11,09

Температурно-фазовая зависимость колебательного спектра и ориентационная подвижность тетрафторборат иона в органической соли н-Ви₄NBF₄

© К.Ш. Рабаданов¹, М.М. Гафуров¹, Н.Ф. Уваров², А.С. Улихин²

¹ Дагестанский научный центр РАН, Аналитический центр коллективного пользования,

Махачкала, Россия ² Институт химии твердого тела и механохимии СО РАН,

Новосибирск, Россия

E-mail: rksh83@mail.ru

(Поступила в Редакцию 27 марта 2018 г.)

Методами колебательной спектроскопии исследованы структурно-динамические свойства тетрафторборат иона в органической соли н- Bu_4NBF_4 при различных температурах и фазовых состояниях. По результатам расчетов энергетических и релаксационных параметров показано, что в пластической фазе BF_4^- ион характеризуется низкой энергией переориентации по сравнению с кристаллической фазой.

Работа выполнена на оборудовании Аналитического центра коллективного пользования Дагестанского научного центра РАН.

DOI: 10.21883/FTT.2018.12.46732.084

1. Введение

Исследования процессов релаксации колебательных возбуждений многоатомных ионов в ионных конденсированных системах на основе анализа формы контуров внутримолекулярных колебательных мод получили в последние годы заметное развитие [1-3]. На примере неорганических солей щелочных металлов было показано [1,4,5] что спектральные и релаксационные параметры многоатомных анионов в них зависят от температуры и фазового состояния исследуемой системы, от формы, размера и зарядового состояния динамически взаимодействующих частиц. В этой связи представляет определенный интерес проанализировать указанные выше параметры в ионных системах, в которых как катионы, так и анионы являются многоатомными частицами. Органические соли замещенного аммония представляют для этой цели интересные объекты. Кроме того, высокотемпературные модификации многих органических соединений являются пластическими, ротационными или ориентационно-разупорядоченными фазами [6], а стерический фактор, т.е. характер взаимодействия элементов структуры, и, в частности, наличие анизотропного взаимодействия играют существенную роль в релаксации колебательных возбуждений сложных ионов в них.

Настоящая работа посвящена анализу температурных изменений спектральных параметров (частот, полуширин) и формы контуров колебательных полос, отвечающих внутренним колебаниям тетрафторборат иона BF_4^- в спектрах инфракрасного поглощения и комбинационного рассеяния органической соли тетрафторборат тетра-н-бутиламмония при различных температурах и фазовых состояниях.

2. Экспериментальная часть

Тетрафторборат тетра-н-бутиламмония ($(C_4H_9)_4NBF_4$ или н-Bu₄NBF₄) синтезировали с помощью обменных реакций из н-Bu₄NBr (х. ч.):

$$2[\mathrm{H-Bu}_4\mathrm{N}]\mathrm{Br} + \mathrm{Pb}(\mathrm{BF}_4)_2 \rightarrow 2[\mathrm{H-Bu}_4\mathrm{N}]\mathrm{BF}_4 + \mathrm{Pb}\mathrm{Br}_{2\downarrow}. (1)$$

Полученный порошок дважды перекристаллизовывался в водно-спиртовых растворах и сушился при 120°С. Образцы по указанной методике синтезированы в Институте химии и механохимии СО РАН.

Спектры ИК поглощения измерялись на ИК-Фурье спектрометре VERTEX-70 (фирма "Брукер", Германия) с разрешением 1 ст⁻¹. Спектры были получены путем усреднения 128 последовательных сканирований. Спектры комбинационного рассеяния света измерялись на конфокальном КР-микроскопе Senterra при лазерном возбуждении ($\lambda = 785$ nm; мощность лазера 100 mW); апертура 50 × 1000 μ m; спектральный диапазон 75–1530 ст⁻¹ с разрешением 2–3 ст⁻¹; используемый объектив микроскопа — 10×; число сканов — 20; время интегрирования каждого скана — 20 s.

Разделение сложных контуров колебательных полос на индивидуальные составляющие осуществлялось с использованием стандартного программного пакета OPUS 6.0. Форма полос аппроксимировалась кривыми вида свертки функций Гаусса и Лоренца. Подгонку расчетных кривых и исходного спектра с минимизацией абсолютной ошибки проводилось по методу Левенберга—Маркварта. Погрешность между расчетной и реальной кривой составляла 5–10% в зависимости от отношения сигнал/шум при записи исходного спектра. Температурные измерения проводились с использова-

Рис. 1. Спектры ИК поглощения тетрафторборат иона в диапазоне частот колебаний $v_1(A_1)$ и $v_4(F_1)$ (*a*) и комбинационного рассеяния (КР) в области колебания $v_1(A_1)$ (*b*) и результаты их разложения на компоненты при различных температурах: 1) $t = 25^{\circ}$ C; 2) $t = 65^{\circ}$ C; 3) $t = 145^{\circ}$ C.

нием специальной нагревательной ячейки в диапазоне температур от комнатной до 200°С.

3. Результаты и обсуждение

Свободный тетрафторборат ион BF_4^- обладает симметрией T_d и имеет девять колебательных степеней свободы, распределенных между четырьмя нормальными колебаниями: полносимметричным валентным $v_1(A_1)$ (~ 760 сm⁻¹), деформационным $v_2(E)$ (~ 360 сm⁻¹), антисимметричным валентным $v_3(F_2)$ (~ 1100 сm⁻¹) и деформационным $v_4(F_1)$ (~ 520 сm⁻¹) [7,8]. Теоретикогрупповой анализ внутримолекулярных колебаний BF_4^- должны быть активны только два колебания — $v_3(F_2)$ и $v_4(F_1)$, а в спектре КР активны все девять, наиболее интенсивны — $v_1(A_1)$ и $v_2(E)$.

Колебательный спектр BF_4^- показывает, что форма полос отвечающих внутренним колебаниям имеют сложное строение, они состоят более чем из одной компоненты. Из рис. 1, *а* видно, что в спектральной области 700–850 сm⁻¹, помимо полос колебаний, относящихся к колебаниям иона тетрабутиламмония [9], наблюдается асимметричное искажение контура линии с максимумом при 760 cm⁻¹ с высокочастотной стороны, а с ростом температуры контур указанной полосы увеличивается интегральная интенсивность. Аналогичная ситуация имеет место и в случае контура полосы $v_4(F_1) \sim 525 \, {\rm cm}^{-1}$ в ИК-спектре. Подобные явления наблюдались и ранее и связываются они с наличием в кристалле ориентационно-разупорядоченных анионов, характеризующихся более развитой реориентационной подвижностью [10-13]. Наличие ориентационно-разупорядоченной фазы у тетрафторборат тетра-н-бутиламмония в области 62-160°С подтверждено также данными термического, рентгенофазового анализа [14]. Поэтому можно допустить, что поворотнорелаксационный механизм является главным фактором, обуславливающим температурное уширение колебательных полос в ИК-спектрах исследуемой соли.

На рис. 2. приведены температурно-фазовые зависимости положения максимумов и полуширин некоторых полос в ИК- и КР-спектрах тетрафторборат аниона. Частоты внутренних колебаний v_1 и v_4 с ростом температуры линейно смещаются в сторону меньших волновых чисел (либо остаются практически неизменными) и испытывают скачкообразное изменение при температуре фазового перехода. Температурная зависимость полуширин колебательных полос близка экспоненте.

Рис. 2. Температурно-фазовая зависимость частот и полуширин линий тетрафторборат иона в ИК (a) и в КР (b) спектрах н-Ви₄NBF₄: $I - \nu_1(A_1)$; $I - \nu_1(A_1)$; $I' - \delta \nu_1$; $2 - \nu_4(F_1)$; $2' - \delta \nu_4$.

Для оценки значений времен переориентации BF₄ мы воспользовались методом, предложенным в [15], согласно которому время ориентационной релаксации может быть оценена как разность

$$\tau_1^{\text{or}} = \left[\pi c \left(\delta_{\text{IR}} - \delta_{\text{raman}}\right)\right]^{-1},\tag{1}$$

где $\tau_{\rm IR}$ и $\tau_{\rm raman}$ — полуширина ИК-полосы поглощения и полуширина сильно поляризованной линии КР, отвечающие одному и тому же полносимметричному колебанию ${\rm BF}_4^-$, c — скорость света. Этот метод основан на том, что форма контуров сильно поляризованных линий в спектрах КР всецело обусловлена процессами колебательной релаксации (степень поляризации ${\rm BF}_4^-$ иона $\rho \sim 0.05$), в то время как соответствующая ИК-полоса дополнительно уширяется за счет переориентаций. Наши оценочные расчеты времен переориентаций — $\tau_1^{\rm or}$ и их сравнение с соответствующими значениями для свободных ротаторов ($\tau_{\rm FR} = (68/360)2\pi (I/kT)^{1/2}$, где

 $I = 1.65 \cdot 10^{-45} \text{ kg} \cdot \text{m}^2$ — момент инерции BF₄⁻ иона) и временами бинарных столкновений $\tau_{\text{BC}} = I/(2kT\tau_1^{\text{or}})$ систематизированы в таблице. Также определен угловой шаг диффузии по $\varepsilon = \tau_{\text{BC}}^* \omega$, где $\omega = (kT/I)^{1/2}$ — средняя скорость вращения аниона.

Для сравнительной оценки энергетических параметров переориентации о BF₄⁻ иона в обеих фазах были рассчитаны соответствующие величины потенциальных барьеров переориентаций. Согласно теории [16], поворотное движение молекулы в твердом теле совершается путем ротационных перескоков частицы из одного положения равновесия в другое, которое характеризуется временем переориентации

$$\tau_1^{\text{or}} = \tau_0 \exp(U_{\text{reor}}/RT). \tag{2}$$

где τ_0 — полупериод вращательных качаний частицы около положения равновесия; $U_{\rm or}$ — потенциальный барьер, определяющий два соседних положения

T, K	$\delta_{ m IR}, \ { m cm}^{-1}$	$\delta_{ m raman}, \ { m cm}^{-1}$	$ au_1^{ m or}, \\ 10^{-12} { m s}$	$ au_{ m FR}, \ 10^{-14} m s$	$ au_{ m BC}, \\ 10^{-14} { m s}$	$ au_1^{ m or}/ au_{ m FR}$	$ au_1^{ m or}/ au_{ m BC}$	ε, degree
298	15.1	4.74	1.02	75.1	19.58	1.36	5.2	17.7
313	15.6	4.75	0.97	73.3	19.58	1.3	4.98	18.1
328	16.76	4.79	0.89	71.6	20.47	1.24	4.35	19.41
343	18.18	5.27	0.82	70.03	21.11	1.178	3.91	20.51
358	18.48	5.34	0.81	68.5	20.6	1.18	3.9	20.46
373	18.86	5.47	0.79	67.16	20.1	1.18	3.95	20.4
388	18.9	5.52	0.79	65.8	19.4	1.2	4.08	20.1
403	19.4	5.6	0.77	64.6	19.22	1.19	4.01	20.2
418	19.51	5.78	0.77	63.4	18.44	1.22	4.205	19.8

Параметры ионно-поворотной динамики BF_4^- иона в системе н- Bu_4NBF_4

Рис. 3. Зависимость времени переориентации тетрафторборат-иона от температуры.

равновесия. Расчет энергии переориентации, проведенный из температурной зависимости времени переориентации τ_1^{reor} (рис. 3) показал, что для кристаллической фазы $U_{\rm or}^{\rm cryst} = 4.1 \, {\rm kJ/mol}$, а для пластической фазы $U_{\rm or}^{\rm plast} = 1 \, {\rm kJ/mol.}$ Как видно из проведенных расчетов пластическая фаза н-Ви₄NBF₄ характеризуется существенным низким уровнем потенциального барьера препятствующего переориентации терафторборат иона, а отношение $\tau_1^{\text{ or }} / \tau_{\text{FR}}$ близко к 1. Иными словами реориентационное движение аниона в пластической фазе носит характер квазисвободного вращения. Здесь необходимо отметить некоторые специфические особенности структурных единиц исследуемой органической соли от изученных ранее [1,17-20] неорганических солей щелочных металлов (нитраты, нитриты, перренаты). Дело в том, что в неорганических солях имеют место сильные кулоновские анион катионные взаимодействия, которые обеспечивают стабильность кристаллической решетки в широком температурном диапазоне. В органической соли н-Ви4NBF4 в силу больших размеров катиона положительный заряд как бы "размазан" по большой поверхности и межионные кулоновские взаимодействия в нем существенно слабее. Это в свою очередь должно способствовать росту трансляционной и ориентационной подвижности тетрафторборат анионов, что и наблюдается в эксперименте — увеличение ионной проводимости (рост трансляционной подвижности), уменьшение времен и барьеров переориентации (рост ориентационной подвижности). Более того само формирование пластической фазы в н-Ви₄NBr можно связать с различием динамических свойств анионной и катионной подсистем, а именно в исследуемой соли мы имеем относительно неподвижный катионный остов как бы "плавающий" в подвижной анионной подсистеме.

4. Заключение

Таким образом, описывая ионную динамику в органической соли н-Bu₄NBF₄, можно сказать, что в пластической фазе тетрафторборат—ион характеризуется наиболее развитой реориентационной подвижностью, в то время как катионная подсистема с учетом больших размеров катионов составляет менее подвижный остов кристаллической решетки.

Список литературы

- К.Ш. Рабаданов, М.М. Гафуров, А.Р. Алиев, И.Р. Ахмедов, М.Г. Какагасанов, С.А. Кириллов. Расплавы 3, 67 (2011).
- [2] M.M. Gafurov, A.R. Aliev. Spectrochim. Acta. A **60**, 1549 (2004).
- [3] И.Д. Закирьянова, П.А. Архипов, Д.О. Закирьянов. Журн. прикл. спектроскопии **82**, 841 (2015).
- [4] D.O. Tretyakov, V.D. Prisiazhnyi, M.M. Gafurov, K.Sh. Rabadanov, S.A. Kirillov. J. Chem. Eng. Data 55, 1958 (2010).
- [5] М.М. Гафуров, В.Д. Присяжный, А.Р. Алиев. Укр. хим. журн. 56, 1244 (1990).
- [6] Н.Г. Парсонидж, Л.А. Стейвли. Беспорядок в кристаллах. Мир, М. (1982). 434 с.
- [7] К. Накамото. ИК-спектры и спектры КР неорганических и координационных соединений / Пер. с англ. Мир, М. (1991). 536 с.
- [8] И.С. Перелыгин, Г.П. Михайлов. Журн. прикл. спектроскопии **55**, 153 (1991).
- [9] Z. Javanshir, K. Mehrani, S. Ghammamy, L. Saghatforoush, S. Seyedsadjadi, A. Hassanijoshaghani, H. Tavakol. Bull. Korean Chem. Soc. 29, 1464 (2008).
- [10] С.В. Карпов, А.А. Шултин. Термоактивационные процессы и колебательные спектры кристаллов со сложными ионами. В кн.: Колебания оксидных решеток. Наука, Л. (1980). 302 с.
- [11] С.В. Карпов, А.А. Шултин. ФТТ 17, 2868 (1975).
- [12] M.H. Brooker, D.E. Irish. Canad. J. Chem. 49, 1289 (1971).
- [13] М.М. Гафуров. ФТТ 26, 1186 (1984).
- [14] Н.Ф. Уваров, А.А. Искакова, Н.В Булина, К.Б. Герасимов, А.Б. Слободюк, В.Я. Кавун. Электрохимия 51, 564 (2015).
- [15] Г.П. Буян, В.Е. Погорелов, И.И. Кондиленко. Оптика и спектроскопия 27, 248 (1969).
- [16] Я.И. Френкель. Кинетическая теория жидкостей. Наука, Л. (1975). 592 с.
- [17] М.М. Гафуров, А.З. Гаджиев, В.Д. Присяжный. В сб.: Ионные расплавы и твердые электролиты. Наук. думка, Киев (1989). Вып. 4. С. 13–26.
- [18] М.М. Гафуров, А.Р. Алиев, В.Д. Присяжный. Укр. хим. журн. 66, 96 (2000).
- [19] М.М. Гафуров, А.Р. Алиев. Журн. структур. химии 46, 856 (2005).
- [20] M.M. Gafurov, A.R. Aliev, M.B. Ataev, K.Sh. Rabadanov. Spectrochim. Acta. Part A 114, 563 (2013).

Редактор Т.Н. Василевская