02;07

Образование кластеров спайков в CMOS-матрицах, облученных протонами и нейтронами

© Н.А. Иванов¹, О.В. Лобанов¹, В.В. Пашук¹, М.О. Прыгунов², К.Г. Сизова^{3,¶}

 ¹ Петербургский институт ядерной физики им. Б.П. Константинова НИЦ "Курчатовский институт", Гатчина, Ленинградская обл., Россия
² ООО "О2 Световые Системы", Санкт-Петербург, Россия
³ ООО "НПЦ "Гранат", Санкт-Петербург, Россия
[¶] E-mail: ksizova@npcgranat.ru

Поступило в Редакцию 9 июля 2018 г.

Исследованы распределения пикселей с большой величиной темнового тока в CMOS-матрицах, облученных протонами с энергией 1000 MeV и нейтронами сплошного спектра, моделирующего энергетический спектр атмосферных нейтронов. Получены данные об образовании кластеров спайков в облученных матрицах и влиянии времени экспозиции на параметры кластеров.

DOI: 10.21883/PJTF.2018.21.46855.17457

В светочувствительных матрицах эффект воздействия отдельных частиц проявляется в возникновении спайков — поврежденных пикселей с величинами темновых токов (I_{dc}), значительно превышающими средние значения темновых токов в пикселях исходной необлученной матрицы. При облучении протонами и нейтронами спайки преимущественно образуются в результате ядерных реакций, продукты которых создают структурные радиационные дефекты в чувствительной области пикселей [1]. В работах [2,3] было установлено, что под действием быстрых протонов и нейтронов в матрицах на основе приборов с зарядовой связью (ССD-матрицах) ICX259AL марки Sony с размером пикселей 6.50 × 6.25 µm возникают кластеры (скопления) спайков, которые включают несколько соседних поврежденных пикселей с большими величинами I_{dc} и имеют линейные размеры до ~ 20 µm.

В настоящей работе изучается образование спайков под действием протонов и нейтронов в матрицах на основе комплементарной

48

Рис. 1. Распределения величин темнового тока в пикселях СМОS-матриц, облученных протонами (*a*) и нейтронами (*b*). Время экспозиции 32 ms (сплошная линия) и 0.5 ms (штриховая линия).

структуры металл-оксид-полупроводник (СМОS-матрицы), которые благодаря своим техническим характеристикам и низкой стоимости в последнее десятилетие практически заменили ССD-матрицы в элект-

Рис. 2. Распределения количества кластеров по числу входящих в них спайков в матрицах, облученных протонами (*a*) и нейтронами (*b*). Время экспозиции 32 ms (сплошная линия) и 0.5 ms (штриховая линия).

ронной аппаратуре. Исследовались СМОS-матрицы МТ9М034 производства фирмы ON Semiconductor с размером кристалла 4.8×3.6 mm, размером пикселя $3.75 \times 3.75 \,\mu$ m и количеством активных пикселей 1280×960 . Облучение проводилось протонами с энергией 1000 MeV

Рис. 3. Рельефы кластеров спайков в СМОS-матрице при облучении протонами до флюенса 10^{10} cm⁻² (*a*) и нейтронами до флюенса $2.8 \cdot 10^7$ cm⁻² (*b*) при временах экспозиции 32 ms.

на синхроциклотроне C-1000 до флюенса $F_p = 10^{10} \,\mathrm{cm}^{-2}$ и нейтронами атмосферного спектра с максимальной энергией 1000 MeV на установке ГНЕЙС [4] до флюенса $F_n = 2.8 \cdot 10^7 \,\mathrm{cm}^{-2}$. Мето-

дика облучения протонами и нейтронами при флюенсах частиц $10^7 - 10^{10}$ сm⁻² аналогична описанной в работах [2,3]. Величины I_{dc} определялись по степени яркости пикселя матрицы в относительных единицах (rel. un.) целым числом в диапазоне от 0 (черное) до 255 (белое).

На рис. 1 приведены измеренные при температуре 25°С распределения пикселей по величине темнового тока в облученных протонами и нейтронами СМОЅ-матрицах при различных временах экспозиции (выдержки до момента измерения значения темнового тока). Поскольку в исходных матрицах величины темновых токов не превышали 20 rel. un., спайками мы считали пиксели, величина I_{dc} в которых после облучения превышала 20 rel. un.

На рис. 2 показаны распределения количества кластеров N_k по числу входящих в них спайков при различных временах экспозиции в СМОЅ-матрицах, облученных протонами и нейтронами. Размеры кластеров и величины темновых токов в спайках, входящих в их состав, в сильной степени зависят от времени экспозиции и практически не зависят от природы нуклонов. В качестве примера на рис. 3 приведены участки облученных протонами и нейтронами СМОЅ-матриц с типичными "рельефами" кластеров спайков при времени экспозиции 32 ms. Максимальный размер кластеров, приведенных на рис. 3, составляет ~ 11.75 \times 11.75 μ m и включает в себя девять спайков.

К образованию кластеров способны приводить наиболее длиннопробежные частицы из числа продуктов ядерных реакций нуклонов с ядрами кремния. В таблице приведены величины пробегов различных ядер отдачи [5], образующихся с максимальными энергиями в ядерных реакциях протонов с энергией 1000 MeV с ядрами атомов кремния [6] (продукты ядерных реакций нейтронов атмосферного спектра с максимальной энергией 1000 MeV имеют аналогичный состав и величины пробегов). Из таблицы видно, что такие ядра отдачи, как неон, кислород и углерод, имеют пробеги, достаточные для создания кластеров спайков наблюдаемых размеров. Следует также иметь в виду, что эти ядра отдачи в процессе торможения проходят область максимальных значений линейных потерь энергии на ионизацию и испытывают упругие атоматомные соударения [5,6].

При флюенсе протонов 10^{10} сm⁻² и времени экспозиции 32 ms количество событий *n* от отдельных частиц составило 28 926, в том

Параметр	Тип ядра отдачи			
	²⁷ Al	²⁰ Ne	¹⁶ O	¹² C
Энергия ядра отдачи, MeV Пробег ядра, µm	7.5 4.5	24 11	46 30	53 63

числе 20194 от кластеров и 8732 от спайков вне кластеров. Соответственно сечение возникновения событий от отдельных протонов в СМОS-матрице \sum_{sp} , равное $\sum_{sp} = n/F_p$, составило $2.9 \cdot 10^{-6} \text{ cm}^2$, что качественно согласуется с величиной сечения ядерных реакций в объеме СМОS-матрицы (\sum_{nr})

$$\sum_{nr} = \sigma n_{\rm Si} V_{\rm CMOS} \approx 2.2 \cdot 10^{-6} \, {\rm cm}^2,$$

где $\sigma = 5 \cdot 10^{-25} \text{ cm}^2$ — сечение ядерных реакций нуклонов с энергией 1000 MeV с ядрами атомов кремния [7], $n_{\text{Si}} = 5.19 \cdot 10^{22} \text{ cm}^{-3}$ — плотность атомов кремния, V_{CMOS} — объем CMOS-матрицы, принятый нами равным $0.86 \cdot 10^{-4} \text{ cm}^3$ при толщине чувствительной области матрицы 5 μ m.

Проведенные исследования показали следующее.

1. Механизм образования кластеров спайков в CMOS-матрицах МТ9М034 и CCD-матрицах ICX259AL, облученных быстрыми протонами и нейтронами, аналогичен и обусловлен длиннопробежными остаточными ядрами, возникающими в результате ядерных реакций протонов и нейтронов с ядрами кремния.

2. Размеры кластеров и величины темновых токов в спайках, входящих в их состав, в сильной степени зависят от времени экспозиции и практически не зависят от природы нуклонов.

3. Возникновение кластеров спайков под действием протонов и нейтронов указывает на возможность множественных сбоев и отказов в интегральных схемах с размером чувствительных областей, близким и меньшим размера пикселей в СМОЅ-матрицах.

Список литературы

- Hopkinson G.R., Goiffon V., Mohammadzadeh A. // IEEE Trans. Nucl. Sci. 2008. V. 55. N 4. P. 2197–2204.
- [2] Ермаков К.Н., Иванов Н.А., Лобанов О.В., Пашук В.В., Тверской М.Г., Любинский С.М. // Письма в ЖТФ. 2010. Т. 36. В. 13. С. 54–60.
- [3] Иванов Н.А., Лобанов О.В., Митин Е.В., Пашук В.В., Тверской М.Г. // Письма в ЖТФ. 2013. Т. 39. В. 17. С. 35–43.
- [4] Абросимов Н.К., Вайинене Л.А., Воробьев А.С., Иванов Е.М., Михеев Г.Ф., Рябов Г.А., Тверской М.Г., Щербаков О.А. // Приборы и техника эксперимента. 2010. № 4. С. 5–12.
- [5] Физические величины. Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. М.: Энергоатомиздат, 1991. 1232 с.
- [6] Ермаков К.Н., Иванов Н.А., Пашук В.В., Тверской М.Г. // Вопр. атомной науки и техники. Сер. Физика радиационного воздействия на радиоэлектронную аппаратуру. Науч.-техн. сб. М., 2007. В. 1-2. С. 20–23.
- [7] Барашенков В.С. Сечения взаимодействия частиц и ядер с ядрами. Дубна: ОИЯИ, 1993, 346 с.