05

Особенности строения, физико-химические и оптические характеристики кристаллов ниобата лития, выращенных из расплавов, легированных бором

© Н.В. Сидоров, Н.А. Теплякова, Р.А. Титов, М.Н. Палатников

Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Федерального исследовательского центра "Кольский научный центр РАН", 184209 Апатиты, Мурманская обл., Россия e-mail: sidorov@chemy.kolasc.net.ru

(Поступило в Редакцию 25 января 2018 г.)

Рассмотрены химические взаимодействия в системе $Li_2O-B_2O_3-Nb_2O_5$, а также некоторые особенности кристаллизации выращивания кристаллов LiNbO₃ из расплавов, содержащих неметаллические примеси. Показано, что бор, практически не входя в структуру ниобата лития, изменяет структуру расплава и оказывает заметное влияние на структуру и физические характеристики кристаллов LiNbO₃ : В. В спектрах КРС выращенных кристаллов LiNbO₃ : В обнаружены заметные изменения некоторые особенности, что свидетельствует об изменении порядка чередования основных катионов и вакансий вдоль полярной оси кристалла и "возмущении" кислородных октаэдров. При этом "возмущение" кислородных октаэдров носит анизотропный характер. Кристаллы LiNbO₃ : В характеризуется структурной однородностью, более высокой, чем конгруэнтные кристаллы, а по количеству дефектов NbLi близки к кристаллу стехиометрического состава, отличаясь от него существенно меньшим эффектом фоторефракции.

DOI: 10.21883/JTF.2018.12.46783.39-18

Введение

Кристалл ниобата лития (LiNbO₃) относится к важнейшим нелинейно-оптическим, пьезоэлектрическим, пироэлектрическим и сегнетоэлектрическим материалам и находит широкое применение в различных устройствах электронной техники и нелинейной оптики [1,2]. Ниобат лития является нестехиометрическим кислороднооктаэдрическим сегнетоэлектриком с широкой областью гомогенности на фазовой диаграмме (44.5-50.5 mol.% Li₂O при 1460 K) и фактически должен рассматриваться как твердый раствор LiNbO3 : Nb [3,4]. Октаэдрическая координация в структуре кристалла металлических катионов ионами кислорода допускает значительные геометрические "возмущения" кислородных октаэдров $BO_6 \ (B = Li^+, Ni^{5+}, легирующий металлический кати$ он) без изменения их симметрии, что проявляется в высокой аккомодационной способности структуры по отношению к металлическим легирующим добавкам. Как фаза переменного состава сегнетоэлектрический кристалл ниобата лития характеризуется широко развитой дефектной структурой. В формировании эффекта фоторефракции (optical damage) ведущая роль отводится дефектам с локализованными на них электронами, формирующими фотоэлектрические поля. Кристалл характеризуется высокими значениями напряженности фотоэлектрических полей и высоким эффектом фоторефракции, который можно регулировать в широких пределах [1,2,5]. Одним из способов повышения оптической стойкости конгруэнтных кристаллов LiNbO3 является легирование металлическими "нефоторефрактивными"

катионами¹ с получением кристаллов LiNbO₃ : Me (Me: Zn, Mg, In и др.) [1]. Влияние нефоторефрактивных металлических легирующих добавок на свойства ниобата лития основано на "регулировании" ими содержания и координации в кристалле точечных структурных дефектов катионной подрешетки и связанных с ними молекулярных комплексов [1,2,6-8]. При этом дефекты Nb_{Li}, (катионы Nb⁵⁺, находящиеся в позициях катионов Li⁺ идеальной структуры стехиометрического состава (R = Li/Nb = 1)), наряду с примесями переходных металлов (например, $Fe^{2+}-Fe^{3+}$), являются глубокими ловушками электронов и наиболее сильно влияют на эффект фоторефракции [1,2]. Помимо дефектов NbLi, в структуре существует множество других дефектов в виде мелких ловушек электронов, также влияющих на эффект фоторефракции в кристаллах с низким эффектом фоторефракции [9]. Необходимо отметить, что легирование металлическими катионами в значительных концентрациях неизбежно приводит к значительному повышению оптической и структурной неоднородности монокристалла [1,2,6-8,10].

Неметаллические катионы, обладающие иными, чем у металлических катионов, механизмами химической связи и, как следствие, другими механизмами влияния на физические характеристики системы кристалл—расплав, не способны входить в кислородные октаэдры структуры кристалла LiNbO₃. Так, неметаллический элемент

¹ "Нефоторефрактивные" катионы в отличие от многозарядных "фоторефрактивных" катионов не изменяют свое зарядовое состояние в кристалле (не являются донорами электронов) под действием оптического излучения.

бор характеризуется крайне низким коэффициентом вхождения в октаэдрические пустоты O₆ структуры LiNbO₃ ($K_p \ll 1$). При содержании ~ 1–2 mol.% B₂O₃ в расплаве в кристалле будет присутствовать лишь ~ 4 · 10⁻⁴ mol.% B₂O₃, что соответствует концентрации многочисленных посторонних следовых примесей (Zr, Mo, Ca, Fe, Ti, Si и др.) [11–13].

По причине незначительного вхождения неметаллических элементов в структуру кристалла исследования их влияния на структуру и физические характеристики монокристаллов LiNbO₃ практически не проводились. Однако есть основания полагать, что неметаллические элементы будут изменять физические характеристики расплава и тем самым изменять тонкие особенности структуры кристалла. Так, в работах [11,14] установлено, что температура Кюри (T_c) кристаллов LiNbO₃, выращенных из шихты, содержащей бор, возрастает на $\sim 47 \, \text{K}$, а температура плавления на $\sim 10 \, \text{K}$ К по сравнению с номинально чистым конгруэнтным кристаллом. Это может свидетельствовать об изменении (по сравнению с конгруэнтным кристаллом) вязкости расплава, а также структуры и размеров кластеров в расплаве, вследствие присутствия бора.

В настоящей работе рассмотрены химические взаимодействия в системе $Li_2O-B_2O_3-Nb_2O_5$, а также некоторые особенности кристаллизации кристаллов LiNbO₃ из расплавов, содержащих неметаллические примеси. По спектрам КРС, чувствительных к изменению взаимодействий между структурными единицами кристалла, исследованы кристаллы LiNbO₃ : В (0.55–1.24 mol.% в шихте) в зависимости от изменения концентрации бора. Оптическая и структурная однородность кристаллов исследована методами фотоиндуцированного рассеяния света (ФИРС) и лазерной коноскопии. Результаты для кристаллов LiNbO₃ : В сравнивались с результатами, полученными для номинально чистого стехиометрического (LiNbO_{3stoich}) и конгруэнтного (LiNbO_{3cong}) кристаллов.

Методика эксперимента

Номинально чистые конгруэнтные кристаллы LiNbO3 и LiNbO₃ : В (0.55-1.24 mol.% в шихте) выращивались из расплава конгруэнтного состава [15]. Легирование при получении монокристаллов LiNbO3 : В осуществлялось как путем добавления легирующей примеси в реэкстракт при получении особо чистого пентаоксида ниобия (Nb₂O₅) [16], так и методом твердофазной лигатуры [11,14]. Боросодержащий реагент (борную кислоту) вводили непосредственно в ниобиевый реэкстракт, полученный в процессе экстракционного передела технической гидроокиси ниобия до высокочистой. При этом для успешного выращивания кристаллов высокого оптического качества с низким эффектом фоторефракции концентрация бора не должна превышать $\sim 0.1 \, {\rm wt.\%}$ в расплаве [11]. При большем содержании бора значительно увеличивается вязкость расплава и в выращенных кристаллах наблюдаются макродефекты, существенно ухудшающие оптическое качество кристалла [11,14]. С использованием легированного прекурсора Nb₂O₅ : В была синтезирована шихта ниобата лития, из которой была выращена затем серия монокристаллов LiNbO₃ : В (0.55-1.24 mol.% В₂О₃ в шихте). Содержание микропримесей в кристалле составляло: Pb, Ni, Cr, Co, V, Ti, Fe, Al menee $2 \cdot 10^{-4}$; Ca, Si menee $1 \cdot 10^{-3}$; F менее $1 \cdot 10^{-3}$ wt.%. Выращивание кристалла LiNbO_{3stoich} осуществлялось из расплава с 58.6 mol.% Li₂O. При выращивании LiNbO_{3cong} использовалась оригинальная гранулированная шихта, синтезированная в ИХТРЭМС КНЦ РАН, позволяющая получать абсолютно бесцветные (water white) номинально чистые монокристаллы [17]. Все кристаллы выращивались в воздушной атмосфере методом Чохральского на установке "Кристалл-2", снабженной системой автоматического контроля диаметра кристалла.

Все выращенные монокристаллы были монодоменизированы посредством высокотемпературного электродиффузионного отжига путем приложения постоянного тока при охлаждении кристаллов со скоростью 20°/h в температурном интервале ~ 1240-880°C. Контроль степени монодоменности осуществлялся методом анализа частотной зависимости электрического импеданса и путем определения величины статического пьезомодуля ($d_{333stat}$) кристаллической були. Образцы для исследований вырезались из монодоменизированных кристаллов в форме параллелепипедов ($7 \times 6 \times 5 \text{ mm}^3$), ребра которых совпадали по направлению с кристаллофизическими осями X, Y, Z (Z — полярная ось кристалла). Грани параллелепипедов тщательно полировались.

Спектры КРС возбуждались линией 514.5 nm аргонового лазера Spectra Physics (модель 2018-RM) и регистрировались спектрографом Т64000 производства фирмы Horiba Jobin Yvon с использованием конфокального микроскопа. Чтобы уменьшить влияние эффекта фоторефракции на спектр КРС, спектры возбуждались излучением малой мощности. Мощность возбуждающего лазерного излучения под микроскопом не превышала 3 mW. Все спектры регистрировались с разрешением 1.0 cm⁻¹. Обработка спектров производилась с использованием пакета программ Horiba LabSpec 5.0 и Origin 8.1. Точность определения частот, ширин и интенсивностей линий $\pm 1.0, \pm 3.0 \, \text{cm}^{-1}$ и 5% соответственно. Методика исследований ФИРС и лазерной коноскопии подробно описаны в работах [8,10,18]. В экспериментах по ФИРС и лазерной коноскопии применялся лазер Nd: YAG (MLL-100) с длиной волны 532 nm и мощностью от 1 до 160 mW.

Результаты и их обсуждение

Спектры КРС кристаллов LiNbO₃:В (0.55–1.24 mol.% В₂O₃ в шихте) исследовались ранее в работах [12,13,19,20]. Основное внимание было уделено

LiNbO _{3stoich}		LiNbO _{3cong}		LiNbO ₃ : B (0.55 mol%)		LiNbO ₃ : B 0.69 mol%)		LiNbO ₃ : B 0.83 mol%)		LiNbO ₃ : B 1.24 mol%)	
ν	S	ν	S	ν	S	ν	S	ν	S	ν	S
152 179	7	152	12	152	7	152	9	152	9	152	10
240	9	240	11	41	9	241	11	240	10	240	11
268	10	268	14	270	13	271	12	270	13	270	13
324	10	324	13	325	12	324	14	324	14	323	16
371	17	371	23	371	24	370	24	370	26	371	26
434	10	434	14	432	9	432	10	432	11	432	14
578	16	576	15	575	32	576	33	576	33	575	24
611											
630 ¹	20	626	25	626	41	628	42	626	46	626	28
876 ¹	20	876	30	875	25	877	25	875	26	875	31

Таблица 1. Основные параметры линий, проявляющихся в спектрах КРС монокристаллов LiNbO_{3stoich}, LiNbO_{3cong} и LiNbO₃ : B^{3+} (0.55–1.24 mol.% B_2O_3 в шихте), в геометрии рассеяния $Y(ZX)\overline{Y}(E(TO))$

¹Примечание. Линии с частотами 630 и 876 сm⁻¹ отвечают соответственно фононам A₁(TO) и A₁(LO) типа симметрии, неактивным в геометрии рассеяния Y(ZX) \overline{Y} , но проявляющихся в этой геометрии вследствие эффекта фоторефракции. Ширины малоинтенсивных линий с частотами 180 и 610 сm⁻¹ в таблице не приведены ввиду больших ошибок их определения.

влиянию структурного беспорядка катионной подрешетки на фононы A₁(TO) типа симметрии в геометрии рассеяния Y(ZZ)Y и проявлению эффекта фоторефракции в спектре КРС. При этом "возмущение" кислородных октаэдров O₆ структурным беспорядком катионной подрешетки не рассматривалось. В таблице приведены основные параметры линий, проявляющихся в спектрах КРС монокристаллов LiNbO3stoich, LiNbO3cong и LiNbO3: В (0.55–1.24 mol.% В₂О₃ в шихте), зарегистрированных в геометрии рассеяния $Y(ZX) \overline{Y}$ (активны фононы E(TO)типа симметрии). В спектре кристалла LiNbO_{3stoich}, отличающегося наиболее упорядоченной катионной подрешеткой, в геометрии рассеяния $Y(ZX)\overline{Y}$ нами экспериментально обнаружены все 9 линий, соответствующих фононам Е(ТО)-типа симметрии, разрешенным правилами отбора (см. таблицу). Малоинтенсивные линии с частотами 179 и $611 \,\mathrm{cm}^{-1}$ в спектре нестехиометрических кристаллов LiNbO_{3cong} и LiNbO₃ : В (0.55–1.24 mol.% В2О3 в шихте) "замазаны" эффектами разупорядочения структуры и не проявляются. Из таблицы также видно, что ширины линий в спектре кристаллов LiNbO₃: B, соответствующие колебаниям внутриоктаэдрических катионов $(150-300 \text{ cm}^{-1})$, меньше, чем соответствующие ширины линий спектра кристалла LiNbO3cong, а ширины линий с частотами 152 и 240 cm⁻¹ в пределах ошибок эксперимента совпадают с ширинами линий в спектре стехиометрического кристалла LiNbO_{3stoich}. В то же время ширина линии с частотой $578 \, \mathrm{cm}^{-1}$, соответствующей дважды вырожденным Е(ТО)-колебаниям атомов кислорода октаэдров О6 в спектре кристаллов LiNbO₃ : В (0.55-1.24 mol.% В₂О₃ в шихте) существенно больше, чем в спектре кристаллов LiNbO_{3stoich}, и LiNbO_{3cong}. Полученные данные свидетельствуют о том, что даже при очень незначительном изменении концентрации бора в шихте $(0.55-1.24 \text{ mol.}\% B_2O_3)$ и соответственно в расплаве происходит заметное увеличение в кристалле LiNbO₃ : В упорядочения структурных единиц катионной подрешетки вдоль полярной оси при одновременном "возмущении" (разупорядочении) октаэдров O_6 структуры. При этом не наблюдается появление в спектре новых линий в области колебаний кислородных октаэдров, свидетельствующих об изменении их геометрии.

В геометрии рассеяния $Y(ZX)\overline{Y}$ наиболее чувствительна к эффекту фоторефракции линия с частотой 630 cm⁻¹, соответствующая колебаниям кислородных октаэдров A₁(TO)-типа симметрии, запрещенным правилами отбора в спектре КРС в этой геометрии рассеяния [1,21,22]. Эта линия обычно в литературе используется в качестве аналитической при оценке по спектрам КРС эффекта фоторефракции в кристалле ниобата лития. Из рис. 1 видно, что концентрационное поведение интенсивности линии с частотой 630 cm⁻¹ в геометрии рассеянияв спектре кристаллов LiNbO₃ : В (0.55-1.24 mol.% В₂О₃ в шихте) и ширин линий с частотами 630 cm⁻¹ (A₁(TO)), 576 cm⁻¹ (E(TO)) хорошо коррелирует с концентрационным поведением угла θ раскрытия спекл структуры ФИРС. Это однозначно указывает на то, что "возмущение" кислородных октаэдров вследствие изменения упорядочения структурных единиц катионной подрешетки и эффект фоторефракции в кристаллах LiNbO₃ : B(0.55-1.24 mol.% В2О3 в шихте) зависят от концентрации бора в шихте. Полученные данные свидетельствуют о том, что элемент бор определенным образом структурирует расплав и из конгруэнтной шихты, легированной бором, фактически вырастает номинально чистый конгруэнтный монокристалл ниобата лития, имеющий заметные отличия в тонких особенностях структуры и физических характе-

Рис. 1. Концентрационные зависимости ширин (*S*) (*a*), интенсивности (*I*) линий с частотами 576 и 630 cm⁻¹ в спектре КРС (*b*) и угла θ раскрытия спекл-структуры ФИРС (*c*) кристаллов LiNbO_{3stoich}, LiNbO_{3cong}, LiNbO₃ : B(0.55–1.24 mol.% B₂O₃ в шихте).

Есть основания полагать, что легирование номинально чистой шихты ниобата лития бором проводит к получению такого структурированного расплава, из которого получаются кристаллы с пониженным содержанием дефектов NbLi, являющихся наиболее глубокими ловушками электронов. Это подтверждают данные спектроскопии КРС. Как известно, интенсивность линии с частотой 120 cm⁻¹, отвечающей двухчастичным состояниям акустических фононов с суммарным волновым вектором, равным нулю², равна нулю в спектре стехиометрического кристалла высокой степени структурного совершенства, в котором отсутствуют дефекты Nb_{Li} [1,24-26]. В то же время интенсивность этой линии отлична от нуля в спектре нестехиометрических кристаллов, в которых присутствуют дефекты NbLi [1,25,26]. Из рис. 2 видно, что интенсивность линии с частотой 120 cm⁻¹ в спектре кристаллов LiNbO₃ : B(0.55-1.24 mol.% B₂O₃ в шихте) сначала уменьшается при увеличении концентрации бора в шихте, а затем возрастает. При этом в спектре кристаллов LiNbO₃ : $B(1.24 \text{ mol.}\% B_2O_3 \text{ в})$ шихте) так же, как и в спектре высокоупорядоченного конгруэнтного кристалла, в котором есть дефекты NbLi, эта линия расщеплена на два компонента с частотами 112 и $123 \,\mathrm{cm}^{-1}$ (см. рис. 2), что свидетельствует о высоком структурном совершенстве кристалла. Поскольку интенсивность линии с частотой 120 cm⁻¹ в спектре стехиометрического кристалла с высокоупорядоченной катионной подрешеткой равна нулю [1,24-26], то уменьшение интенсивности этой линии может свидетельствовать об уменьшении количества дефектов NbLi в кристалле LiNbO₃ : В. При этом одновременно наблюдается увеличение упорядочения структурных единиц катионной подрешетки (что проявляется в уменьшении ширин линий в области 150-300 cm⁻¹, см. таблицу) и уменьшение резонансного ангармонического взаимодействия наиболее низкочастотных фундаментальных колебаний А₁(ТО)-типа симметрии с частотами 254 и 274 cm⁻¹ с двухчастичными акустическими возбуждениями A₁(TO)-типа симметрии, подробно обсуждаемом в обзоре [27]. Необходимо также отметить, что интенсивность линии с частотой 120 cm⁻¹, согласно данным работы [28], чувствительна и к изменению акустической добротности кристалла LiNbO3. Чем выше акустическая добротность, тем меньше интенсивность этой линии, что вполне объяснимо увеличением структурного совершенства кристалла, вследствие уменьшения в нем количества, прежде всего, основных структурных дефектов NbLi. Таким образом, полученные нами данные свидетельствуют о более высоком структурном совершенстве номинально чистых кристаллов LiNbO₃,

ристиках от номинально чистого конгруэнтного кристалла, выращенного из номинально чистого конгруэнтного расплава. Полученным экспериментальным результатам можно дать следующее объяснение.

² Согласно данным работы [23], малоинтенсивная линия с частотой 120 ст⁻¹ может соответствовать также моде псевдоскалярного типа A₂, запрещенной правилами отбора для точечной группы C_{3v} . Это колебание может проявляться в спектре КРС вследствие понижения локальной точечной симметрии кристаллов ниобата лития от C_{3v} до C_3 из-за разворота треугольников O₃, вследствие присутствия примесей в реальных кристаллах [23].

Рис. 2. Фрагмент низкочастотного спектра КРС кристаллов LiNbO_{3stoich} (1), LiNbO_{3cong} (2), LiNbO₃ : В (0.55 (3), 0.69 (4), 0.83 (5), 1.24 (6) mol.% B₂O₃ в шихте) в геометрии рассеяния $Y(ZZ) \overline{Y}$ (A₁(TO)).

выращенных из шихты, легированной бором, по сравнению с номинально чистым конгруэнтным кристаллом. При этом наиболее структурно совершенным является монокристалл LiNbO₃ : В (1.24 mol.% В₂O₃ в шихте).

Высокую оптическую однородность монокристаллов LiNbO₃ : B $(0.55-1.24 \text{ mol.}\% \text{ B}_2\text{O}_3 \text{ в шихте})$ подтверждают коноскопические картины (рис. 3). Только для кристалла LiNbO3 : B(0.83 mol.% B2O3 в шихте) при сравнительно высокой мощности лазерного излучения (90 mW) на коноскопической картине наблюдаются незначительные признаки аномальной оптической двуосности, связанные, возможно, с увеличением эффекта фоторефракции (см. рис. 3). При этом наиболее высокой стойкостью к оптическому повреждению, согласно данным ФИРС, обладает кристалл LiNbO₃ : B(1.24 mol.% В2О3 в шихте). Индикатриса спекл-структуры ФИРС для кристалла LiNbO₃ : B(1.24 mol.% B₂O₃ в шихте) в отличие от индикатрисы спекл-структур остальных кристаллов LiNbO₃ : В не раскрывается даже при мощности возбуждающего лазерного излучения в 160 mW (см. рис. 3). Сравнительный коноскопический анализ исследованных кристаллов при использовании лазерного излучения мощностью 1 и 90 mW, а также исследование ФИРС позволяют сделать вывод о том, что оптическая однородность кристаллов LiNbO₃ : В сравнима с таковой для кристалла LiNbO_{3cong} и значительно выше оптической однородности кристалла LiNbO_{3stoich} (см.рис. 3). Необходимо отметить также, что эффект фоторефракции в стехиометрическом кристалле существенно больше, чем в конгруэнтном и в кристаллах LiNbO₃ : B(0.55–1.24 mol.% B₂O₃ в шихте). Для кристалла LiNbO_{3stoich} характерен более значительный угол θ раскрытия спекл-структуры индикатрисы ФИРС (56°). Для кристаллов LiNbO₃ : B(0.55–1.24 mol.% B₂O₃ в шихте) угол θ не превышает 22° (см. рис. 1, *c*, 3).

Согласно данным масс-спектрометрии, концентрация неметаллического элемента бора в кристалле LiNbO₃ : В находится на уровне следовых количеств ($\sim 10^{-4}$ wt.%). По этой причине бор, находящийся в кристалле в столь малых количествах, не может заметно влиять на тонкие особенности структуры, состояние дефектности кристаллической решетки и физические характеристики кристалла. Следовательно, столь заметные различия в свойствах кристаллов LiNbO₃ : В, LiNbO_{3stoich} и LiNbO_{3cong} могут быть обусловлены влиянием легирующей добавки бора на структуру расплава. В процессе высокотемпературного синтеза шихты в системе Li₂O–B₂O₃–Nb₂O₅ происходят твердофазные химические реакции с образованием различных боратов, которые влияют на состав и физические свойства расплава.

Ниобат лития характеризуется высокой температурой плавления (~1526 К) и высокой химической активностью расплава, требующей для расплавов платиновых тиглей. Это является причиной крайне малого числа работ, посвященных изучению строения расплавов ниобата лития. В последние годы в связи с необходимостью получения оптически высокосовершенных монокристаллов значительное внимание исследователей привлекает вопрос о влиянии строения расплава ниобата лития на процесс его кристаллизации. При этом в качестве основной концепции в литературе рассматривалось существование в расплаве прочно связанных группировок из атомов или ионов (кластеров) определенного строения [29]. В работах [30-32] для исследования процесса кристаллизации веществ из расплава была эффективно применена высокотемпературная спектроскопия КРС. В предкристаллизационной области температур по спектрам КРС было обнаружено заметное изменение структуры расплава и несоответствие строения анионных мотивов в расплаве и кристалле ниобата лития. Эффект несоответствия анионных мотивов в расплаве и кристалле вблизи точки плавления создает серьезные препятствия для зарождения равновесных структур [30-32]. В этих условиях преимущество при кристаллизации получают метастабильные фазы со строением кристаллической решетки, весьма далеким от структуры ближнего порядка расплава. Несоответствие анионного строения расплава и кристалла ниобата лития способно повлиять и на

Puc. 3. Спекл-структура индикатрисы ФИРС (P = 160 mW) и коноскопические картины (P = 1 и 90 mW) кристаллов LiNbO_{3stoich} (I), LiNbO_{3cong} (2), LiNbO₃ : B (0.55 (3), 0.69 (4), 0.83 (5), 1.24 (6) mol.% B₂O₃ в шихте). Время полного раскрытия спекл-структуры индикатрисы ФИРС для перечисленных кристаллов 60 s.

процессы роста кристаллических граней или образования дефектов структуры при росте кристаллов из расплава [30,31].

Кристаллическая структура ниобата лития представляет из себя каркас из кислородных октаэдров О₆, сочле-

ненных вершинами и гранями, с плотнейшей упаковкой. Внутри октаэдров находятся основные $(Li^+ u Nb^{5+})$ или примесные катионы. При этом связи в октаэдрах, занятых ниобием, преимущественно ковалентные [2]. В то же время ион лития связан с атомами кислоро-

да только электростатическим взаимодействием. Из-за преобладания вклада ковалентного типа связи катион ниобия имеет склонность к образованию в расплаве анионных мотивов, состоящих из NbO₄ — тетраэдров. А именно при плавлении ниобата лития происходит такая существенная перестройка его анионной структуры, в результате которой координация атомов ниобия изменяется с октаэдрической на тетраэдрическую, что подтверждается данными спектроскопии КРС [30-32]. Сильная ковалентная связь подразумевает возможность сохранения структуры оксианионов в расплавленном состоянии. Таким образом, в расплаве могут присутствовать не только изолированные тетраэдрические группировки, но и комплексы с устойчивой структурой [30]. Действительно, при исследовании спектров КРС расплавов системы Li2O-Nb2O5 были обнаружены не только линии, соответствующие колебаниям концевых NbO₃и серединных NbO₂-групп (815-870 ст⁻¹), но и линии, соответствующие симметричным валентным колебаниям мостиковых Nb-O-Nb-связей (670-690 сm⁻¹), расположенных в месте сочленения тетраэдров [30,31]. Однако в предкристаллизационной области температур, видимо, кроме тетраэдров NbO₄ в расплаве будут присутствовать и октаэдры NbO₆. Ранее в работе [33] при исследовании спектров КРС Nb₂O₅, используемого для последующего синтеза шихты и выращивания кристаллов ниобата лития, в области валентных мостиковых колебаний атомов кислорода вдоль полярной оси $(800-1100\,{\rm cm}^{-1})$ было обнаружено пять линий с частотами 814, 845, 902, 965, 995 cm⁻¹, что свидетельствует о многообразии островных структур пентаоксида ниобия, состоящих из обрывков цепей из октаэдров и тетраэдров.

Одним из фундаментальных свойств элемента бора, как легирующей добавки, обладающей высокой химической активностью, является изменение температуры кристаллизации, вязкости и поверхностного натяжения расплавов [34]. При выращивании кристаллов LiNbO₃ : B(0.55-1.24 mol.% B₂O₃ в шихте), исследованных в настоящей работе, нами качественно было отмечено увеличение вязкости расплава, возрастание температуры плавления ~ на 10 К, а температуры Кюри ~ на 50 К по сравнению с номинально чистым конгруэнтным кристаллом [11]. Кристаллохимия оксидных соединений бора чрезвычайно разнообразна: она определяется возможностью двоякой гибридизации атома бора, sp^2 - и sp^3 -, с образованием $[BO_3]^{3-}$ — треугольников и $[BO_4]^{5-}$ — тетраэдров соответственно [35]. Радиус нейтрального атома бора 0.088 nm, радиус B^{3+} 0.015 для $B^{(3)}$, 0.025 nm дляатомы бора имеют конфигурацию $2s^2 2p^1$ с одним неспаренным электроном и двумя вакантными *p*-орбиталями. Благодаря наличию в небольшом по размеру атоме бора свободной орбитали бор — один из сильнейших акцепторов неподеленных электронных пар. Использование этой орбитали в донорно-акцепторном взаимодействии позволяет координационному числу атома бора увеличиваться до 4. Атомы и атомные группы, окружающие атом бора,

располагаются по трем углам тетраэдра, четвертый угол которого остается свободным, причем в этом углу создается положительное электрическое поле значительной интенсивности. Этим обстоятельством объясняется ярко выраженная способность соединений бора давать прочные молекулярные комплексы. Треугольники и тетраэдры бора могут присутствовать изолированно, либо полимеризоваться между собой через общий атом кислорода [35]. Предрасположенность к формированию громоздких полианионов объясняет высокую вязкость расплавов [36].

Хорошо известно, что оксиды щелочных металлов являются модификаторами борокислородной сетки расплава и переводят атом бора в четырехкоординированное состояние, т.е. образуются тетраэдры [ВО4] [36]. При объединении борокислородных треугольников и тетраэдров абсолютные значения удельных отрицательных зарядов у сложных анионов монотонно уменьшаются в ряду орто-, пиро-, мета- и полиборатов. Это обеспечивает достаточную стабильность многочисленных конденсированных соединений с одновалентными, а также крупными двухвалентными элементами. В работе [31] при исследовании расплавов метабората лития по температурным спектрам КРС было показано присутствие в расплаве цепочечного бор-кислородного аниона. Все эти кристаллохимические закономерности предопределяют реакционный потенциал расплавов, содержащих бораты.

В работах [37,38] была исследована тройная система $Li_2O-B_2O_3-Nb_2O_5$, проанализировано более 30 различных мольных соотношений компонентов. Авторами [37] подчеркнуто образование шести различных боратов лития (LiB₃O₅, Li₂B₄O₇, LiBO₂, Li₆B₄O₉, Li₄B₂O₅, Li₃BO₃), одного бората ниобия (Nb₃BO₉) и трех различных ниобатов лития (LiNb₃O₈, LiNbO₃, Li₃NbO₄). Согласно настоящей работе, бораты лития при температуре ниже 1100°C, и таким образом подходят для выращивания кристаллов в качестве флюса. К тому же концентрационная область кристаллизации ниобата лития, определенная методом спонтанной нуклеации, является достаточно широкой в системе $Li_2O-B_2O_3-Nb_2O_5$.

Известен способ выращивания стехиометрических монокристаллов ниобата лития с пониженным фоторефрактивным эффектом из конгруэнтного расплава в присутствии флюса K₂O (HTTSSG — High temperature top speed solution growth) [39-41]. Отсутствие калия в структуре кристаллов становится очевидным из сравнения ионных радиусов Li^+ и K^+ (0.68 Å и 1.38 Å соответственно), поскольку при столь значительном различии ионных радиусов изоморфное замещение родственных элементов шелочной группы (лития калием) в катионной подрешетке кристалла представляется маловероятным. А именно элемент калий, также как и элемент бор, не входит в структуру кристалла. Этот метод позволяет получать стехиометрические кристаллы с постоянным показателем преломления вдоль оси роста из конгруэнтного расплава [42-44].

Можно предположить, что борсодержащие полианионы, образуя устойчивые в расплаве ковалентные связи с ниобий содержащими полианионами, связывая тем самым избыток ниобия, увеличивают соотношение Li/Nb в расплаве, в результате выращенный кристалл приближается к стехиометрическому кристаллу по степени упорядочения катионной подрешетки, так же как это происходит при использовании флюса К2О. Такой кристалл характеризуется пониженным содержанием дефектов Nb_{Li} и литиевых вакансий (V_{Li}). Это предположение подтверждается увеличением температуры Кюри (T_K) кристалла LiNbO₃ : В ([B] ~ 0.1 wt.% в расплаве) на $\sim 47 \, {\rm K}$, по сравнению с конгрузнтным кристаллом [11]. Для сравнимого по величине изменения T_K кристалла LiNbO₃, легированного металлическими примесями (Mg, Zn и т.п.), требуются существенно большие концентрации примеси ($\sim 2-3$ wt.%).

Кроме того, в [45] было показано, что расплавы неорганических полимеров, образующие цепочечные и кольцевые структуры с включением ионов растворяемого вещества (B_2O_3 , $Na_2B_4O_7$, $Li_6B_4O_9$, и др.) и склонные образовывать стекла, проявляют себя в качестве хороших растворителей. Например, в работе [46] сообщается об образовании высокотемпературного малорастворимого бората Al_5BO_9 , т.е. из расплава удаляется изрядное количество Al_2O_3 . Можно предположить, что катионы металлов, присутствующие в расплаве и переходящие в структуру выращенного кристалла в виде неконтролируемых примесей [39], также будут удаляться из расплава, в результате чего выращенный кристалл ниобата лития будет более совершенным.

Заключение

Полученные результаты позволяют расширить понятие "легирование". Под легированием, как правило, подразумевают введение непосредственно в структуру кристалла в заметном количестве легирующих добавок с целью изменения физических свойств материала. Неметаллический элемент бор не входит в структуру кристалла LiNbO₃. Несмотря на высокое содержание элемента бора в шихте (до 2.0 mol.%), его концентрация в кристалле находится на уровне следовых количеств, т.е. на порядки ниже концентрации легирующих металлических добавок. Отсутствие бора в структуре кристаллов можно объяснить малым размером радиуса катиона $B^{3+} \sim 0.02 \, nm$ (ионные радиусы Li^+ и Nb⁵⁺ = 0.068 nm), невозможностью октаэдрической координации иона B³⁺ по кислороду в структуре кристалла ниобата лития (как у иона Nb⁵⁺), а также невозможностью образовать ионное взаимодействие с кислородом (как ион Li⁺ или ионы легирующих металлов Zn^{2+} , Mg^{2+} и т.д.). Оксидные соединения бора как сильные комплексообразователи и растворители оказывают заметное влияние на структуру и физические характеристики расплава, а следовательно, на структуру

выращенного кристалла. Для кристалла LiNbO₃ : В наблюдается увеличение температуры плавления (1264°C) по сравнению с номинально чистым кристаллом ниобата лития конгруэнтного состава (1257°С). Определенным образом структурируя расплав, примесь бора уменьшает количество дефектов NbLi и, вероятно, снижает содержание неконтролируемых примесей тем самым понижает эффект фоторефракции в монокристалле, повышает его структурную и оптическую однородность. Таким образом, нами впервые осуществлен подход к получению монокристаллов LiNbO3 с заданными свойствами, когда определенным образом химически активным элементом структурируется расплав, но при этом легирующая добавка не входит в структуру кристалла. Этот подход позволяет путем направленного структурирования расплава получать номинально чистые кристаллы LiNbO₃, обладающие такими же свойствами, как и легированные кристаллы, но по упорядочению структурных единиц катионной подрешетки и дефектам NbLi, приближающиеся к кристаллу стехиометрического состава. В то же время монокристаллы LiNbO3 : В обладают существенно меньшим эффектом фоторефракции, чем стехиометрические кристаллы.

Список литературы

- [1] Сидоров Н.В., Волк Т.Р., Маврин Б.Н., Калинников В.Т. Ниобат лития: дефекты, фоторефракция, колебательный спектр, поляритоны. М.: Наука, 2003. 255 с.
- [2] Кузьминов Ю.С. Электрооптический и нелинейнооптический кристалл ниобата лития. М.: Наука, 1987. 262 с.
- [3] *Abrahams S.C.* Properties of Lithium Niobate. NY.: 1989. 234 p.
- [4] Abrahams S.C., Reddy J.M., Bernstein J.L. // J. Phys. Chem. Sol. 1966. Vol. 27. N 6/7. P. 997–1012.
- [5] Aillerie M., Bourson P., Mostefa M., Abdi F., Fontana M.D. // J. Phys.: Conf. Ser. 2013. Vol. 416. P. 012001-012032.
- [6] Сидоров Н.В., Палатников М.Н., Калинников В.Т. Влияние вторичной структуры на оптические свойства сегнетоэлектрических кристаллов ниобата лития с низким эффектом фоторефракции. Тр. КНЦ РАН. Химия и материаловедение. Апатиты. 2015. № 31. С. 464–468.
- [7] Fontana M.D., Bourson P. // Appl. Phys. Rew. 2015. Vol. 2.
 P. 046002-046014.
- [8] Сидоров Н.В., Пикуль О.Ю., Крук А.А., Теплякова Н.А., Яничев А.А., Палатников М.Н. // Опт. и спектр. 2015. Т. 118. № 2. С. 273–282. DOI: 10.7868/S0030403415020178
 [Sidorov N.V., Pikoul O.Yu., Kruk А.А., Teplyakova N.A., Yanichev A.A., Palatnikov M.N. // Opt. and Spectr. 2015. Vol. 118. N 2. P. 260–269.]
- [9] Блистанов А.А., Любченко В.М., Горюнова А.Н. // Кристаллогр. 1998. Т. 43. № 1. С. 86-91.
- [10] Сидоров Н.В., Яничев А.А., Палатников М.Н., Габаин А.А., Пикуль О.Ю. // Опт. и спектр. 2014. Т. 117. № 1. С. 76-85. DOI: 10.7868/S003040341407023X [Sidorov N.V., Yanichev A.A., Palatnikov M.N., Gabain A. A., Pikoul O.Yu. // Opt. and Spectr. 2014. Vol. 117. N 1. P. 72-81.]
- [11] Макарова О.В., Палатников М.Н., Бирюкова И.В., Теплякова Н.А., Сидоров Н.В. // Неорг. матер. 2018. Т. 54. № 1. С. 53-58. DOI: 10.7868/S0002337X17010109

- [12] Сидоров Н.В., Палатников М.Н., Яничев А.А., Титов Р.А., Теплякова Н.А. // Опт. и спектр. 2016. Т. 121. № 1. С. 40–49. DOI: 10.7868/S0030403416070199 [Sidorov N.V., Palatnikov M.N., Yanichev A.A., Titov R.A., Teplyakova N.A. // Opt. and Spectr. 2016. Vol. 121. N 1. P. 1024–1032.]
- [13] Сидоров Н.В., Палатников М.Н., Яничев А.А., Титов Р.А., Теплякова Н.А. // ЖПС. 2016. Т. 83. № 5. С. 707–714. [Sidorov N.V., Palatnikov M.N., Yanichev А.А., Titov R.A., Teplyakova N.A. // J. Appl. Spectr. 2016. Vol. 83. N 5. P. 750–756.]
- [14] Палатников М.Н., Бирюкова, И.В., Макарова О.В., Ефремов В.В., Кравченко О.Э., Калинников В.Т. Получение и свойства кристаллов ниобата лития, выращенных из расплавов конгруэнтного состава, легированных бором. Тр. КНЦ РАН. Химия и материаловедение. Апатиты. 2015. № 31. С. 434-438.
- [15] Palatnikov M.N., Biryukova I.V., Masloboeva S.M., Makarova O.V., Manukovskaya D.V., Sidorov N.V. // J. Cryst. Growth. 2014. Vol. 386. P. 113–118.
- [16] Маслобоева С.М., Палатников М.Н., Арутюнян Л.Г., Иваненко Д.И. // Изв. С-Пб. Технолог. инст. 2017. № 38 (64). С. 34–43.
- [17] Палатников М.Н., Сидоров Н.В., Бирюкова И.В., Щербина О.Б., Калинников В.Т. // Персп. матер. 2011. № 2. С. 93–97.
- [18] Пикуль О.Ю., Сидоров Н.В. Лазерная коноскопия кристаллов. Апатиты: Изд-во КНЦ РАН, 2014. 160 с.
- [19] Sidorov N.V., Serebryakov Yu.A. // Ferroelectrics. 1994.
 Vol. 160. P. 191–205.
- [20] Sidorov N.V., Palatnikov M.N., Teplyakova N.A., Yanichev A.A., Titov R.A. // Proc. SPIE Asia-Pacific Conference on Fundamental Problems of Opto- and Microelectronics. 2016. Vol. 10176. DOI: 10.1117/12.2268155
- [21] Семенов А.Е., Черкасов Е.В. // ЖФХ. 1980. Т. 54. Вып. 10. С. 2600-2603.
- [22] Крук А.А., Сидоров Н.В., Яничев А.А., Палатников М.Н. // ЖПС. 2014. Т. 81. № 1. С. 5–10. [Kruk A.A., Sidorov N.V., Yanichev A.A., Palatnikov M.N. // J. Appl. Spectr. 2014. Vol. 81. N 1. P. 1–6.]
- [23] Горелик В.С., Свербиль П.П. // Неорг. матер. 2015. Т. 51.
 № 11. С. 1190–1197. DOI: 10.7868/S0002337X15100073
 [Gorelik V.S., Sverbil' P.P. // Inorg. Mater. 2015. Т. 51. № 11.
 P. 1104–1110.]
- [24] Okamoto M.R., Ping-chu Wang, Scott J.F. // Phys. Rev. B. 1985. Vol. 32. N 10. P. 6787–6792.
- [25] Сидоров Н.В., Маврин Б.Н., Чуфырев П.Г., Палатников М.Н. Фононные спектры монокристаллов ниобата лития / Под ред. В.Т. Калинникова. Апатиты: КНЦ РАН, 2012. 215 с.
- [26] Суровцев Н.В., Малиновский В.К., Пугачев А.М., Шебанин А.П. // ФТТ. 2003. Т. 45. № 3. С. 505–512. [Surovtsev N.V., Malinovskii V.K., Pugachev А.М., Shebanin А.Р. // Phys. Sol. State. 2003. Vol. 45. N 3. P. 534–541.]
- [27] Аникьев А.А. // Инженерный журн. Наука и инновации. 2013.№ 7 (19). С. 50-68.
- [28] Умаров М., Грузиенко В., Втюрин А., Ходжабаев А. // Компоненты и технологии. 2010. N 6 (107). С. 138–140.
- [29] Uda S., Shimamura K., Fukuda T. // J. Cryst. Growth. 1995. Vol. 155. P. 229–239.
- [30] Воронько Ю.К., Гессен С.Б., Кудрявцев А.Б., Соболь А.А., Сорокин Е.В., Ушаков С.Н., Цымбал Л.И. Спектроскопия оксидных кристаллов для квантовой электроники. М.: Наука, 1991. 142 с.

- [31] Автореф. канд. дис. Соболь А.А. Высокотемпературная спектроскопия комбинационного рассеяния света в твердых и расплавленных диэлектриках. М., 2012. 39 с.
- [32] Воронько Ю.К., Кудрявцев А.Б., Осико В.В. Соболь А.А., Сорокин Е.В. // ФТТ. 1987. Т. 29. Вып. 5. С. 1348–1355.
- [33] Маслобоева С.М., Сидоров Н.В., Палатников М.Н., Арутюнян Л.Г., Чуфырев П.Г. // Журн. неорган. химии. 2011. Т. 56. № 8. С. 1–5. [Masloboeva S.M., Sidorov N.V., Palatnikov M.N., Arutyunyan L.G., Chufyrev P.G. // Rus. J. Inorg. Chem. 2011. Vol. 56. N 8. P. 1194–1198.]
- [34] Бубнова Р.С. Кристаллохимический дизайн боратных материалов с особыми структурно-физическими свойствами. ИХС РАН — 80 лет. Современные проблемы неорганической химии. Под общ. ред. акад. В.Я. Шевченко. СПб.: Арт-Экспресс, 2016. С. 65–81.
- [35] Автореф. канд. дис. Беккер Т.Б. Фазообразование и рост кристаллов в четверной взаимной системе Na, Ba, B || O, F. Новосибирск, 2015.
- [36] Леонюк Н.И., Леонюк Л.И. Кристаллохимия безводных боратов. М.: МГУ, 1983. 215 с.
- [37] Huang C., Wang S., Ye N. // J. Alloys Compd. 2010. Vol. 502. N 1. P. 211–214.
- [38] Graça M.P.F., Ferreira da Silva M.G., Valente M.A. // J. Non-Crystalline Sol. 2008. Vol. 354. P. 901–908. DOI: 10.1016/j.jnoncrysol.2007.08.016
- [39] Автореф. канд. дис. Палатников М.Н. Материалы электронной техники на основе сегнетоэлектрических монокристаллов и керамических твердых растворов ниобатовтанталатов щелочных металлов с микро- и наноструктурами. Апатиты, 2010.
- [40] Баласанян Р.Н., Габриелян В.Т., Коканян Э.П. // Кристаллогр. 1990. Т. 35. № 6. С. 1540–1544.
- [41] Баласанян Р.Н., Габриелян В.Т., Казарян Л.М. // Доклады НАН РА. Физика. 2000. Вып. 100. № 2. С. 1–7.
- [42] Shirmer O.F., Thiemann O., Wohlecke M. // J. Phys. Chem. Sol. 1991. Vol. 52. N 1. P. 185–200.
- [43] Krol D.M., Blasse G. // J. Chem. Phys. 1980. Vol. 73. P. 163–166.
- [44] Redonta L., Da Silva M.F., Soares J.C., Sanz-Garcio J.A., Dieguez E., Agalla Lopez F. // Ind. Instrum and Meth. Phys. Res. 1992. Vol. 64. N 1–4. P. 189–192.
- [45] Витинг Л.М. Высокотемпературные растворы-расплавы. М.: Изд-во МГУ, 1991. 221 с.
- [46] Леонюк Н.И. // Кристаллогр. 2008. Т. 53. № 3. С. 546–554. [Leonyuk N.I. // Cryst. Rep. 2008. Vol. 53. N 3. P. 511–518.]