03

Спектры пропускания симметричной фотонно-кристаллической структуры со слоем внедрения с высокой диэлектрической проницаемостью

© И.В. Федорова, Д.И. Семенцов

Ульяновский государственный университет, 432017 Ульяновск, Россия e-mail: sementsovdi@mail.ru

Поступила в редакцию 30.05.2018 г.

Получены спектры пропускания одномерной фотонной кристаллической структуры, у которой диэлектрическая проницаемость слоя внедрения (или резонаторного слоя) во много раз больше проницаемости слоев в брэгговских зеркалах. Показана возможность практически полного подавления пропускания не только в фотонной запрещенной зоне (за исключением узкой области дефектной моды), но и вне запрещенной зоны. Выявлены особенности распределения плотности энергии волнового поля по структуре.

DOI: 10.21883/OS.2018.10.46706.145-18

Введение

Известно, что в спектрах пропускания фотонных кристаллов (ФК) возникают фотонные запрещенные зоны (ФЗЗ), с наличием которых связаны широкие возможности создания различных устройств управления электромагнитным излучением [1-7]. При формировании в структуре нарушения периодичности (т.е. дефекта) возможна локализация излучения в дефектных модах с частотами, лежащими в ФЗЗ [8–12]. Для многих практических применений важной задачей является прогнозируемая перестройка фотонного спектра, которая в первую очередь связана с выбором материала слоев и создаваемых в структуре дефектов. Особый интерес в этом плане могут представлять ФК структуры со слоями из материалов, значения диэлектрической проницаемости (ДП) которых во много раз превышают ДП контактирующих слоев.

Одной из практически важных ФК структур является резонаторная, у которой между двух брэгговских зеркал расположен активный (управляемый) слой, выполняющий функции резонаторного слоя [13–15]. В настоящей работе исследуются особенности спектра пропускания такой структуры, в которой в качестве материала резонаторного слоя используется материал со значением диэлектрической проницаемости, во много раз превосходящим проницаемость слоев в брэгговских зеркалах. В качестве такого материала могут рассматриваться пара- и сегнетоэлектрики. Управление спектром таких ФК можно осуществлять электрическим полем и температурой за счет изменения в широких пределах их ДП [16–20].

Основные соотношения

Рассмотрим одномерную симметричную ФК структуру, которая состоит из двух боковых диэлектрических ФК зеркал, инвертированных друг относительно друга, и помещенного между ними слоя с высоким значением ДП. ФК зеркала представляют собой одномерную периодическую плоско-слоистую структуру, которая содержит конечное число периодов из двух оптически изотропных слоев диэлектрика с ДП ε_1 , ε_2 и толщинами L_1 , L_2 . Между зеркалами помещен резонаторный слой с высоким значением ДП ($\varepsilon_d \gg \varepsilon_1$, ε_2) и толщиной L_2 . Среда, в которую помещена вся структура, является вакуумом. С точки зрения дефектности она содержит двойной дефект — инверсию и слой внедрения. Дефект инверсии состоит в изменении порядка следования слоев в одной из двух частей структуры [9].

Будем считать, что линейно поляризованная волна распространяется в структуре вдоль оси симметрии, которая перпендикулярна границам раздела слоев. Амплитудные коэффициенты отражения и прохождения для всего ФК выражаются через матричные элементы передаточной матрицы всей структуры \hat{G} , которая связывает амплитуды падающей и выходящей волн:

$$r = \frac{G_{11} + G_{12} - G_{21} - G_{22}}{G_{11} + G_{12} + G_{21} + G_{22}},$$

$$t = \frac{2}{G_{11} + G_{12} + G_{21} + G_{22}}.$$
 (1)

Для рассматриваемой резонаторной структуры передаточная матрица имеет вид $\hat{G} = (\hat{M})^a \hat{D}(\hat{\overline{M}})^a$, где $(\hat{M})^a = (\hat{N}_1 \hat{N}_2)^a$ и $(\hat{\overline{M}})^a = (\hat{N}_2 \hat{N}_1)^a$ — передаточные матрицы ФК зеркал, состоящих из *а* периодов. Передаточная матрица каждого из слоев в структуре имеет вид [21]

$$\begin{pmatrix} \cos(k_j L_j) & -i\sqrt{\varepsilon_j}\sin(k_j L_j) \\ -(i/\sqrt{\varepsilon_j})\sin(k_j L_j) & \cos(k_j L_j) \end{pmatrix}, \quad (2)$$

где $k_j = k_0 \sqrt{\varepsilon_j}$ — константа распространения в соответствующем слое, $k_0 = \omega/c$, ω и c — частота и скорость

Рис. 1. Спектры пропускания структур $M^5 \overline{M}^5$ (*a*) и $M^5 D \overline{M}^5$ с $\varepsilon_d = (1100, 180, 18)$ и $L_d = (72.56, 179.38, 567.27) \mu m (b-d).$

волны в вакууме; матрица (2) при j = 1, 2 определяет одну из матриц \hat{N}_j ФК зеркал, а при i = d определяет матрицу \hat{D} . Энергетические коэффициенты отражения и прохождения в этом случае имеют вид: $R = |r|^2$, $T = |t|^2$. При учете поглощения в слоях коэффициент поглощения, т. е. доля поглощенной структурой энергии, определяется выражением A = 1 - R - T.

Спектры в отсутствие дисперсии

Для выявления особенностей фотонных спектров структуры с резонаторным слоем вначале проведем анализ без учета поглощения и дисперсии в слоях. Будем считать, что период ФК зеркала состоит из двух слоев изотропных диэлектриков с ДП $\varepsilon_1 = 4.16$ (ZrO₂) и $\varepsilon_2 = 2.1$ (SiO₂) и одинаковыми оптическими толщинами $L_1\sqrt{\varepsilon_1} = L_2\sqrt{\varepsilon_2} = L_0$. Этому условию отвечают реальные толщины указанных слоев $L_1 = 590 \,\mu$ m, $L_2 = 830.2 \,\mu$ m, а $L_0 \simeq 1203 \,\mu$ m. В качестве материала резонаторного слоя предполагается использовать слои сегнетоэлектриков (или некоторых параэлектриков), для которых ДП может достигать значений $\varepsilon_d \sim 10^2 - 10^3$. Для построения спектров прохождения при $\varepsilon_d \gg \varepsilon_{1,2}$ будем считать, что ДП всех слоев не зависят от частоты и что в структуре отсутствует поглощение.

Рис. 2. Спектры пропускания структур $\overline{M}^{5}M^{5}(a)$ и $M^{5}D\overline{M}^{5}$ с $\varepsilon_{d} = (1100, 180, 18)$ и $L_{d} = (72.56, 179.38, 567.27) \mu m (b-d).$

Рассмотрим вначале трансформацию спектра пропускания, которая связана с увеличением ДП резонаторного слоя при фиксированной его оптической толщине. На рис. 1,2 представлены спектры структур с дефектом инверсии $M^5\overline{M}^5$, \overline{M}^5M^5 (*a*) и структур с дефектами инверсии и внедрения $M^5 D\overline{M}^5$, $\overline{M}^5 DM^5$, полученные для значений $\varepsilon_d = 1100, 180, 18 (b-d),$ два из которых значительно превосходят ДП слоев в брэгговских зеркалах. Толщина *D*-слоев удовлетворяет условию $L_d \sqrt{\varepsilon_d} = 2L_0$ и равна $L_d = (72.56, 179.38, 567.27) \, \mu \text{m} \, (b-d)$. Приведенные зависимости относятся к первым двум ФЗЗ бездефектного ФК с центральными частотами $\omega_0 =$ $= 3.916 \cdot 10^{11} \,\mathrm{s}^{-1}$ и $3\omega_0$. В соответствии с теорией периодических структур для центральной частоты первой ФЗЗ, величина которой определяется параметрами слоев в периоде структуры, справедливо выражение [22]

$$\omega_0 = \pi c / 2L_0 = \pi c / (L_1 \sqrt{\varepsilon_1} + L_2 \sqrt{\varepsilon_2}), \qquad (3)$$

которое согласуется с представленными результатами численного анализа.

В спектре структуры $M^5 D\overline{M}^5$ в центре Ф33 четко проявляется область с одним узким пиком (дефектной модой). В структуре $\overline{M}^5 DM^5$ с увеличением ε_d (и сохранением $L_d \sqrt{\varepsilon_d}$) от краев Ф33 отщепляются два пика, которые с центральным образуют на месте Ф33 три узких пика прохождения. Вне этой зоны коэффициент *T*

Рис. 3. Спектральные линии $T(\omega)$ в области дефектной моды структур $M^{5}\overline{M}^{5}$ (кривая *I*) и $M^{5}D\overline{M}^{5}$ с $\varepsilon_{d} = (18, 1100)$ и $L_{d} = (567.27, 72.56) \, \mu$ т (кривые 2 и 3).

испытывает высокоамплитудные осцилляции, которые с увеличением ε_d практически полностью подавляются. Отметим также формирование в центре разрешенной области (на частоте $2\omega_0$) линии с максимумом прохождения $T \simeq 1$. Форма этой линии практически одинакова для обеих структур с различным порядком следования слоев в зеркалах.

При выбранных значениях ДП и толщины слоев в спектрах ΦK с одним дефектом инверсии (*a*), как и в структуре с двумя дефектами (инверсии и внедрения), дефектная мода располагается в центре ФЗЗ, однако ее спектральная линия оказывается существенно уже дефектной линии ФК без резонаторного слоя. Коэффициент прохождения на частоте дефектной моды практически равен единице. На рис. 3 приведены спектральные линии $T(\omega)$ в области дефектной моды (в более узком частотном диапазоне, чем на предыдущих рисунках) для нескольких значений ДП резонаторного слоя. Видно, что с увеличением *є*_d ширина линии резко сужается. Так, для $\varepsilon_d = 18$ ширина минизоны составляет $\Delta \omega_d \approx 1.8 \cdot 10^9 \, \mathrm{s}^{-1}$, для $\varepsilon_d = 1100$ уже $\Delta \omega_d \approx 4 \cdot 10^8 \, \mathrm{s}^{-1}$. Таким образом, величина $\Delta \omega_d$ очень чувствительна к значению є_d. Если материалом соответствующего слоя является пара- или сегнетоэлектрик, то величиной $\Delta \omega_d$ можно эффективно управлять электрическим полем или температурой.

Распределение волнового поля

Рассмотрим теперь особенности в распределении волнового поля по структуре, связанные с условием $\varepsilon_d \gg \varepsilon_{1,2}$. Известно, что при формировании в ФК структуре одного или нескольких дефектов и соблюдении определенных фазовых условий возможна локализация излучения в дефектных модах. На рис. 4, 5 представлены распределения по структуре квадрата модуля напряженности электрического поля для структур $M^5 D\overline{M}^5$ и $\overline{M}^5 DM^5$ с параметрами резонаторного слоя $\varepsilon_d = 1100$, $L_d = 72.56\,\mu$ m, полученные для частот $\omega_{1-4} = (3.916, 4.25, 7.835, 8.2) \cdot 10^{11} \text{ s}^{-1} (a-d)$. Кривые на рисунках (*a*) отвечают центральной частоте ω_0 , на которой коэффициент прохождения равен единице, в результате чего все падающее на структуру излучение проникает в нее и локализуется в области дефектного слоя. Степень локализации и характер распределения поля существенно зависят от параметров брэгговских зеркал. Так, плотности энергии поля падающей волны и поля в резонаторном слое связаны соотношением

$$|E_d|^2 \gg |E_0|^2/(1-R_{\rm mir}),$$
 (4)

где $R_{\rm mir}$ — коэффициент отражения брэгговского зеркала [14]. При выполнении неравенства $1 - R_{\rm mir} \ll 1$ амплитуда поля в резонансном слое может во много раз превышать амплитуду поля падающей волны, что и следует из результатов численного анализа. Также видно, что в структуре $M^5 D\overline{M}^5$ поле достигает максимума на границах слоя D, тогда как в структуре $\overline{M}^{5}DM^{5}$ — на границах слоев N_{2} и N_{1} , ближайших к слою D. При этом степень локализации в первом случае в несколько раз больше, чем во втором. Отметим, что в центре резонаторного слоя коэффициент прохождения падает до нулевого значения (вставка). Таким образом, изменение от максимально возможного значения коэффициента Т до минимально возможного наблюдается на толщине резонаторного слоя, которая в случае высоких значений *ε*_d становится малой, тем самым значительно повышая степень локализации поля в структуре.

Рис. 4. Распределение плотности энергии волнового поля в структуре $M^5 D\overline{M}^5$ с $\varepsilon_d = 1100$ и $L_d = 72.56 \,\mu\text{m}$ при $\omega_0 = (3.916, 4.25, 7.835, 8.2) \cdot 10^{11} \,\text{s}^{-1} \, (a-d).$

Рис. 5. Распределение плотности энергии волнового поля в структуре $\overline{M}^5 D M^5$ с $\varepsilon_d = 1100$ и $L_d = 72.56 \,\mu\text{m}$ при $\omega_0 = (3.916, 4.25, 7.835, 8.2) \cdot 10^{11} \,\text{s}^{-1} \, (a-d).$

Частота ω_2 (рисунок *b*) для структуры $M^5 D\overline{M}^5$ отвечает максимуму отражения, в результате чего поле слабо проникает в структуру и быстро затухает. Для $\overline{M}^5 D M^5$ указанная частота отвечает боковому максимуму пропускания, поэтому характер распределения поля в структуре близок к распределению на центральной частоте. Частотам ω_3 и ω_4 отвечают центральный и боковой максимумы пропускания в центре разрешенной области. Спектры в этой частотной области и характер распределения поля на указанных частотах для обеих структур практически одинаковы.

Спектры с учетом дисперсии

Рассмотрим теперь трансформацию фотонного спектра структуры с учетом частотной зависимости ДП материала резонаторного слоя. В качестве такого материала нами выбран титанат стронция (SrTiO₃) — параэлектрик, который выше температуры структурного фазового перехода ($T > T_a \approx 105$ K) находится в кубической фазе, т.е. является оптически изотропным. Его диэлектрические свойства аналогичны свойствам параэлектрической фазы реальных сегнетоэлектриков со структурой перовскита, так как связаны с наличием поперечной мягкой моды, частота которой ω_T стремится к нулю при понижении температуры, что приводит к аномальному росту низкочастотной ДП при

 $T \to 0.$ С ростом температуры квадрат частоты мягкой моды линейно растет по закону $\omega_T^2 \sim (T - T_c)$, где $T_c \approx 30 \,\mathrm{K}$ [23]. Данные эксперимента указывают, что в области $T > T_s \simeq 105 \,\mathrm{K}$ температурная зависимость ДП титаната стронция в отсутствие внешнего электрического поля достаточно хорошо описывается законом Кюри–Вейса $\varepsilon(T) \simeq C/(T - T_c)$ с постоянной $T_c \approx 30 \,\mathrm{K}$ и константой $C = 8.6 \cdot 10^4 \,\mathrm{K}$ [23]. В соответствии с этим при $T = 110 \,\mathrm{K}$ частота мягкой моды $\omega_T \simeq 7.8 \cdot 10^{12} \,\mathrm{s}^{-1}$.

Зависимость ДП от частоты и внешнего электрического поля для SrTiO₃ на частотах $\omega < \omega_T$ и для температур, отвечающих параэлектрической фазе, достаточно хорошо описывается выражением [16,19]

$$\varepsilon_d(E,\omega) = \frac{\varepsilon_0 \omega_T^2}{\omega_T^2 (1 + E^2/E_0^2) - \omega^2 + i\gamma\omega},$$
 (5)

где ε_0 — статическая ДП, γ — параметр затухания, E_0 — электрическое поле, определяющее нелинейность материала, E — внешнее статическое поле. На рис. 6 приведены частотные зависимости действительной и мнимой частей ДП (сплошные и пунктирные кривые), полученные на основе (5) для параметров, отвечающих T = 110 К: $\varepsilon_d \simeq 1100$, $\gamma \simeq 10^{11}$ s⁻¹, $E_0 = 60$ kV/cm, E = (0, 20) kV/cm (кривые 1, 2). Видно, что в области частот, достаточно удаленных от частоты мягкой моды, действительная часть ДП может считаться не зависящей от частоты. При этом мнимая часть является малой и слабо меняющейся. Рост внешнего поля приводит к уменьшению ДП материала, что может быть использовано для управления спектрами прохождения и отражения ФК.

На рис. 7 приведены спектры пропускания структуры $M^5 D\overline{M}^5$, полученные для приведенных выше параметров резонаторного слоя, его толщины $L_d =$ = (100, 72.47, 1.0) μ m (*a*-*c*) и *E* = (0; 20) kV/cm (сплошная и пунктирная кривые). Можно отметить, что наличие поглощения вносит изменения в характер спектра (ср. зависимости на рис. 1, *b* и 7, *b*), более значительные в высокочастотной области. Основное из них уменьшение максимальных значений коэффициента *T*.

Рис. 6. Частотная зависимость действительной и мнимой (сплошные и штриховые кривые) частей ДП параэлектрика SrTiO₃.

Рис. 7. Спектры пропускания структуры $M^5 D\overline{M}^3$ при E = (0; 20) kV/cm (сплошная и пунктирная кривые) и $L_d = (100, 72.47, 1.0) \mu m (a-c).$

Включение поля уменьшает величину ДП резонаторного слоя и соответственно сдвигает спектр в область более высоких частот. При $L_d \sqrt{\varepsilon_d} \ge L_0$ наблюдается подавление пропускания вне запрещенной зоны, тогда как при $L_d \sqrt{\varepsilon_d} \ll L_0$ характер спектра становится все более похожим на спектр структуры $M^5 \overline{M}^5$. Интересен тот факт, что уменьшением L_d можно добиться не только значительного подавления пропускания вне дефектной моды, но и самой дефектной моды. Подобная ситуация наблюдается при $L_d = 10 \,\mu$ m.

Заключение

В результате проведенного анализа выявлены особенности спектра симметричной резонаторной ФК структуры, у которой ДП резонаторного слоя во много раз превосходит проницаемости слоев в брэгговских зеркалах. При этом возможен существенный спад коэффициента прохождения не только в фотонной запрещенной зоне, но и вне ее. Данный эффект прежде всего связан с высоким значением ДП внедренного в структуру слоя, материалом которого может служить пара- или сегнетоэлектрик (например, SrTiO₃). Так как ДП этих материалов сильно зависит от внешнего электрического поля и температуры, то положением дефектной моды можно эффективно управлять. В работе показана перестройки спектра $T(\omega)$ и смещение пика пропускания с помощью внешнего поля. Отметим также, что расход такого материала оказывается намного меньше материала "обычного", так как оптическая эффективность каждого слоя определяется не фактической его толщиной, а

оптической, которая в $\sqrt{\varepsilon_d}$ раз больше фактической. Данная структура может найти широкое практическое применение, в частности, может служить эффективным фильтром в узкой частотной области дефектной моды.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ в рамках проекта № 3.6825.2017/ПЧ.

Список литературы

- Joannopoulos J.D., Meade R.D., Winn J.N. Photonic Crystals: Molding of Flow of Light. N.U. Princeton Univ. Press, Princeton, 1995.
- [2] Белотелов В.И., Звездин А.К. Фотонные кристаллы и другие метаматериалы. М.: Бюро Квантум, 2006. 144 с.
- [3] Biallo D., Orazio A.D., Petruzzelli V. // J. European Optical Society. 2007. V. 2. P. 07010.
- [4] Гуляев Ю.В., Лагарьков А.Н., Никитов С.А. // Вестник РАН. 2008. Т. 78. № 5. С. 438.
- [5] Ветров С.Я., Авдеева А.Ю., Тимофеев И.В. // ЖЭТФ. 2011. Т. 140. № 5. С. 871.
- [6] Елисеева С.В., Семенцов Д.И. // ЖЭТФ. 2011. Т. 139. № 2. С. 235.
- [7] Kumar V., Suthar B., Malik J.V., Kumar A., Singh Kh.S., Bhargva A. // Photonics and Optoelectronics. 2013. V. 2. P. 17.
- [8] Zhou W.D., Sabarinathan J., Bhattarcharya P. et al. // J. Quant. Electron. 2001. V. 37. N 9. P. 1153.
- [9] Елисеева С.В., Семенцов Д.И. // Опт. и спектр. 2010. Т. 109. № 5. С. 789.
- [10] Kumar V, Singh Kh.S., Ojha S.P. // Optik. 2011. V. 122. P. 1183.
- [11] Моисеев С.Г., Остаточников В.А., Семенцов Д.И. // Письма в ЖЭТФ. 2014. Т. 100. С. 413.
- [12] Bouzidi A., Bria D., Azizi M. et al. // JMES. 2017. V. 8. P. 3892.
- [13] Heebner J., Grover R., Ibrahim T. Optical Microresonators: Theory, Fabrication, and Applications. London: Springer, 2008. 268 p.
- [14] Городецкий М.Л. Основы теории оптических микрорезонаторов / Учебное пособие. М.: Физ. фак. МГУ им. М.В. Ломоносова, 2010. 198 с.
- [15] Chremmos I., Schwelb O., Uzunoglu N. Photonic Microresonator Research and Applications. NY., London: Springer, 2010. 515 p.
- [16] Вендик О.Г. Сегнетоэлектрики в технике СВЧ. М.: Советское радио, 1979. 272 с.
- [17] Сычев Ю.В., Мурзина Т.В., Ким Е.М., Акципетров О.А. // ФТТ. 2005. Т. 47. № 1. С. 144.
- [18] Лебедев А.И. // ФТТ. 2013. Т. 55. № 6. С. 1110.
- [19] Grimalsky V., Koshevaya S., Escobedo-Alatorre J., Tecpoyotl-Torres M. // J. Electromagnetic Analysis and Applications. 2016. V. 8. P. 226.
- [20] Novik V.K., Malyshkina I.A., Gavrilova N.D. // Ferroelectrics. 2017. V. 515. N 1. P. 90.
- [21] Борн М., Вольф Э. Основы оптики. М.: Наука, 1973. 713 с.
- [22] Ярив А., Юх П. Оптические волны в кристаллах. М.: Мир, 1987. 616 с.
- [23] Бойков Ю.А., Клаерсон Т. // ФТТ. 2004. Т. 46. № 7. С. 1231.