
PtB ₄ R-3m	16.33	0.931	0.016	0.228	0.231	2.203
PtB ₄ Immm	13.82	0.903	0.007	0.264	0.202	2.137
PtB ₄ Pnnm	14.84	0.970	0.017	0.247	0.230	2.296

Таблица 10. Полученный вклад различных M *d*-орбиталей в плотность состояний на уровне Ферми ($N^{l}(E_{\rm F})$, в states/eV/form.unit) для четырех рассмотренных фаз тетраборидов MB_4 ($M = {\rm Ru}$, Os, Rh, Ir, Pd, Pt) из FLAPW-GGA-расчетов

Фаза	$N_z^{{ m M}d2}(E_{ m F})$	$N_{x-y}^{\mathrm{Md22}}(E_{\mathrm{F}})$	$N_{xy}^{\mathrm{M}d}(E_{\mathrm{F}})$	$N_{xz}^{\mathrm{M}d}(E_{\mathrm{F}})$	$N_{yz}^{\mathrm{M}d}(E_{\mathrm{F}})$
RuB ₄ Pmmn	0.004	0	0.029	0.013	0.044
RuB_4R-3m	0.079	0.63	3	0.041	
RuB_4Immm	0.090	0.093	0.116	0.050	0.143
RuB ₄ Pnnm	0.041	0.145	0.068	0.054	0.034
OsB_4Pmmn	0.007	0.001	0.024	0.012	0.050
OsB ₄ R-3m	0.125	0.37	2	0.0	51
$OsB_4Immm \\$	0.036	0.159	0.031	0.042	0.033
OsB ₄ Pnnm	0.315	0.107	0.049	0.039	0.028
RhB_4Pmmn	0.138	0.145	0.025	0.100	0.044
RhB ₄ R-3m	0.600	0.22	7	0.0	49
RhB_4Immm	0.090	0.093	0.117	0.050	0.143
RhB ₄ Pnnm	0.120	0.293	0.119	0.151	0.082
IrB ₄ Pmmn	0.129	0.182	0.020	0.068	0.034
IrB ₄ R-3m	0.728	0.51	5	0.0	65
IrB ₄ Immm	0.080	0.202	0.085	0.054	0.097
IrB ₄ Pnnm	0.120	0.294	0.089	0.220	0.100
PdB_4Pmmn	0.082	0.040	0.029	0.088	0.018
PdB ₄ R-3m	0.047	0.07	'1	0.0	44
PdB_4Immm	0.013	0.027	0.162	0.073	0.058
PdB_4Pnnm	0.026	0.051	0.128	0.126	0.073
PtB_4Pmmn	0.066	0.044	0.027	0.060	0.015
PtB ₄ R-3m	0.087	0.09	3	0.0	48
PtB ₄ Immm	0.025	0.010	0.125	0.057	0.047
PtB_4Pnnm	0.022	0.043	0.071	0.070	0.041
	I	I		I	1

Фаза	$N_x^{{ m B}p}(E_{ m F})$	$N_y^{{ m B}p}(E_{ m F})$	$N^{{ m B}p}_{z}(E_{ m F})$
RuB ₄ Pmmn	0.014	0.002	0.032
RuB_4R-3m	0.0	41	0.031
RuB_4Immm	0.150	0.083	0.070
RuB_4Pnn	0.062	0.082	0.052
OsB_4Pmmn	0.018	0.004	0.030
OsB_4R-3m	0.0	71	0.041
OsB_4Immm	0.078	0.126	0.075
OsB_4Pnnm	0.058	0.050	0.056
RhB_4Pmmn	0.107	0.035	0.060
RhB_4R-3m	0.1	73	0.107
RhB_4Immm	0.150	0.084	0.070
RhB_4Pnnm	0.168	0.153	0.121
IrB_4Pmmn	0.084	0.029	0.051
IrB ₄ R-3m	0.2	33	0.119
IrB_4Immm	0.189	0.153	0.085
IrB_4Pnnm	0.181	0.170	0.135
PdB_4Pmmn	0.084	0.062	0.064
PdB_4R-3m	0.1	22	0.050
$PdB_4Immm \\$	0.058	0.060	0.116
PdB_4Pnnm	0.078	0.051	0.155
PtB_4Pmmn	0.068	0.058	0.062
PtB_4R-3m	0.1	65	0.066
PtB_4Immm	0.032	0.056	0.114
PtB_4Pnnm	0.057	0.047	0.126

 $heta_D$ -pacyerob $heta_D = rac{h}{k} \left[rac{3n}{4\pi} \left(rac{
ho N_A}{M}
ight)
ight]^{-1/3} v_m,$

зуя среднюю скорость звука как:

где h и k — постоянные Планка и Больцмана соответственно, n — общее число атомов на формульную единицу, ρ — плотность, N_A — число Авогадро, а M — молярная масса соединения. В свою очередь, средняя скорость звука определяется как:

мод. Температуру Дебая можно рассчитать [59], исполь-

$$v_m = \left[\frac{1}{3}\left(\frac{2}{v_t^3} + \frac{1}{v_l^3}\right)\right]^{-1/3}$$

Здесь v_t и v_l — поперечная и продольная скорости звука соответственно

$$v_t = \left(\frac{G}{\rho}\right)^{1/2}$$
 и $v_l = \left(\frac{3B+4G}{3\rho}\right)^{1/2}$

Рассчитанные значения θ_D , v_m , v_t и v_l приведены в табл. 8. Наибольшее значение v_m предсказано для RuB₄ фаз.

Оцененные температуры Дебая тетраборидов изменяются в интервале от 565 К для PtB_4 с пространственной группой Immm до 1021 К для RuB_4 с пространственной группой Pmmn. Эти значения в целом сравнимы с θ_D для моноборидов и тетраборидов тяжелых 4d-, 5d-металлов, см. например [14,28]. Более того, результат для предсказанного OsB_4 с пространственной группой Pmmn близок к полученному в работе [25], расхождение составляет $\sim 6\%$.

Расчеты упругих констант и электронной структуры позволяют определить теплоемкость (C_p) для металлических (см. ниже) тетраборидов в низкотемпературной области как

$$C_{\rm P}(T) = \gamma T + \beta T^3$$

где γ и β — коэффициенты электронной и решеточной теплоемкостей.

Мы рассчитывали коэффициент *у* в приближении свободных электронов как:

$$\gamma = (\pi^2/3)N(E_{\rm F})k^2,$$

где $N(E_{\rm F})$ — полная плотность состояний на уровне Ферми $E_{\rm F}, k$ — постоянная Больцмана. Коэффициент β рассчитывался как

$$\beta = (12\pi^4 Rn)/5\theta_{\rm D}^3$$

Здесь *R* — универсальная газовая постоянная и *n* — полное число атомов на формульную единицу.

Рассчитанные значения низкотемпературных коэффициентов теплоемкости γ и β представлены в табл. 8, 9. Так, мы можем заключить, что максимальное значение $C_{\rm p}$ будет ожидаться для PtB₄ с пространственными группами Immm и Pnnm.

Рис. 2. Зонные структуры вдоль высокосимметричных направлений в зоне Бриллюэна для четырех фаз OsB₄ (*a* — Pmmn, *b* — R-3m, *c* — Immm, *d* — Pnnm).

Далее обсудим результаты наших расчетов электронной структуры MB_4 -фаз, которые перечислены в табл. 9 и 10. На рис. 2 в качестве примера также представлены зонные структуры OsB₄-фаз. Видно, что высокодисперсные зоны пересекают уровень Ферми, определяя металлический тип проводимости этих материалов. Полная ширина валентной зоны тетраборида OsB₄ значительно изменяется в зависимости от его кристаллической структуры от ~ 14.1 eV для структуры типа Immm до $\sim 17.1 \, \rm eV$ для структуры типа R-3m. Аналогичный вывод можно сделать и для других тетраборидов, табл. 9.

На рис. 3-5 представлены полная и парциальные плотности электронных состояний (ПЭС) для всех тетраборидов MB_4 (M = Ru, Os, Rh, Ir, Pd, Pt). Как правило, ПЭС для всех этих фаз весьма схожи и будут кратко рассмотрены на примере OsB₄ с пространственной группой Pmmn. В его валентном спектре выделяются две основные области. Первая группа полос, лежащая от

Рис. 3. Полные (вверху) и парциальные плотности электронных состояний для четырех фаз RuB₄ и OsB₄ (*a*, *b* — Pmmn; *c*, *d* — R-3m; *e*, *f* — Immm; *g*, *h* — Pnnm).

Рис. 4. Полные (вверху) и парциальные плотности электронных состояний для четырех фаз RhB₄ и IrB₄ (*a*, *b* — Pmmn; *c*, *d* — R-3m; *e*, *f* — Immm; *g*, *h* — Pnnm).

Д.В. Суетин

Рис. 5. Полные (вверху) и парциальные плотности электронных состояний для четырех фаз PdB₄ и PtB₄ (a, b — Pmmn; c, d — R-3m; e, f — Immm; g, h — Pnnm).

b 0.10 Os Os 50 Os В B0,0 B B 50 \mathbf{B} В Os B B Os d C 0,0 0.50 0.10 0.50 В B 0.50 ΝB Os Os Os Os NB B B 0.50**B**

a

Рис. 6. Зарядовая плотность валентных состояний для четырех OsB₄ фаз: *a* — Pmmn в плоскости (010); *b* — R-3m в плоскости (111); с — Іттт в плоскости (001); с — Рппт в плоскости (001). Разность между изоэлектронными контурами составляет $0.1 e / Å^3$.

 $-17 \,\mathrm{eV}$ до $-9 \,\mathrm{eV}$ ниже E_{F} , возникает в основном из В 2sи В 2р-состояний. Она непосредственно примыкает ко второй группе полос, располагающейся в диапазоне от $-9 \,\mathrm{eV}$ до E_{F} ; эта часть сформирована преимущественно гибридизованными В 2p- и Os 5d-состояний, которые ответственны за образование направленных М-В-связей, также как и некоторый вклад от В 2s-состояний.

Разница в электронных спектрах тетраборидов идет от околофермиевской ПЭС $N(E_F)$, табл. 9. Для RuB₄ и OsB₄ с пространственной группой Рттп ПЭС на уровне Ферми попадает в псевдощель между связывающими и антисвязывающими состояниями, что указывает на стабильность соединений (см. выше). Соответствующие значения N(E_F) близки друг к другу и довольно малы, см. табл. 9. В то же время для других тетраборидов E_F пересекает более высокоэнергетическую часть спектра. В последовательности RuB_4 (OsB₄) \rightarrow RhB₄ (IrB₄) \rightarrow PdB₄ (PtB₄) E_F смещается в область антисвязывающих состояний из-за увеличения концентрации валентных электронов. В результате в целом значение $N(E_{\rm F})$ увеличивается, а стабильность тетраборидов снижается. Так, наибольшее значение $N(E_{\rm F}) = 2.619$ states/eV/form.unit получается для IrB₄ с пространственной группой R-3m.

Анализ парциального состава прифермиевских состояний открывает доминирование М 4d-, 5d-состояний ($\sim 35 - 50\%$) со значительным добавлением В 2*p*-состояний (до ~ 20%). Вклад от М *s*, *p*-состояний, так же как и от В 2s-состояний, незначителен. В то же время пять М *d*-орбиталей $(d_z^2, d_{x^2-y^2}, d_{xy}, d_{xz}, d_{yz})$ и три В *р*-орбитали (*p_x*, *p_y*, *p_z*) ведут себя по-разному около уровня Ферми в соответствии с кристаллической структурой и составом конкретного тетраборида, см. табл. 10.

Далее рассмотрим картину межатомных взаимодействий в исследованных тетраборидах. Рассчитанное распределение зарядовой плотности валентных состояний в различных кристаллографических плоскостях для тетраборидов Os приведено на рис. 6. Полученные структурные данные позволяют сделать предварительные предположения о системе межатомных связей в МВ4, которые будут разобраны на примере OsB₄. Рассчитанные минимальные расстояния Os-B (2.13-2.24 Å) близки к сумме ковалентных радиусов этих атомов (2.28 Å [60]), и этот факт свидетельствует о формировании прямых ковалентных связей Os-B. Аналогичный вывод следует для минимальных расстояний B–B $(1.64{-}1.90\,{\rm \AA})$ в OsB₄, табл. 2. Кроме того, полученные расстояния Os–Os от 2.94 Å для OsB_4 с пространственной группой R-3m до 3.83 Å для него с пространственной группой Pmmn становятся длиннее в сравнении с металлическим Os (2.68 Å), и это означает ослабление соответствующих связей Os–Os в тетраборидах.

Характер ковалентных связей в OsB_4 может быть хорошо понят из построенной ПЭС. Как показано на рис. 3, В 2*p*- и Os 5*d*-состояния в данных тетраборидах гибридизуются. Также видно, что между В 2*s*- и В 2*p*-состояниями имеет место еще одна гибридизация. Помимо этого, данные сильные ковалентные связи Os-B и B-B также хорошо видны на рис. 6 изза соответствующего расположения контуров зарядовой плотности.

Кроме того, мы наблюдаем наличие металлических взаимодействий Os–Os, которые обусловлены Os 5d-состояниями вблизи $E_{\rm F}$. Эти состояния ответственны за металлические свойства данных тетраборидов. Наконец, между атомами Os и B должны возникать некоторые ионные взаимодействия ввиду их различной электроотрицательности, а, следовательно, и присутствовать соответствующий электронный перенос на атомы B.

4. Заключение

С использованием первопринципных FLAPW-GGAрасчетов впервые проведено систематическое изучение структурных, упругих и электронных свойств, а также межатомных взаимодействий для ряда ромбоэдрических и орторомбических тетраборидов MB_4 , где M = Ru, Rh, Pd, Os, Ir, Pt.

Было установлено, что среди всех исследованных тетраборидов наиболее устойчивыми являются соединения с пространственными группами Pmmn (RuB₄, OsB₄) и R-3m (RhB₄, IrB₄, PdB₄, PtB₄). Их рассчитанные энергии формирования отрицательны за исключением PtB₄, что дает намек на возможность их получения при нормальных условиях. Напротив, для всех тетраборидов с пространственной группой Immm $E_{\rm form} > 0$, и синтез этих фаз является маловероятным.

Полученные данные показывают, что все исследованные тетрабориды являются механически стабильными, а параметром, ограничивающим их стабильность, является модуль сдвига G. Обнаружено, что среди всех рассмотренных тетраборидов PtB_4 с пространственной группой Immm находится на границе хрупкопластичного перехода, тогда как остальные тетрабориды делятся на пластичные металлические материалы (Immm и Pnnm PdB₄, Immm RhB₄, а также Immm, Pnnm и R-3m IrB₄) и хрупкие металлические материалы (все остальные).

Оценки индексов упругой анизотропии показывают более высокие значения анизотропии при сдвиге, чем при сжатии для орторомбических систем. Тем не менее в ромбоэдрических системах анизотропия по сжатию превышает или сравнима с такой при сдвиге. В целом минимальная упругая анизотропия получается для тетраборидов с пространственными группами Ртти и R-3m, а наибольшая анизотропия следует для RhB₄ и IrB₄ с пространственной группой Immm. Мы также предсказали, что все эти тетрабориды представляют собой твердые материалы с $H_V > 10$ GPa. Кроме того, были проведены численные оценки температуры Дебая, скоростей звука, низкотемпературных коэффициентов электронной и решеточной теплоемкости.

Наши FLAPW-GGA-расчеты электронной структуры тетраборидов показали, что все они являются металлоподобными, а межатомные взаимодействия в них можно характеризовать в основном как смесь ковалентных M-B-, B-B- и металлических M-M-компонент.

Конечно, наши результаты являются предсказательными и ждут своего экспериментального подтверждения. Мы выражаем надежду, что наши теоретические расчеты будут стимулировать дальнейшие усилия по получению этого очень многообещающего семейства материалов.

Список литературы

- R.W. Cumberland, M.B. Weinberger, J.J. Gilman, S.M. Clark, S.H. Tolbert, R.B. Kaner, J. Am. Chem. Soc. 127, 7264 (2005).
- [2] M. Hebbache, L. Stuparevic, D. Zivkovic. Solid State Commun. 139, 227 (2006).
- [3] R.B. Kaner, J.J. Gilman, S.H. Tolbert. Science 308, 1268 (2005).
- [4] J.J. Gilman, R.W. Cumberland, R.B. Kaner. Int. J. Refract. Met. Hard. Mater. 24, 1 (2006).
- [5] J.B. Levine, S.H. Tolbert, R.B. Kaner. Adv. Funct. Mater. 19, 3519 (2009).
- [6] H.Y. Chung, M.B. Weinberger, J.B. Levine, A. Kavner, J.M. Yang, S.H. Tolbert, R.B. Kaner. Science 316, 436 (2007).
- [7] X.Q. Chen, C.L. Fu, M. Krcmar, G.S. Painter. Phys. Rev. Lett. 100, 196403 (2008).
- [8] J.V. Rau, A. Latini. Chem. Mater. 21, 1407 (2009).
- [9] Q.F. Gu, G. Krauss, W. Steurer. Adv. Mater. 20, 3620 (2008).
- [10] M. Wang, Y. Liu, T. Cui, Y. Ma, G. Zou. Appl. Phys. Lett. 93, 101905 (2008).
- [11] V. Kalamse, S. Gaikwad, A. Chaudhari. Bull. Mater. Sci. 33, 233 (2010).
- [12] B. Kharat, S.B. Desmukh, A. Chaudhari. Int. J. Quant. Chem. 109, 1103 (2009).
- [13] Y. Wang, W. Chen, X. Chen, H.Y. Liu, Z.H. Ding, Y.M. Ma, X.D. Wang, Q.P. Cao, J.Z. Jiang. J. All. Comp. 538, 115 (2012).
- [14] X.W. Xu, K. Fu, L.L. Li, Z.M. Lu, X.H. Zhang, Y. Fan, J. Lin, G.D. Liu, H.Z. Luo, C.C. Tang. Physica B 419, 105 (2013).
- [15] T. Yao, Y. Wang, H. Li, J. Lian, J. Zhang, H. Gou. Comp. Mater. Sci. 65, 302 (2008).
- [16] W. Chen, J.Z. Jiang. Solid State Commun. 150, 2093 (2010).
- [17] S. Aydin, M. Simsek. Phys. Rev. B 80, 134107 (2009).
- [18] X.Q. Chen, C.L. Fu, M. Krcmar, G.S. Painter. Phys. Rev. Lett. 100, 196403 (2008).

- [19] S. Chiodo, H.J. Gotsis, N. Russo, E. Sicilia. Chem. Phys. Lett. 425, 311 (2006).
- [20] H.Y. Chung, M.B. Weinberger, J.M. Yang, S.H. Tolbert, R.B. Kaner. Appl. Phys. Lett. 92, 261904 (2008).
- [21] Y. Liang, B. Zhang. Phys. Rev. B 76, 132101 (2007).
- [22] X.F. Hao, Y.H. Xu, Z.J. Wu, D.F. Zhou, X.J. Liu, X.Q. Cao, J. Meng. Phys. Rev. B 74, 224112 (2006).
- [23] F. Lin, K. Wu, J. He, R. Sa, Q. Li, Y. Wei. Chem. Phys. Lett. 494, 31 (2010).
- [24] M. Zhang, H. Yan, G. Zhang, H. Wang. J. Phys. Chem. C 116, 4293 (2012).
- [25] H.-Y. Yan, M.-G. Zhang, D.-H. Huang, Q. Wie. Solid State Sci. 18, 17 (2013).
- [26] B. Wang, D.Y. Wang, Y.X. Wang. J. All. Comp. 573, 20 (2013).
- [27] M. Zhang, H. Yan, Q. Wei, H. Wang. Comp. Mater. Sci. 68, 371 (2013).
- [28] W-J. Zhao, B. Xu. Comp. Mater. Sci. 65, 372 (2012).
- [29] Y. Pan, W.T. Zheng, W.M. Guan, K.H. Zhang, X.F. Fan. J. Solid State Chem. 207, 29 (2013).
- [30] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz. WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. Vienna University of Technology, Vienna (2001).
- [31] J.P. Perdew, S. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996).
- [32] P.E. Blöchl, O. Jepsen, O.K. Anderson. Phys. Rev. B 49, 16223 (1994).
- [33] И.Р. Шеин, В.С. Кийко, Ю.Н. Макурин, М.А. Горбунова, А.Л. Ивановский. ФТТ 49, 1067 (2007).
- [34] P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson. J. Appl. Phys. 84, 4891 (1998).
- [35] G. Grimvall. Thermophysical Properties of Materials. North-Holland, Amsterdam (1986).
- [36] W. Voigt. Lehrburch der Kristallphysik. Teubner, Leipzig (1928).
- [37] A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929).
- [38] S. Li, X. Ju, C. Wan. Comp. Mater. Sci. 81, 378 (2014).
- [39] R. Hill. Proc. Phys. Soc. London 65, 350 (1952).
- [40] M.L. Cohen. Phys. Rev. B 32, 7988 (1985).
- [41] S.F. Pugh. Philos. Mag. 45, 823 (1953).
- [42] J. Haines, J.M. Leger, G. Bocquillon. Annu. Rev. Mater. Res. 31, 1 (2001).
- [43] A.L. Ivanovskii. Progr. Mater. Sci. 57, 184 (2012).
- [44] J.Y. Wang, Y.C. Zhou. Phys. Rev. B 69, 144108 (2004).
- [45] J.Y. Wang, Y.C. Zhou, T. Liao, Z.J. Lin. Appl. Phys. Lett. 89, 021917 (2006).
- [46] D. Connétable, O. Thomas. Phys. Rev. B 79, 094101 (2009).
- [47] S.I. Ranganathan, M. Ostoja-Starzewski. Phys. Rev. Lett. 101, 055504 (2008).
- [48] H. Chung, W.R. Buessem. In: Anisotropy in Single Crystal Refractory Compound / Eds F.W. Vahldiek, S.A. Mersol. Plenum, N.Y. (1968) V. 2, 217 p.
- [49] Y.J. Tian, B. Xu, Z.S. Zhao. Int. J. Refract. Met. Hard Mater. 33, 93 (2012).
- [50] A.L. Ivanovskii. Int. J. Refract. Met. Hard Mater. 36, 179 (2013).
- [51] D.M. Teter. MRS Bull. 23, 22 (1998).
- [52] X. Jiang, J. Zhao, X. Jiang. Comp. Mater. Sci. 50, 2287 (2011).

- [53] X. Jiang, J. Zhao, A. Wu, Y. Bai, X.J. Jiang. J. Phys. Condens. Matter 22, 315503 (2010).
- [54] X.-Q. Chen, H. Niu, D. Li, Y. Li. Intermet. 19, 1275 (2011).
- [55] A. Śimunek. Phys. Rev. B 75, 172108 (2007).
- [56] S. Veprek. J. Vacuum Sci. Technol. 17, 2401 (1999).
- [57] J.J. Gilman. Chemistry and physics of mechanical hardness. NJ: Wiley, Hoboken (2009).
- [58] V.V. Brazhkin. High Pressure Res. 27, 333 (2007).
- [59] O.L. Anderson. J. Phys. Chem. Solids 24, 909 (1963).
- [60] B. Cordero, V. Gómez, A.E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, S. Alvarez. Dalton Trans. 21, 2832 (2008).

Редактор Т.Н. Василевская