Первопринципное исследование полупроводника ZnSnSb₂

© Ю.М. Басалаев

Кемеровский государственный университет, 650043 Кемерово, Россия E-mail: ymbas@mail.ru

(Получена 26 сентября 2017 г. Принята к печати 25 января 2018 г.)

В результате расчетов из первых принципов, основанных на теории функционала плотности, для халькопиритоподобного кристалла ZnSnSb₂ получены равновесные параметры кристаллической решетки a = 6.2893 Å, c = 12.5975 Å и u = 0.2314, зонная структура с шириной запрещенной зоны $E_g = 0.43$ эВ. Вычислены частоты колебаний фононов и упругие постоянные $C_{11} = 89.3$, $C_{12} = 41.9$, $C_{13} = 41.8$, $C_{33} = 90.4$, $C_{44} = 43.9$, $C_{66} = 44.1$, фазовые скорости упругих волн, модули упругости, микротвердость (2.29 ГПа) и упругий параметр Грюнайзена (1.5). Рассмотрены температурные зависимости для теплоемкости и термодинамических потенциалов (от 20 до 633 K).

DOI: 10.21883/FTP.2018.13.46875.8736

1. Введение

Среди соединений А^{II}В^{IV}С^V₂, используемых в качестве рабочих материалов для изготовления диодов, фотодетекторов, источников света, а также солнечных батарей и квантовых генераторов, есть группа антимонидов, содержащих олово (BeSnSb₂, MgSnSb₂, ZnSnSb₂, CdSnSb₂), из которых к настоящему времени получен и изучен только антимонид цинка и олова (ZnSnSb₂). Впервые это соединение было кристаллизовано из раствора в расплаве олова Горюновой с сотр. [1-3] в виде поликристаллов с р-типом проводимости, содержащих структуры сфалерита и халькопирита. Более полная информация о синтезе и особенностях кристалла ZnSnSb2 представлена в работе [4]. Но, несмотря на более чем полувековую известность, кристаллы ZnSnSb2 так и не нашли широкого применения, они по-прежнему недостаточно изучены как экспериментально, так и теоретически.

В ряде первых экспериментальных работ [5–7] с помощью рентгенографических методов были определены структурные параметры кристаллов ZnSnSb₂ (табл. 1) и исследовано тепловое расширение кристаллической решетки. Анализ спектральной зависимости коэффициента поглощения позволил авторам работ [8,9] определить при температуре 300 К величину ширины запрещенной зоны $E_g = 0.30 \pm 0.01$ эВ [8], $E_g = 0.4$ эВ и спин-орбитального расщепления $\Delta_{SO} = 0.92$ эВ [9]. В работах [10,11] при комнатной температуре были измерены коэффициент Холла, удельное сопротивление и эффективная масса дырок. Основные сведения об этих и других измерениях, выполненных до 1974 года, собраны и обобщены в работе [4]. Данные о физических свойствах ZnSnSb₂ ограничены.

Теоретические исследования с использованием разных методов и программных комплексов были посвящены в основном численному моделированию и изучению энергетического спектра кристалла ZnSnSb₂ с решеткой халькопирита. Первые расчеты энергетической зонной структуры ZnSnSb₂ были проведены в работе [12]

на основе метода эмпирического псевдопотенциала с учетом спин-орбитального взаимодействия. Было установлено, что наибольшие изменения спин-орбитальное взаимодействие вносит в строение вершины валентной зоны. Вычисленные в [12] значения ширины запрещенной зоны $E_g = 0.26$ эВ, кристаллического расщепления $\Delta_{\rm C}=0.03\,{
m sB}$ и расщепления за счет спин-орбитального взаимодействия $\Delta_{SO} = 0.87$ эВ хорошо согласуются с имеющимися экспериментальными данными [9] и вычисленным в [13] на основе диэлектрической модели Филлипса значением $\Delta_{SO} = 0.76$ эВ. Детальное изучение влияния спин-орбитального взаимодействия на электронное строение кристалла ZnSnSb₂, проведенное нами в работе [12], показало, что учет спина наиболее существенно влияет на расположение энергетических уровней вблизи вершины валентной зоны в точке Г и практически не меняет топологию зон в остальных участках зонного спектра.

Возобновление интереса к кристаллам ZnSnSb₂ связано с поиском перспективных термоэлектрических материалов и матриц со структурой халькопирита, на основе которых могут быть получены, в частности, магнитные материалы [14–19].

Цель настоящей работы заключается в моделировании кристалла ZnSnSb₂ с решеткой халькопирита, изучении его электронной и колебательной структуры, вычислении в рамках теории функционала плотности парамет-

Таблица 1. Параметры кристаллической структуры соединения ${\rm ZnSnSb}_2$

a, Å	c,Å	$\gamma = c/a$	и	ho, г/см ³	Ссылка
6.281	12.562	2.00	0.250	5.67	[1]
6.273	12.546	2.00	0.250	5.67	[2]
6.275	12.550	2.00	0.228	5.72	[5]
6.283	12.566	2.00	0.228	5.72	[8]
6.287	12.574	2.00	0.250	5.62	[11]
6.2798	12.5596	2.00	0.2237	-	[14]
6.2893	12.5975	2.003	0.2314	5.62	Наш расчет

Параметр	ABINIT	QE	CRYSTAL			Другие работы	
			LDA	PBE	B3LYP	Эксперимент	Теория [12]
<i>Еg</i> , эВ	0.77	0.12	0.43	0.67	1.50	0.30 [7], 0.40 [9]	0.26, 0.2 [14]
$\Delta_{\rm C}$, эB	0.045	0.039	0.005	0.003	0.008	—	0.03
ΔE_V , $\Im B$	12.20	11.22	11.19	11.23	12.09	_	11.65

Таблица 2. Параметры зонной структуры кристалла ZnSnSb₂

ров, характеризующих упругие и термодинамические свойства.

2. Метод и параметры расчета

Теория функционала плотности DFT (density functional theory) составляет основу большинства современных программных кодов. Для сравнения мы провели ab initio расчеты энергетической зонной структуры исследуемого кристалла ZnSnSb₂ с использованием возможностей кодов ABINIT [20], CRYSTAL [21] и QUANTUM ESPRESSO [22]. Из анализа полученных результатов в качестве основного кода был выбран CRYSTAL, с помощью которого были выполнены расчеты электронного строения, колебательных частот в центре зоны Бриллюэна, упругих констант и термодинамических свойств. Выбор приближения осуществлялся путем сравнения вычисленной ширины запрещенной зоны с экспериментальными данными. Использование гибридного метода B3LYP, включающего обменный функционал Беке (ВЗ) [23] и корреляционный функционал Ли, Янга и Парра (LYP) [24], который считается одним из лучших при вычислении ширины запрещенной зоны, в данном случае привело к сильно завышенному значению $E_g = 1.50$ эВ. Гибридный функционал РВЕ (Perdew-Burke-Ernzerhof) существенно приблизил величину энергетической щели $E_g = 0.67$ эВ к экспериментальному значению. Варьирование обменного и корреляционного функционалов показало (табл. 2), что лучшее согласие с экспериментом дает локальное приближение LDA (local-density approximation) $E_g = 0.43$ \Im B. Bo BCEX случаях для интегрирования по зоне Бриллюэна применялась сетка Монкхорста-Пака [25] (4 × 4 × 4 при вычислениях зонной структуры и 16 × 16 × 16 при расчетах плотности состояний, фононных частот, упругих постоянных и термодинамических свойств).

Постоянные решетки a, c и смещение анионов uиз узлов ГЦК подрешетки, определяющие размер кристаллической ячейки и положение анионов в структуре халькопирита, брались из работы [8]. Исходные значения a, c и u в ходе стандартной процедуры оптимизации геометрии кристалла кода CRYSTAL были приведены к равновесным значениям: a = 6.2893 Å, c = 12.5975 Å и u = 0.2314. Кристаллическая ячейка ZnSnSb₂ фактически не деформирована, так как тетрагональное сжатие $\gamma = c/a = 2.003$ близко к идеальному значению $\gamma = 2.00$. При этом параметр смещения анионов отличается от идеального u = 0.25, что обусловлено различием длин связей Zn-Sb и Sn-Sb. Длины связей между катионами (Zn, Sn) и анионами (Sb) для равновесного состояния кристалла ZnSnSb₂ равны $R_{Zn-Sb} = 2.6626$ Å и $R_{\text{Sn-Sb}} = 2.7981$ Å. Они соизмеримы с экспериментальными длинами связи, представленными, например, в работе [4]: $R_{Zn-Sb} = 2.640$ Å, $R_{Sn-Sb} = 2.799$ Å, и полученными из первых принципов с использованием кода VASP в работе [14]: $R_{Zn-Sb} = 2.67$ Å, $R_{Sn-Sb} = 2.87$ Å. Отношение параметров кристаллической решетки показывает наличие небольшого тетрагонального растяжения, что соответствует ситуации, когда правильную форму имеет больший катионный тетраэдр $(SnSb_4)$, а меньшие катионный (ZnSb₄) и анионный (Zn₂Sn₂Sb) тетраэдры растянуты.

Кристаллическая ячейка ZnSnSb₂ со структурой халькопирита (пространственная группа № 122, D_{2d}^{12} или *I*-42*d*) содержит две формульные единицы с четырьмя неэквивалентными атомами. Каждый катион окружен четырьмя анионами, а вблизи каждого аниона расположено по два катиона разного сорта. Положение атомов в кристаллической ячейке определяется базовыми координатами в единицах (*a*, *a*, *c*): Zn — (0, 0, 0), (0, -0.5, 0.25); Sn — (0.5, 0.5, 0), (0.5, 0, 0.25); Sb — (*u*, 0.25, 0.125), (-*u*, -0.25, 0.125), (-0.25, *u*, -0.125), (0.25, -*u*, -0.125). Вычисленная нами плотность кристалла ZnSnSb₂ равна 5.62 г/см³, что близко к экспериментальным значениям, представленным в табл. 1.

3. Электронное строение

Энергетическая зонная структура кристалла ZnSnSb₂, вычисленная без учета спин-орбитального взаимодействия в точках высокой симметрии зоны Бриллюэна халькопирита: $T = (0 \ 0 \ 1)$, $\Gamma = (0 \ 0 \ 0)$, $N = (1/2 \ 1/2 \ 0)$, $P = (1/2 \ 1/2 \ 1/2)$, $I = (1/5 \ 1/4 \ 1)$, $H = (0 \ 1/4 \ 1)$, $C = (0 \ 1/2 \ 1/2)$ — в единицах $(2\pi/a; \ 2\pi/a; \ 2\pi/c)$, а также вдоль соединяющих их линий, представлена на рис. 1.

Валентная зона кристалла $ZnSnSb_2$ имеет типичный для структуры халькопирита вид [26,27], состоит из трех разрешенных подзон и *d*-зоны атомов Zn (10 уровней энергии вблизи -6, 5 эВ). Нижняя подзона из четырех уровней энергии содержит преимущественно вклады *s*-состояний атомов Sb. Следующая подзона из двух

Рис. 1. Зонная структура кристалла ZnSnSb₂.

Рис. 2. Деформационная плотность распределения заряда $\Delta \rho(\mathbf{r})$ в кристалле ZnSnSb₂.

энергетических уровней включает преобладающие вклады *s*-состояний атомов Sn. Верхняя подзона состоит из десяти энергетических уровней, которые образованы в основном из *p*-состояний атомов Sb. Полная ширина валентной зоны ΔE_V , вычисленная с использованием разных кодов, представлена в табл. 2 и в среднем составляет около 11.5 эВ.

Абсолютный минимум зоны проводимости (с учетом спина Γ_{7C} , а без учета спина Γ_{1C} — неприводимые представления) и абсолютный максимум валентной зоны (Γ_{6V} и Γ_{4V} соответственно) расположены в одной точке зоны Бриллюэна. Поскольку прямой переход $\Gamma_{4V} \rightarrow \Gamma_{1C}$ ($\Gamma_{6V} \rightarrow \Gamma_{7C}$) разрешен, то кристалл является прямозонным. Разность между этими уровнями равна ширине запрещенной зоны E_g , значения которой приведены в табл. 2. Учет спин-орбитального взаимодействия не влияет на расположение 3d-зон атомов Zn в валентной зоне, но приводит к их уширению вдвое [26,27].

Для наглядного представления об особенностях образования химической связи в кристалле $ZnSnSb_2$ со структурой халькопирита были вычислены полная $\rho(\mathbf{r})$ и

деформационная $\Delta \rho(\mathbf{r})$ плотности распределения заряда валентных электронов, для которых в плоскости (110), где расположены атомы разного сорта, входящие в его состав, были построены соответствующие карты распределения. Наиболее информативной является карта деформационной плотности $\Delta \rho(\mathbf{r})$, которая визуализирует ее избытки в пространстве между атомами, обусловленные образованием химических связей Zn–Sb и Sn–Sb в кристалле (рис. 2).

Карта $\Delta \rho(\mathbf{r})$ на рис. 2 отображает распределение электронной плотности в атомных единицах (электрон/Бор³), а изолинии проведены с шагом 0.01 а.е. Штрихпунктирная линия соответствует $\Delta \rho(\mathbf{r}) = 0$, штриховая — $\Delta \rho(\mathbf{r}) < 0$, а сплошная — $\Delta \rho(\mathbf{r}) > 0$. Максимумы зарядовой плотности на связях смещены в сторону аниона (Sb) и локализованы, что указывает на ионно-ковалентную природу обеих связей, образованных по донорно-акцепторному (Zn–Sb) и обменному (Sn–Sb) механизмам.

4. Физические свойства

При синтезе кристаллов необходимо удостовериться в стехиометрии, устойчивости и прочности образцов. Для этого важно знать фононный спектр кристалла и его упругие характеристики. Полученные из первых принципов для идеальных кристаллов, эти данные могут быть полезны при проведении экспериментальных исследований. Нами были вычислены динамические заряды на атомах: $Q_{Zn} = 0.99e$, $Q_{Sn} = 1.11e$ и $Q_{Sb} = -1.05e$, а также высокочастотные диэлектрические проницаемости кристалла ZnSnSb₂ $\varepsilon_{11} = 19.36$ и $\varepsilon_{33} = 14.80$, которые использовались для получения расщепления продольных и поперечных частот оптических колебаний.

4.1. Оптические частоты колебаний

Фононный спектр кристалла $ZnSnSb_2$ был вычислен в центре зоны Бриллюэна (точка Г), результаты расчета представлены в табл. 3. В примитивной ячейке кристалла с решеткой халькопирита содержится 8 атомов, поэтому в спектре решеточных колебаний будет 24 ветви (из которых 3 акустические и 21 оптическая). Точечная группа симметрии халькопирита

Таблица 3. Частоты оптических фононов в точке Γ зоны Бриллюэна, см⁻¹

Моды	A_1	A_2	B_1	<i>B</i> ₂	E	
Спектр	КР	-	КР	ИК, КР	ИК, КР	
Частоты (TO/LO)	151	146, 167	88, 191, 204	85/85, 203/203, 216/217	64/64, 88/88, 168/168, 192/193, 204/204, 216/222	
[17]	42, 63, 67, 139, 151, 172, 185, 193, 197, 206, 218					

содержит 5 неприводимых представлений: 4 однократных ($A_1 = \Gamma_1$, $A_2 = \Gamma_2$, $B_1 = \Gamma_3$, $B_2 = \Gamma_4$) и одно двукратное ($E = \Gamma_5$). Преобразование всех длинноволновых нормальных колебаний по неприводимым представлениям в точке Γ представляется в виде суммы: $\Gamma_{tot} = A_1 + 2A_2 + 3B_1 + 4B_2 + 7E$. При расчете оптических частот в коде CRYSTAL из этой суммы исключаются три акустические моды (Γ_4 и Γ_5) и разложение приобретает вид: $\Gamma_{opt} = A_1 + 2A_2 + 3B_1 + 3B_2 + 6E$.

В колебательных спектрах комбинационного рассеяния (КР) активны все моды, кроме A_2 , а в инфракрасных (ИК) спектрах активность проявляют полярные моды с симметрией B_2 и E (Γ_4 и Γ_5), которые расщепляются на продольные (LO) и поперечные (TO) компоненты. Существенную роль в этом расщеплении играют массы атомов и взаимодействие катионов с анионами. Массы атомов Sn и Sb почти совпадают и превышают массу атома Zn в ~ 2 раза, что влияет на амплитуды колебаний отдельных атомов и связанных между собой пар, образующих катионные ZnSb₄, SnSb₄ и анионные Zn₂Sn₂Sb тетраэдры.

Согласно теоретико-групповому анализу, колебания с симметрией A_1 и A_2 (Γ_1 и Γ_2) являются чисто анионными. Моды с частотами 191 см⁻¹ (Γ_3) и 168 см⁻¹ (Γ_5), наоборот, являются чисто катионными и отвечают колебаниям катионных подрешеток в противофазе, с преобладающим вкладом атомов Zn над вкладом атомов Sn почти в 2 раза. Остальные моды содержат вклады колебаний всех трех атомов, входящих в состав кристалла ZnSnSb₂.

В работе [17] с использованием программного кода VASP из первых принципов получен фононный спектр кристалла $ZnSnSb_2$ со структурой халькопирита. К сожалению, авторы не приводят численные значения и не указывают частотные моды. Восстановленные по фононному спектру кристалла $ZnSnSb_2$ значения оптических частот для центра зоны Бриллюэна [17] представлены в табл. 3 и в целом хорошо согласуются с результатами нашего расчета.

4.2. Упругие свойства

Вычисленные упругие постоянные кристалла ZnSnSb₂ (константы упругой жесткости C_{ij} и податливости S_{ij}) удовлетворяют критериям механической стабильности тетрагональных кристаллов: c_{11} , c_{33} , c_{44} , $c_{66} > 0$; $c_{11} > |c_{12}|$; $c_{11}c_{33} > c_{13}^2$; $(c_{11} + c_{12})c_{33} > 2c_{13}^2$ и соответственно равны (в ГПа): $C_{11} = 89.3$, $C_{12} = 41.9$, $C_{13} = 41.8$, $C_{33} = 90.4$, $C_{44} = 43.9$, $C_{66} = 44.1$ и $S_{11} = 16.0$, $S_{12} = -5.1$, $S_{13} = -5.0$, $S_{33} = 15.7$, $S_{44} = 22.8$, $S_{66} = 22.7$.

Вычисленные в моделях Фойгта (V), Реусса (R) и Хилла (H) модули упругости: Юнга (E), сдвига (G), объемной упругости (K) и коэффициент Пуассона (ν) для кристалла ZnSnSb₂ имеют следующие значения: $E_{\rm H} = 86.1$ ГПа, $G_{\rm V} = 35.9$ ГПа, $G_{\rm R} = 32.9$ ГПа, $G_{\rm H} = 34.4$ ГПа, $K_{\rm V} = 57.8$ ГПа, $K_{\rm R} = 57.8$ ГПа, $K_{\rm H} = 57.8$ ГПа и $\nu = 0.25$.

лучены при расчете аосолютного минимума энергии кристалла ZnSnSb₂ из уравнения состояния с использованием заложенных в коде CRYSTAL [21] моделей соответственно Винета (Vinet), Мурнагана (Murnaghan), Бёрч–Мурнагана (Birch–Murnaghan) и логарифмического уравнения Пуарье–Тарантола (Poirier–Tarantola).

В интервале давлений от 0 до 20 ГПа получена зависимость объемного модуля от давления и изменения объема, представленная на рис. 3.

Определены численные значения фазовых скоростей распространения упругих волн в кристалле ZnSnSb₂: две квазипоперечные $(v_{T1} \ u \ v_{T2})$ и одна квазипродольная (v_L) . Для структуры халькопирита существенны два взаимно перпендикулярных направления, определяющих анизотропию его свойств: основное — вдоль оси четвертого порядка (ось c) и перпендикулярное к этой оси.

Рис. 3. Зависимость модуля всестороннего сжатия *B* от давления *P* и объема *V*.

По отношению модуля сдвига к объемному модулю материала можно судить о его пластичности или хрупкости. Если $G_{\rm H}/K_{\rm H} < 0.5$, то материал пластичный, если $G_{\rm H}/K_{\rm H} > 0.5$, — хрупкий. Для кристалла ZnSnSb₂ отношение $G_{\rm H}/K_{\rm H} = 0.6$, следовательно, он должен быть не пластичным, а скорее хрупким. Обратное отношение $K_{\rm H}/G_{\rm H} = 1.68$, что превышает критерий ~ 1.1, характерный для ковалентных кристаллов (у ионных материалов $K_{\rm H}/G_{\rm H} \sim 0.6$), и свидетельствует о преобладании ковалентной составляющей химической связи в этом кристалле.

кристалле. Микротвердость кристалла ZnSnSb₂ $H_{\mu} = 250 \,\mathrm{krc/mm^2}$ (2.45 ГПа), полученная в работе [1] методом вдавливания алмазной пирамиды с квадратным основанием, вдвое меньше $H_{\mu} = 5.74 \,\Gamma\Pi a \,(585 \,\mathrm{krc/mm^2})$, вычисленной по формуле $H_{\mu} = E_H (1 - 2\nu)/6(1 + \nu)$, предложенной в работе [28], и удовлетворительно согласуется с экспериментом, если в этой формуле заменить модуль Юнга модулем сдвига: $H_{\mu} = 2.29 \,\Gamma\Pi a \,(234 \,\mathrm{krc/mm^2})$.

Рис. 4. Температурная зависимость внутренней энергии U, энергии Гиббса G и теплоемкости кристалла ZnSnSb₂.

Фазовые скорости v_L , v_{T1} , v_{T2} (в м/с), вычисленные вдоль направлений, характеризующих кристаллы с решеткой халькопирита, для ZnSnSb₂ равны, соответственно: (001) — 3999, 2787, 2787; (010), (100) — 3975, 2793, 2787; (110) — 4405, 2787, 2047; (101), (011) — 4407, 2790, 2061; (111) — 4539, 2332, 2320.

Зная коэффициент Пуассона по формуле $\gamma_G = 3(1+\nu)/2(2-3\nu)$ [27], можно оценить значение упругого параметра Грюнайзена, который характеризует ангармонизм кристалла, усредненный по его колебательным модам, и для кристалла ZnSnSb₂ равен 1.50.

4.3. Термодинамические свойства

Кристаллы ZnSnSb₂ плавятся в интервале температур от 360 [14] до 410°C [4]. При температуре 410°C в кристалле происходит разложение (перитектический распад). Поведение внутренней энергии U, энергии Гиббса G и теплоемкости с ростом температуры исследуемого кристалла ZnSnSb₂ представлено на рис. 4.

Графики зависимости термодинамических потенциалов *U*, G и теплоемкости от температуры на рис. 4 имеют типичный для кристаллов вид во всем интервале температур, включая область, близкую к максимальной, экспериментально установленной температуре 633 К.

5. Заключение

Исследование электронного и колебательного строения кристалла ZnSnSb₂, впервые выполненное с использованием *ab initio* кода CRYSTAL, подтвердило наши более ранние расчеты и позволило получить ряд новых результатов, характеризующих его физические свойства. Вычисленные параметры решетки и энергетической зонной структуры не противоречат известным экспериментальным и теоретическим данным. В сочетании с ними впервые вычисленные упругие постоянные, модули упругости и их соотношения характеризуют кристалл ZnSnSb₂ как прочный и не очень хрупкий полупроводник семейства халькопирита с узкой шириной запрещенной зоны $(E_g < 0.5 \, \mathrm{sB})$ и со слабо выраженной анизотропией. Полученные значения частот оптических колебаний кристаллической решетки соединения ZnSnSb₂ хорошо согласуются с имеющимися экспериментальными данными и результатами расчетов других авторов, полученными с использованием других программных кодов.

Список литературы

- Н.А. Горюнова, Б.В. Баранов, В.С. Григорьева, Л.В. Крадинова, В.А. Максимова, В.Д. Прочухан. Изв. АН СССР. Неорг. матер., 4 (7), 1060 (1968).
- [2] Н.А. Горюнова, В.С. Григорьева, Л.В. Крадинова, В.Д. Прочухан. Химическая связь в кристаллах (Минск, Наука и техника, 1969).
- [3] Н.А. Горюнова, В.С. Григорьева, Л.В. Крадинова, В.Д. Прочухан. Тр. КПИ (Кишинев, Молдавия, 1968) вып. 2, с. 10.
- [4] А.С. Борщевский, А.А. ВАйполин, Ю.А. Валов, Н.А. Горюнова, Ф.П. Кесаманлы, А. Назаров, В.Д. Прочухан, В.А. Чалдышев. Полупроводники A²B⁴C₂⁶ (М., Сов. радио, 1974).
- [5] А.А. Вайполин, Л.В. Крадинова, В.Д. Прочухан. Кристаллография, **15** (4), 820 (1970).
- [6] А.А. Вайполин. ФТТ, **15** (5), 1430 (1973).
- [7] В.Н. Ивахно, Л.В. Крадинова, В.Д. Прочухан. ФТП, 3 (7), 1083 (1969).
- [8] И.И. Кожина, А.С. Борщевский. Вестн. ЛГУ, № 22, 113 (1975).
- [9] Л.И. Бергер, Л.В. Крадинова, В.М. Петров, В.Д. Прочухан. Изв. АН СССР. Неорг. матер., 9 (7), 1258 (1973).
- [10] L.V. Kradinova, T.I. Voronina. Phys. Status Solidi, **32** (2), 173 (1969).
- [11] W. Scott. J. Appl. Phys., 44 (11), 5165 (1973).
- [12] Ю.И. Полыгалов, Ю.М. Басалаев, М.Л. Золотарев, А.С. Поплавной. ФТП, 23 (2), 279 (1989).
- [13] K. Hubner, K. Unger. Phys. Status Solidi, B, 50 (2), K105 (1972).
- [14] A. Tenga, F.J. Garcia-Garcia, A.S. Mikhaylushkin, B. Espinosa-Arronte, M. Andersson. Chem. Mater., 17, 6080 (2005).
- [15] В.Н. Брудный. ФТП, **43** (9), 1187 (2009).

Физика и техника полупроводников, 2018, том 52, вып. 13

- [16] M. Ito, Y. Ohishi, H. Muta, K. Kurosaki, S. Yamanaka. Mater. Res. Soc. Symp. Proc., **1314**, 618 (2011).
- [17] J. Bhosale, A.K. Ramdas, A. Burger. Phys. Rev. B, 86 (19), 195208 (2012)
- [18] S.C. Erwin, I. Zutic. Nature Materials, 3(6), 410 (2004).
- [19] L. Kilanski, M. Górska, A. Ślawska-Waniewska, S. Levińska, R. Szymczak, E. Dynowska, A. Podgórni, W. Dobrowolski, U. Ralević, R. Gajić, N. Romčević, I.V. Fedorchenko, S.F. Marenkin. J. Phys.: Condens. Matter, 28 (33) 336004 (2016).
- [20] X. Gonze, J.-M. Beuken, R. Caracas, F. Detraux, M. Fuchs, G.-M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jollet, M. Torrent, A. Roy, M. Mikami, Ph. Ghosez, J.-Y. Raty, D.C. Allan. Comp. Mater. Sci., 25 (3), 478 (2002).
- [21] R. Dovesi, R. Orlando, A. Erba, C.M. Zicovich-Wilson,
 B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone,
 M. De La Pierre, P. D'Arco, Y. Noel, M. Causa, M. Rerat,
 B. Kirtman. Int. J. Quantum Chem., 114 (19) 1287 (2014).
- [22] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, FG. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch. J. Phys.: Condens. Matter, **21** (39) 395502 (2009).
- [23] A.D. Becke. J. Chem. Phys., 98 (7), 5648 (1993).
- [24] C. Lee, W. Yang, R.G. Parr. Phys. Rev. B, 37 (2), 785 (1988).
- [25] H.J. Monkhorst, J.D. Pack. Phys. Rev. B, 13 (12), 5188 (1976).
- [26] Ю.М. Басалаев, А.С. Поплавной. Электронное строение тройных алмазоподобных соединений со структурой халькопирита (Кемерово, ИНТ, 2009).
- [27] В.Н. Беломестных, Е.П. Теслева. ЖТФ, 74 (8), 140 (2004).
- [28] El-S. Yousef, A. El-Adawy, N. El-KheshKhany. Sol. St. Commun., 139 (3), 108 (2006).

Редактор Г.А. Оганесян

First-principles investigation of the semiconductor ZnSnSb₂

Yu.M. Basalaev

Kemerovo State University, 650043 Kemerovo, Russia

Abstract As a result of first principles calculations based on the density functional theory, for chalcopyrite crystal ZnSnSb₂ obtained equilibrium lattice parameters a = 6.2893 Å, c = 12.5975 Å and u = 0.2314, band structure with a band gap of $E_g = 0.43$ eV. The calculated vibrational frecuency of the phonons and elastic constants $C_1 = 89.3$, $C_{13} = 41.8$, $C_{33} = 90.4$, $C_{44} = 43.9$, $C_{66} = 44.1$ GPa, the phase velocity of elastic waves, elastic moduli, microhardness (2.29 GPa) and elastic Gruneisen parameter (1.5). Considered the temperatute dependence for heat capacity and thermodynamic potentials (20 to 633 K).