## Теплопроводность Bi<sub>2</sub>Te<sub>3</sub>: Sn и влияние на нее дополнительного легирования атомами Pb и I

© М.К. Житинская, С.А. Немов, Т.Е. Свечникова\*, Л.Н. Лукьянова\*\*, П.П. Константинов\*\*, В.А. Кутасов\*\*

Санкт-Петербургский государственный технический университет,

195251 Санкт-Петербург, Россия

\* Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук,

\*\* Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

(Поступила в Редакцию 12 ноября 2002 г.)

Изучено изменение теплопроводности решетки Bi<sub>2</sub>Te<sub>3</sub> как под влиянием введения только атомов олова, так и при одновременном легировании атомами олова и акцепторной или донорной примесью. Экспериментальные данные, полученные при комнатной температуре и температуре жидкого азота, свидетельствуют в пользу справедливости модели квазилокальных примесных состояний, связанных с атомами олова.

Теллурид висмута, так же как и теллурид свинца, обладает высокой поляризуемостью кристаллической решетки. Поэтому нейтральные и заряженные примеси в этих материалах оказывают различное влияние на рассеяние фононов [1,2]. В этих соединениях эффективное сечение рассеяния фононов  $\Phi$  на заряженных примесях в несколько раз превышает сечение рассеяния на нейтральных примесях. Данный экспериментальный факт мы используем в настоящей работе для изучения зарядового состояния примесных атомов олова в Bi<sub>2</sub>Te<sub>3</sub>.

О необычном влиянии атомов олова на электрофизические свойства теллурида висмута сообщалось в работах [3–5]. Наблюдаемые особенности были объяснены присутствием резонансных состояний на фоне разрешенного зонного спектра валентной зоны. Кроме того, теллурид висмута — соединение с большим количеством антиструктурных дефектов, часть атомов висмута (около 1 аt.%) располагается в двух возможных позициях теллура  $Bi_{Te(1)}$  и  $Bi_{Te(2)}$ . Расположение атомов в слое записывается следующим образом:  $Te^{(1)}-Bi-Te^{(2)}-Bi-Te^{(1)}$ . Поэтому при легировании атомами металла путем замещения  $Bi \rightarrow Sn$  атомы олова могут размещаться в трех различных позициях: на местах  $Te^{(1)}$ ,  $Te^{(2)}$  и Bi. Естественно, что зарядовое состояние Sn в этих положениях будет различным.

Эксперимент проводился в два этапа. Сначала изучалось влияние различного количества введенных атомов олова на теплопроводность решетки Bi<sub>2</sub>Te<sub>3</sub>. Затем были проведены опыты по дополнительному легированию: исследовалось изменение теплопроводности решетки Bi<sub>2</sub>Te<sub>3</sub>, легированного атомами олова и одновременно либо донорной (атомами галогенов), либо акцепторной (атомами свинца) примесью.

Монокристаллические образцы Bi<sub>2</sub>Te<sub>3</sub> были выращены и методом Чохральского, и методом направленной кристаллизации. Состав образцов, легированных только оловом, описывался химической формулой Bi<sub>2-x</sub>Sn<sub>x</sub>Te<sub>3</sub>, где x = 0, 0.002, 0.005, 0.007, 0.01, 0.02 (x = 0.01 соответствует  $6 \cdot 10^{19}$  cm<sup>-3</sup>). Образцы, легированные одновременно оловом и иодом (хлором), описывались

формулой  $Bi_{2-x}Sn_xTe_3 + ySbI_3(CdCl_2)$ , где x = 0.005, 0.01, 0.02 и у = 0.05, 0.1, 0.15 wt.%. Образцы, легированные одновременно оловом и свинцом, имели состав  $Bi_{2-x-z}Sn_xPb_zTe_3$  (значения x те же, z = 0.005, 0.01, 0.02, 0.03). Содержание примесей контролировалось химическим и рентгеновским анализом. Однородность распределения примесей в образцах оценивалась с помощью термозонда при комнатной температуре. Наряду с измерениями теплопроводности к<sub>tot</sub> мы измеряли следующие независимые компоненты кинетических тензоров: Холла R<sub>123</sub> и R<sub>321</sub>, термоэдс S<sub>11</sub> и S<sub>33</sub> и электропроводности  $\sigma_{11}$ . Теплопроводность измерялась стационарным методом. Тепловой поток и электрический ток направлялись вдоль плоскостей спайности (индексы 1,2). Коэффициент Холла измерялся двумя способами: в переменных и постоянных электрическом и магнитном полях.

В сильно легированных полупроводниках в области примесной проводимости общая теплопроводность записывается в виде  $\kappa_{tot} = \kappa_L + \kappa_e$ , где  $\kappa_L$  — теплопроводность кристаллической решетки,  $\kappa_e$  — электронная теплопроводность, которая определялась по закону Видемана-Франца  $\kappa_e = L\sigma T$ , L — число Лоренца. Число Лоренца L рассчитывалось с учетом степени вырождения электронного газа [2].

Рассмотрим полученные результаты. Из рис. 1 видно, что введение только атомов олова почти не изменяет величину общей теплопроводности  $\kappa_{tot}$ , которая остается практически потоянной, за исключением начального участка. Тепловое сопротивление решетки  $W_r$  при введении примеси олова в количестве до  $N_{imp} = 0.2$  at.% растет. По-видимому, атомы олова в малом количестве (до 0.2 at.%) преимущественно размещаются в узлах теллура Te<sup>(2)</sup>, в этих позициях они электрически активны и отдают свои электроны в валентную зону. Данное предположение подтверждается уменьшением концентрации дырок (точки *I* на рис. 2). Атомы Sn заряжены, и тепловое сопротивление рашетки возрастает из-за дополнительного рассеяния фононов на заряженной примеси.

<sup>117911</sup> Москва, Россия



**Рис. 1.** Зависимости теплопроводности  $\kappa_{tot}$  (1) и относительной величины теплового сопротивления решетки  $dW/W_r$  (2-4) Bi<sub>2</sub>Te<sub>3</sub> от концентрации введенной примеси. 1, 2 — примесь олова, 3 — заряженная примесь, 4 — нейтральная примесь (3, 4 — данные работы [6]).



**Рис. 2.** Изменение холловской концентрации дырок в  $Bi_2Te_3$  при легировании атомами олова (1) и при дополнительном легировании атомами Cl (2, 3), Pb (4) и I (5, 6).

При дальнейшем повышении концентрации введенного олова (до 1 at. %) наблюдалось уменьшение теплового сопротивления решетки до значения, присущего нелегированному Ві2Тез, которое оставалось неизменным при дальнейшем увеличении введенного олова. Вероятно, после заполнения мест Bi<sub>Te<sup>(2)</sup></sub> атомы Sn преимущественно занимают места Bi<sub>Te(1)</sub>. Согласно выводам работы [7], атомы Sn в позициях Te<sup>(1)</sup> создают резонансные уровни. В этих позициях атомы Sn оказываются нейтральными по отношению к решетке. Поскольку резонансный уровень расположен неглубоко в валентной зоне, на него переходит незначительное количество электронов из вышележащих состояний валентной зоны (полная концентрация дырок в валентной зоне  $p \sim 1 \cdot 10^{19} \text{ cm}^{-3} \ll N_{\text{sn}}$ ). Результаты измерений теплопроводности подтверждают это предположение. Тепловое сопротивление решетки в этой области концентраций примеси олова Sn хорошо описывается законом рассеяния фононов на нейтральных примесях (рис. 1).

Рассмотрим, как изменяется тепловое сопротивление решетки при одновременном легировании атомами Sn и акцептором (Pb) либо донорами (I, Cl). При дополнительном легировании Bi2-x Snx Te3 акцепторами (атомами Pb) тепловое сопротивление решетки также остается практически постоянным (точки 7-9 на рис. 3, a, b). В противоположность этому дополнительное легирование  $Bi_{2-x}Sn_xTe_3$  донорами — атомами Cl (точки 4-6) или атомами I (точки 10-12) — приводит к увеличению теплового сопротивлени решетки. Подобное поведение W<sub>r</sub> (N<sub>imp</sub>) наблюдалось как при комнатной температуре, так и при температуре жидкого азота, что связано с доминирующим характером рассеяния фононов на примесях. Если считать, что различный характер изменения W<sub>r</sub> при легировании донорами и акцепторами связан с особенностями рассеяния фононов в Bi<sub>2</sub>Te<sub>3</sub>: Sn при дополнительном легировании, из данных по теплопроводности с помощью формулы Иоффе можно оценить величину сечения рассеяния фотонов Ф

$$k_0/k = W_r/W_0 = 1 + (N/N_0)\Phi(l_0/a),$$

где N — концентрация примесей;  $N_0$  — число атомов вещества в 1 сm<sup>3</sup>; a — расстояние между соседними атомами;  $l_0$  — средняя длина свободного пробега фонона в кристалле без примесей;  $\Phi$  — коэффициент в формуле  $S = Aa^2$  (сечение рассеяния фонона на примеси); k и  $k_0$ ,



Рис. 3. Тепловое сопротивление решетки  $Bi_2Te_3$ , легированного только атомами Sn (1-3) и дополнительно легированного атомами Cl (4-6), Pb (7-9) и I (10-12).  $N_{Sn} = 0.5$  (1, 4, 7, 10), 1.0 (2, 5, 8, 11) и 2.0 mol.% (3, 6, 9, 12). T = 100 (a) и 300 K (b).

Wr и  $W_0$  — решеточная теплопроводность и тепловое сопротивление решетки в кристалле с примесью и без нее соответственно.

Оказалось, что величина  $\Phi$  практически постоянна и равна  $\Phi \sim 1.3$  во всей области дополнительного легирования Bi<sub>2</sub>Te<sub>3</sub>: Sn акцепторной примесью (атомами Pb) и при легировании донорной примесью (атомами Cl и I) в количестве до 0.5 mol.%. При увеличении количества дополнительных доноров до 1 mol.% сечение рассеяния возрастает до  $\Phi \sim 8$ . Полученные значения  $\Phi$  хорошо согласуются с литературными данными для Bi<sub>2</sub>Te<sub>3</sub> [6] при рассеянии фононов на нейтральных и заряженных примесях.

Полученные экспериментальные данные подобны наблюдавшимся ранее в PbTe:Tl при дополнительном легировании примесью Na. Примесь Tl создает в валентной зоне РbTe полосу примесных резонансных состояний, а сильная акцепторная примесь Na позволяет опустошить эти состояния полностью и вывести уровень Ферми за пределы резонансных состояний [8]. Подобие полученных нами результатов в Bi2-xSnx Te3 заключается в слабой зависимости Wr от дополнительной примеси, когда уровень Ферми находится в пределах резонансной полосы: на рис. 2 это область относительной стабильности концентрации дырок, в пределах которой наблюдаются небольшие изменения р<sub>300</sub>. Однако в отличие от PbTe: Tl, легированного Na, мы не можем однозначно интерпретировать зависимость W<sub>r</sub> при дополнительном легировании Bi2-xSnxTe3 атомами Pb. Столь неоднозначный, сложный характер влияния дополнительных примесей, по-видимому, связан не только с изменением степени заполнения резонансных состояний Sn, но и с тем, что примесь Рb может сама занимать разные позиции в кристаллической решетке и при этом по-разному влиять на перераспределение Ві между этими позициями.

Таким образом, полученные в работе экспериментальные данные по влиянию примеси Sn на решеточную теплопроводность монокристаллов  $Bi_2Te_3$ , а также данные по дополнительному легированию  $Bi_{2-x}Sn_xTe_3$ акцепторной или донорной примесью свидетельствуют в пользу существования квазилокальных примесных состояний олова.

## Список литературы

- V.A. Kulbachinskii, N.B. Brandt, P.A. Cheremnykh, S.A. Azou, J. Horak, P. Lostak. Phys. Stat. Sol. (b) 150, 237 (1988).
- [2] Г.Т. Алексеева, П.П. Константинов, В.А. Кутасов, Л.Н. Лукьянова, Ю.И. Равич. ФТТ 38, 2998 (1996).
- [3] М.К. Житинская, С.А. Немов, Т.Е. Свечникова. ФТТ 40, 1428 (1998).
- [4] В.А. Кутасов, И.А. Смирнов. ФТТ 8, 2695 (1966).
- [5] И.А. Смирнов, Е.В. Шадричев, В.А. Кутасов. ФТТ 11, 3311 (1969).

- [6] Б.М. Гольцман, В.А. Кудинов, И.А. Смирнов. Полупроводниковые термоэлектрические материалы на основе Bi<sub>2</sub>Te<sub>3</sub>. Наука, Л. (1972).
- [7] P. Pecheur, G. Toussaint. Proc. VIII Int. Conf. on Thermoelectric Energy Conversion. Nancy (1989). P. 176.
- [8] М.К. Житинская, С.А. Немов, Ю.И. Равич. ФТТ 40, 1206 (1998).