03,05,12

Проявление эффектов магнитного упорядочения в проводимости и намагниченности полупроводниковых гетероструктур на основе GaAs при изменении концентрации дельта-слоя примесей марганца

© К.Д. Моисеев¹, Ю.А. Кудрявцев², Т.Б. Чарикова^{3,4}, А.М. Луговых³, Т.Е. Говоркова³, В.И. Окулов^{3,4}

 ¹ Физико-технический институт им. А.Ф. Иоффе Российской академии наук, Санкт-Петербург, Россия
 ² Национальный политехнический институт — СИНВЕСТАВ, Мехико, Мексика
 ³ Институт физики металлов УрО РАН, Екатеринбург, Россия
 ⁴ Уральский федеральный университет им. Б.Н. Ельцина, Екатеринбург, Россия
 Е-mail: mkd@iropt2.ioffe.ru

(Поступила в Редакцию 25 января 2018 г. В окончательной редакции 29 мая 2018 г.)

> На основе анализа магнитополевых и температурных зависимостей, гальваномагнитных эффектов и намагниченности проведено исследование характерных проявлений магнитного упорядочения и проводимости в полупроводниковых гетероструктурах с квантовой ямой GaAs: Be/Ga_{0.84}In_{0.16}As/GaAs и δ -слоями марганца различной толщины (0.4–2 монослоя). Наблюдалась аномальная зависимость проводимости от концентрации атомов марганца в δ -слое, обусловленная сильным рассеянием носителей заряда в структурах с низким содержанием магнитных примесей. Магнитные свойства гетероструктур содержали прямые свидетельства магнитного упорядочения примесной системы (насыщение и гистерезис намагниченности, проявление закона Кюри–Вейса при повышении температуры). Параметры магнитной подсистемы позволили выявить различный характер упорядочения систем с разной концентрацией магнитной примеси. Было показано, что изменение концентрации примеси Mn в δ -слое существенно влияет на проводящие свойства и магнетизм исследуемых структур.

> Работа выполнена в рамках государственного задания по теме "Электрон" № АААА-А18-118020190098-5 и проекта № 18-10-2-6 Программы УрО РАН при поддержке РФФИ (грант № 18-02-00192).

DOI: 10.21883/FTT.2018.12.46720.022

1. Введение

Достижения исследований магнитного упорядочения в разбавленных магнитных полупроводниках ([1-3] и ссылки в них) при распространении на область физики полупроводниковых гетероструктур подвергаются определенной модификации. Это вызвано проблемами, связанными с тем фактом, что в гетероструктурах при возрастании толщины эпитаксиальных слоев разбавленных полупроводников из-за наличия атомов магнитной примеси в кристаллической решетке происходит увеличение внутренних напряжений, обусловленных значительной разницей в параметрах кристаллических решеток немагнитной матрицы и магнитного эпитаксиального слоя. Для решения этой проблемы в последние годы получили развитие исследования гетероструктур, в которых магнитная примесь присутствует в виде ультратонкого слоя (δ-слоя) в объеме полупроводниковой матрицы [4,5]. Для изучения такого рода объектов авторами настоящей работы была разработана методика создания δ-слоя марганца различной концентрации вблизи квантовой ямы в гетероструктурах на основе соединений GaAs [6]. Применение методики δ-легирования позволяет получать как низкую, так и высокую концентрацию магнитной примеси в масштабах области, соизмеримой с постоянной решетки матрицы. Использование δ-легирования на основе соединений марганца выявило упорядочение локализованных магнитных моментов в полупроводниковых гетероструктурах на основе соединений А^{III}В^V. Изменение характера распределения атомов марганца приводит к фазовому переходу полупроводник-металл и проявлению ферромагнетизма в слабых магнитных полях [5]. В настоящей работе мы рассмотрим влияние концентрации магнитной примеси в δ-слое на магнитные и магнитотранспортные свойства, а также на формирование магнитного упорядочения в полупроводниковых наногетероструктурах с двумя спин-зависимыми подсистемами.

Структуры для исследований и методика экспериментов

Гетероструктуры GaAs: Be/InGaAs/GaAs/δ-Mn/GaAs, содержащие одиночную квантовую яму шириной 10 nm и б-слои марганца различной концентрации, были получены на монокристаллической подложке GaAs(001) методом молекулярно-пучковой эпитаксии (МПЭ). Эпитаксиальное наращивание осуществлялось в едином технологическом процессе в ростовой камере Riber C21 двух температурных диапазонах: 500-600°C и В 200-250°С. Полученные δ-слои марганца располагались в верхнем, ближнем к поверхности образца, барьерном слое на расстоянии 3 nm (толщина буферного слоя GaAs) от квантовой ямы на основе соединения Ga_{0.84}In_{0.16}As. В настоящей работе рассмотрены δ-слои марганца в интервале толщин 0.4-2 монослоя (МС). Нижний, ближний к подложке, барьерный слой GaAs легировался немагнитной акцепторной примесью бериллия для обеспечения заполнения квантовой ямы дырками. В результате в исследуемых гетероструктурах существуют одновременно два близких друг к другу канала носителей тока — квантовая яма, обогащенная дырками, и δ-слой магнитной примеси.

Послойный анализ полученной гетероструктуры производился с помощью метода вторичной ионной масс-спектрометрии (ВИМС). Исследования проводились с использованием ионного микрозонда ims-6f, фирмы Сатеса (Франция). Следует отметить, что профиль δ -слоя, вставленного в полупроводниковую матрицу, может размываться из-за взаимной диффузии атомов, так что толщина буферного слоя становится того же порядка, что и типичная ширина размытого δ -слоя. На рис. 1 показаны концентрационные профили распределения индия (отвечает положению квантовой ямы

Рис. 1. Концентрационные профили индия (пунктирная кривая) и марганца (сплошная кривая) в гетероструктуре GaAs: Be/Ga_{0.84}In_{0.16}As/GaAs/δ-Mn/GaAs. Заштрихованный прямоугольник показываем положение квантовой ямы GaAs/Ga_{0.84}In_{0.16}As/GaAs.

Рис. 2. Экспериментальные профили ВИМС марганца с концентрацией 0.5, 1.2 и 2 МС, полученные вдоль направления эпитаксиального роста. Нулевая отметка указывает на положение границы раздела воздух/поверхность гетероструктуры.

GaAs/Ga_{0.84}In_{0.16}As/GaAs) и марганца, которые получены согласно методике, представленной в работе [6].

Толщина около 3 nm буферного слоя между б-слоем Мп и слоем трехкомпонентного твердого раствора GaInAs, по-видимому, является критической для диффузии марганца в квантовую яму GaAs/InGaAs/GaAs. Если при количестве марганца 0.4 МС магнитная примесь локализована вблизи квантовой ямы и диффузия вглубь нее существенно ограничена, то при увеличении количества марганца в б-слое возможно проникновение атомов марганца в квантовую яму (рис. 2). Асимметрия экспериментального профиля ВИМС для распределения марганца в матрице демонстрирует в большей мере влияние аппаратного эффекта при травлении ионами высокой энергии. Диффузия марганца в квантовую яму зафиксирована только для образцов со слоями толщиной 2 МС. Следует отметить, что при малых концентрациях магнитной примеси верхний барьерный слой визуально не отображает какого-либо присутствия вставленного слоя другого состава, отличного от матричного материала. Линия контраста, которая могла бы быть приписана положению δ -слоя, появляется на изображении, полученного с помощью просвечивающего электронного микроскопа, при толщинах слоев свыше 1.2 МС [7]. Это означает, что граница раздела между буферным слоем GaAs и последующим покрывающим слоем GaAs не псевдоморфна. На поверхности раздела становится заметным формирование структурных дефектов, индуцированных большой разницей постоянных кристаллических решеток между матричным материалом GaAs и сплавом MnAs с решеткой цинковой обманки [8].

Измерения температурных и полевых зависимостей удельного сопротивления и сопротивления Холла проводились на постоянном токе с использованием четырехконтактного метода на установке для измерения гальваномагнитных эффектов в лаборатории полупроводников и полуметаллов и на установке PPMS-9 в ЦКП "Испытательный центр нанотехнологий и перспективных материалов" (ИФМ УрО РАН). Контакты для всех образцов были подготовлены методом мокрого травления с использованием установки фотолитографического совмещения. Магнитные измерения (температурные и полевые зависимости статического магнитного момента) проведены в ЦКП "Испытательный центр нанотехнологий и перспективных материалов" на СКВИД-магнитометре MPMS-5-XL (Quantum Design Co.). Температурный интервал измерений составлял 1.8-300 К. Регулируемая величина магнитного поля В устанавливалась в пределах до 5 Т. По измерениям статического магнитного момента образцов определяли намагниченность М и статическую магнитную восприимчивость $\chi = M/B$. Температурные зависимости намагниченности М определены для одного режима проведения эксперимента (FC), при котором измерение магнитного момента производилось в процессе охлаждения образца в измеряемом поле.

3. Экспериментальные результаты и обсуждение

Дырочный канал проводимости в изучаемых объектах образуется благодаря заполнению дырками квантовой ямы GaAs/InGaAs/GaAs из нижнего барьерного слоя GaAs, легированного акцепторной примесью бериллия. В валентной зоне создаются проводящие подсистемы с концентрацией носителей тока порядка 7 · 10¹³ см⁻², определенной при измерениях магнитополевых зависимостей продольного сопротивления $R_{xx}(B)$ и сопротивления Холла $R_{xy}(B)$ (рис. 3). Монотонное возрастание $R_{xx}(B)$ и $R_{xy}(B)$ в слабых магнитных полях (до 5 T) для образца с 0.4 МС марганца имеет характер линейной зависимости от поля, тогда как увеличение толщины δ -слоя до значений более 1.2 MC приводит к отклонению от линейности (рис. 3, а). Это отклонение объясняется вкладом аномальной составляющей холловского сопротивления, вызванной намагниченностью магнитного слоя.

Сравнительный анализ $R_{xx}(B)$ и $R_{xy}(B)$ для гетероструктур с толщинами δ -слоев марганца 0.4 МС и 1.2 МС позволил установить, что подвижность в обоих случаях слабо зависит от напряженности магнитного поля (см. вставку на рис. 3, b). Кроме того, подвижность в образце с 1.2 МС была почти в два раза больше, чем в образце с 0.4 МС: $\mu_{12} \cong 70 \text{ cm}^2/\text{V} \cdot \text{s}$ и $\mu_{04} \cong 35 \text{ cm}^2/\text{V} \cdot \text{s}$ соответственно. Если считать, что при толщине 0.4 МС δ -слой представляет собой не сплошной массив, а объединение кластеров, то возможно рассеяние электронов проводимости на интерфейсах образованных кластеров. С увеличением концентрации марганца и, соответственно, степени заполнения пространства между первоначально образованными кластерами изменяется величина проводимости гетероструктуры в

Рис. 3. Зависимости продольного сопротивления (*a*) и сопротивления Холла (*b*) от внешнего магнитного поля для гетероструктур GaAs: Be/Ga_{0.84}In_{0.16}As/GaAs/ δ -Mn/GaAs с δ -слоем марганца различной концентрации при температуре T = 4.2 К. На вставке на части (*b*) приведены зависимости подвижности от магнитного поля.

целом. Увеличение концентрации вводимого примесного материала, по нашему мнению, позволяет получить слои толщиной в 0.3 nm (1 MC), которые будут упруго напряжены в силу малости своего размера, и уменьшить эффект кластеризации в самом δ-слое. На рис. 3, а показано, что увеличение концентрации марганца приводит к уменьшению сопротивления образца, то есть возрастанию вклада δ-слоя в продольную проводимость на фоне проводящей системы дырок в квантовой яме. Величина продольного сопротивления при комнатной температуре для гетероструктур с б-слоем марганца составила $R_{04} = 2.6 \,\mathrm{k\Omega} \,(0.4 \,\mathrm{MC}), R_{08} = 1.6 \,\mathrm{k\Omega} \,(0.8 \,\mathrm{MC})$ и $R_{12} = 1.1 \,\mathrm{k}\Omega$ (1.2 MC) (рис. 4), что на два порядка меньше по сравнению с величиной $R_{\rm Mn} = 680 \, {\rm k}\Omega$ для образцов со слоем разбавленного Ga(Mn)As (рис. 3 в работе [5]). Таким образом, появление проводящей подсистемы, включенной параллельно квантовой яме,

Рис. 4. Температурная зависимость продольного сопротивления гетероструктур GaAs: Be/Ga_{0.84}In_{0.16}As/GaAs/ δ -Mn/GaAs с δ -слоем марганца различной концентрации.

привело к существенному падению общего сопротивления гетероструктуры.

Температурная зависимость продольного сопротивления $R_{xx}(T)$ исследуемых гетероструктур с δ -слоем марганца оказалась существенно иной, чем у образца GaAs/Ga_{0.84}In_{0.16}As/Ga(Mn)As с барьерным слоем на основе разбавленного марганцем соединения. В отличие от активационной зависимости типа $R(T) \sim \exp(\Delta E/kT)$ с энергией активации $\Delta E \approx 50 \,\mathrm{meV}$ для образцов с разбавленным магнитным полупроводником [5], в гетероструктурах с толщиной δ-слоев марганца до 1 МС наблюдалось почти линейное изменение сопротивления $R_{xx}(T)$ при температурах выше 50 К (рис. 4). Однако, в интервале низких температур $T = 1.8 - 30 \,\mathrm{K}$ был зафиксирован рост $R_{xx}(T)$ пропорционально $\ln T$, что свидетельствовало о наличии слабой локализации носителей заряда в квантовой яме и двумерном характере проводимости. Особенностью температурной зависимости для гетероструктур с различной концентрацией марганца в δ-слое является наличие широкого максимума в интервале температур T = 30 - 150 К, который можно связать с проявлением магнитного упорядочения. Для гетероструктур с количеством марганца до 1 МС наблюдаемый максимум выражен совсем слабо (70 К для 0.8 MC и 30 K для 0.4 MC), однако можно видеть, что его положение смещается в сторону больших значений температуры с увеличением толщины δ-слоя, что может быть объяснено возрастанием намагниченности. Тогда можно оценить величину температуры Кюри Т_С при различных концентрациях магнитной подсистемы (например, $T_C \approx 100$ K для гетероструктуры с 1.2 MC).

Результаты магнитных измерений гетероструктур GaAs: Be/Ga_{0.84}In_{0.16}As/GaAs/δ-Mn/GaAs с δ-слоем марганца различной концентрации представлены на рис. 5 и 6. Кривые намагничивания на рис. 5 демонстрируют существование магнитного упорядочения при температуре T = 5 К. Видно, что в гетероструктуре с толщиной слоя марганца 0.4 МС в магнитном поле B = 0.4 Т намагниченность насыщается и достигает значения $M = 1.56 \cdot 10^{-4}$ emu/g, тогда как в гетероструктурах с бо́льшей толщиной δ -слоя марганца (1.2 МС и 2 МС) насыщение не наблюдается вплоть до B = 3 Т. Такое поведение намагниченности с ростом концентрации марганца может быть связано с проникновением атомов магнитной примеси из δ -слоя в квантовую яму, которое влияет на характер взаимодействия между носителями заряда, препятствуя установлению магнитного упорядочения в слабых полях.

На рис. 6 представлены температурные зависимости магнитной восприимчивости $\chi(T)$, измеренной в поле B = 3 Т. Магнитная восприимчивость всех образ-

Рис. 5. Кривые намагничивания гетероструктур GaAs:Be/ Ga_{0.84}In_{0.16}As/GaAs/δ-Mn/GaAs с δ-слоем марганца различной концентрации.

Рис. 6. Температурные зависимости магнитной восприимчивости гетероструктур GaAs: Be/Ga_{0.84}In_{0.16}As/GaAs/ δ -Mn/GaAs с δ -слоем марганца различной концентрации (B = 3 T). На вставке — зависимость $\chi(T)$ для образца M490_0.4 MC в низкотемпературном интервале (T < 150 K).

Значения концентрации атомов Mn, магнитного момента насыщения, в расчете на один атом Mn ферромагнитной и парамагнитной температур Кюри T_N и Θ , парамагнитного момента, определенного из константы Кюри (*C*), и отношения Вольфарта–Роудса μ_p/μ_S

Толщина δ -слоя	$N_{\rm Mn}$, at/cm ²	$C, \mathrm{cm}^2/\mathrm{g}\cdot\mathrm{K}$	$\mu_S, \mu_B/atom Mn$	T_N , K	Θ, Κ	$\mu_p, \mu_{ m B}/{ m atomMn}$	μ_p/μ_S
0.4 MC	$1.19\cdot 10^{14}$	$8.47\cdot 10^{-8}$	6.2	23	-200	3.8	0.6
1.2 MC	$3.55\cdot 10^{14}$	$8.41\cdot 10^{-8}$	1.1	8.3	-58	1.6	1.4
2 MC	$5.92\cdot 10^{14}$	$1.58\cdot 10^{-7}$	2.5	—	-15	3.3	1.3

цов в широких температурных интервалах (0.4 MC — 100–200 K, 1.2 MC — 10–60 K, 2 MC — 10–65 K) следует закону Кюри–Вейсса $\chi(T) = C/(T - \Theta)$. С помощью аппроксимации линейных участков зависимостей $1/\chi(T)$ определена константа Кюри *C* и парамагнитная температура Кюри–Вейсса Θ (см. таблицу). Для всех образцов параметр Θ отрицателен, что отвечает возможности упорядочения антиферромагнитного типа. На зависимостях $\chi(T)$ наблюдаются максимумы вблизи температуры фазового перехода T_N (указаны стрелками на рис. 6).

С использованием выражения для константы Кюри $C = Nm_p^2 \mu_{\rm B}^2/3k$, где N — число магнитных атомов (Mn), $\mu_{\rm B}$ — магнетон Бора, k — постоянная Больцмана, получены значения эффективного магнитного момента μ_p для всех исследованных образцов (см. таблицу). Значение μ_p для образца с количеством марганца в δ -слое 0.4 MC близко к значению μ_p для образца с 2 MC Mn и более чем в два раза превышает величину μ_p для образца толщиной с 1.2 МС. Значения магнитного момента насыщения μ_S при T = 5 K, определенные по величине намагниченности насыщения, представлены в таблице. Величина µ_S для образца с 0.4 MC Mn имеет максимальное значение ($\mu_{S} = 6.2 \,\mu_{B}$) среди всех исследованных образцов. Парамагнитная температура Кюри $\Theta = -200 \,\text{K}$ для этого же образца, характеризующая интенсивность обменного взаимодействия, также максимальна. Таким образом, характерные для антиферромагнетизма свойства проявляются в образце с минимальной толщиной δ-слоя марганца 0.4 МС, что может быть связано с особенностями распределения марганца в слое, то есть с образованием кластеров марганца в процессе осаждения, тогда как увеличение концентрации марганца приводит к изменению магнитного упорядочения и созданию предпосылок для перехода в парамагнитное состояние. При этом в гетероструктуре с 0.4 МС марганца в отличие от гетероструктур с толщиной δ-слоя 1.2 и 2 МС при изучении явления гистерезиса практически не наблюдалась остаточная намагниченность. Экспериментально определенное отношение μ_p/μ_S для всех образцов оказалось порядка единицы (см. таблицу), что характерно для магнитоупорядоченных систем с локальными магнитными моментами [9,10]. Своеобразное поведение δ-слоев марганца в полупроводниковой матрице в настоящее время достаточно активно обсуждается. Возможные фазовые переходы между ферромагнитным, парамагнитным и ферримагнитным состояниями в засисимости от концентрации магнитной примеси были рассмотрены в работах [11,12].

4. Результаты и выводы

Показано, что в гетероструктурах на основе арсенида галлия GaAs: Be/Ga_{0.84}In_{0.16}As/GaAs/δ-Mn/GaAs проводимость в квантовой яме сильно зависит от концентрации атомов марганца в б-слое. Такой эффект объясняется гибридизацией состояний локализованных носителей тока с электронными состояниями б-слоя марганца. Изучение магнитных свойств данных гетероструктур показало существование магнитного упорядочения, возникающего при различной концентрации магнитной примеси, при этом было продемонстрировано весьма значительное и сложное разнообразие характера упорядочения. Магнитное упорядочение слоя подтверждено наблюдением гистерезиса кривых намагничивания, обнаружены свидетельства существования спонтанного магнитного упорядочения примесной системы, а также большого различия вкладов для б-слоев с низким и высоким содержанием примесей в сопротивление, которое связано с особенностями рассеяния носителей тока в системах с различной концентрацией примесей. Наряду с металлическим состоянием в исследуемых гетероструктурах имеет место антиферромагнетизм в образцах с низкой концентрацией марганца в б-слое (отрицательная температура Кюри) и обнаружено проявление более сложного типа магнитного упорядочения при увеличении концентрации марганца. Таким образом, гетероструктуры с разным содержанием атомов магнитных примесей, локализованных в достаточно ограниченной области полупроводниковой матрицы, по своим магнитным и проводящим свойствам существенно отличаются друг от друга, что требует дальнейшего изучения как магнитных, так и транспортных свойств данных структур.

Авторы благодарят М. Лопеса-Лопеса (Национальный политехнический институт — СИНВЕСТАВ, Мексика) за предоставленные гетероструктуры и А.Ф. Губкина (ИФМ УрО РАН, Екатеринбург) за помощь в проведении измерений магнитных свойств на установке MPMS-XL-5.

Список литературы

- H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye. Appl. Phys. Lett. 69, 363 (1996).
- [2] F. Matsukura, H. Ohno, T. Dietl. III–V Ferromagnetic Semiconductors, Handbook of Magnetic Materials 14 / Ed. K.H.J. Buschow. Elsevier, Amsterdam (2002). P. 1–87.
- [3] T. Dietl, H. Ohno. Rev. Mod. Phys. 86, 187 (2014).
- [4] A.M. Nazmul, T. Amemiya, Y. Shuto, S. Sugahara, M. Tanaka. Phys. Rev. Lett. 95, 017201 (2005).
- [5] А.М. Луговых, Т.Б. Чарикова, В.И. Окулов, К.Д. Моисеев, Ю.А. Кудрявцев. ФТТ 58, 2160 (2016).
- [6] К.Д. Моисеев, В.Н. Неведомский, Yu. Kudriavstev, A. Escobosa-Echavarria, M. Lopez-Lopez. ФТП **51**, 1189 (2017).
- [7] A.M. Nazmul, S. Sugahara, M. Tanaka. J. Cryst. Growth 251, 303 (2003).
- [8] M. Shirai, T. Ogawa, I. Kitagawa, N. Suzuki. J. Magn. Magn. Mater. 177, 1383 (1998).
- [9] В.Ю. Ирхин, М.И. Кацнельсон, УФН 164, 705 (1994).
- [10] Т. Мория, Спиновые флуктуации в магнетиках с коллективизированными электронами Мир, М. (1988).
- [11] V.N. Men'shov V.V. Tugushev, S. Caprara, P.M. Echenique, E.V. Chulkov. Phys. Rev. B 80, 035315 (2009).
- [12] S. Caprara, V.V. Tugushev, E.V. Chulkov. Phys. Rev. B 84, 085311 (2011).

Редактор Е.Ю. Флегонтова