Спектрально-люминесцентные свойства Yb³⁺ в апротонных неорганических жидкостях POCl₃-ZrCl₄

© А.С. Бабкин, Е.А. Серёгина, А.А. Серёгин, Г.В. Тихонов

Физико-энергетический институт им. А.И. Лейпунского, 249033 Обнинск, Россия

e-mail: seregina@ippe.ru

Поступила в редакцию 07.06.2018 г.

Зарегистрированы спектры поглощения, люминесценции и время жизни Yb^{3+} в растворах при комнатной температуре и спектры люминесценции образцов, охлажденных до 78 К. Получена информация о штарковском расщеплении уровней, сечениях поглощения и вынужденного излучения Yb^{3+} в POCl₃-ZrCl₄. Оценена возможность создания лазера на неорганической жидкости POCl₃-ZrCl₄-Yb³⁺.

DOI: 10.21883/OS.2018.10.46703.157-18

Введение

В развитии твердотельных лазеров (ТТЛ) произошел качественный скачок после появления эффективных лазерных диодов, объединение которых в малогабаритные блоки диодной накачки с выходной мощностью в десятки kW позволило создавать ТТЛ киловаттного уровня с КПД около 50% [1]. Основными трудностями в создании мощных и высокоэнергетических лазеров оказалась организация эффективного теплоотвода. При высоких мощностях возникают внутренние напряжения в твердотельных лазерных матрицах, приводящие к их разрушению. Поэтому появился интерес к созданию мощных лазерных систем с диодной накачкой на апротонных неорганических лазерных жидкостях (НЛЖ), в которых отсутствуют деформации и термические напряжения, что позволит создавать лазерные элементы большого объема с большой плотностью активатора и решать проблему эффективного теплоотвода за счет циркуляции активной среды через резонатор. Кроме того, жидкие лазерные среды значительно дешевле твердотельных матриц, из них можно изготовить элементы практически любых необходимых форм и размеров.

растворов оксихлорида Ha основе фосфора $(POCl_3 - SnCl_4 \text{ u } POCl_3 - ZrCl_4)$, активированных Nd^{3+} , были изготовлены мощные низкопороговые лазеры с накачкой газоразрядными лампами [2]. Несколько лет назад за рубежом появились предложения по диодной накачке неодимсодержащих НЛЖ [3], а также примеры лазерных устройств на основе жидкостных лазеров с диодной накачкой [4-6]. Однако с точки зрения уменьшения тепловых нагрузок благодаря небольшой разнице в энергиях квантов накачки и генерации более перспективными считаются лазерные среды, активированные Yb³⁺. К достоинствам Yb³⁺ можно отнести простую схему уровней энергии (2 мультиплета), что обеспечивает отсутствие потерь на поглощение из возбужденного состояния и на ап-конверсию [7]. Излучательные переходы происходят с нижних штарковских подуровней

единственного возбужденного состояния ${}^{2}F_{5/2}$ на группу штарковских подуровней основного состояния ${}^{2}F_{7/2}$. К сожалению, в литературе практически отсутствуют экспериментальные данные как о спектроскопии, так и о штарковском расщеплении уровней Yb³⁺ в апротонных неорганических жидкостях, что не позволяет оценить возможности создания жидкостного иттербиевого лазера на основе апротонных сред.

В настоящей работе приведены результаты измерения и анализа электронных спектров поглощения (ЭСП) и спектров люминесценции Yb^{3+} в апротонном растворителе POCl₃–ZrCl₄. Спектры люминесценции были зарегистрированы как при комнатной температуре, так и при температуре жидкого азота, что позволило получить более полную информацию о штарковском расщеплении уровней Yb^{3+} в POCl₃–ZrCl₄. Найдено время жизни возбужденного состояния, определены сечения поглощения и вынужденного излучения, оценена возможность создания жидкостного иттербиевого лазера.

Эксперимент

Исследовали образцы $POCl_3 - ZrCl_4Yb^{3+}$ с концентрациями Yb^{3+} 0.12 mol/1 (N $_{2}$ 1) и 0.27 mol/1 (N $_{2}$ 2), которые были синтезированы в ГНЦ РФ ФЭИ по методике [8]. Образцы представляли собой растворы $POCl_3 - ZrCl_4 - Yb^{3+}$ в кварцевых цилиндрических кюветах с толщиной оптического слоя 1.0 cm, с плоскопараллельными окнами и с герметично запаянными заливочными патрубками.

Электронные спектры поглощения растворов $POCl_3 - ZrCl_4 - Yb^{3+}$ измеряли на спектрофотометре CARY 500 в режиме регистрации оптической плотности. Бинарный апротонный растворитель $POCl_3 - ZrCl_4$ имеет собственную полосу поглощения в УФ области до 365 nm. В остальном оптическом диапазоне этот растворитель прозрачен. Область поглощения Yb^{3+} находится в диапазоне длин волн 900–1100 nm, в которой и регистрировали оптическую плотность растворов.

Спектры люминесценции Yb³⁺ регистрировали на спектрофлуориметре на основе установки СДЛ-2. Измерения люминесценции образцов проводили при комнатной температуре и при температуре жидкого азота. Схема измерений приведена на рис. 1. Исследуемый образец помещали в криостат. Окна криостата были изготовлены из оптически прозрачного плавленого кварца толщиной 80 mm, с полированными торцевыми поверхностями. Для возбуждения Yb³⁺ использовали ксеноновую лампу ДКСШ-150. Длину волны возбуждающего света λ_{exc} , как правило, 934 nm, выделяли монохроматором МДР-12. Спектры люминесценции Yb³⁺ регистрировали через монохроматор МДР-23 фотоэлектронным умножителем ФЭУ-62 в интервале длин волн 940-1200 nm. Сначала измеряли спектр при комнатной температуре 293 К, а затем в криостат заливали жидкий азот и без изменения геометрии образца измеряли спектр люминесценции Yb³⁺ при температуре 78 К. Время измерения спектра в области длин волн 965-1070 nm составляло не более 15 min.

Время жизни τ_{lum} возбужденного состояния Yb³⁺ в POCl₃-ZrCl₄-Yb³⁺ измеряли при комнатной температуре на τ -метре с использованием импульсной ксеноновой лампы ИСШ-400 с $\tau_{imp} \leq 5 \,\mu$ s, ФЭУ-62, работающего в интегральном режиме, и запоминающего осциллографа TDS 1012 фирмы Tektronix.

Результаты и обсуждение

На рис. 2 показана структура уровней Yb³⁺, отражающая расщепление на штарковские подуровни основного $({}^{2}F_{7/2})$ и возбужденного $({}^{2}F_{5/2})$ состояний. Под действием кристаллического поля (поля лигандов) снимается вырождение, что приводит к расщеплению состояния ${}^{2}F_{7/2}$ на четыре подуровня (1-4) и состояния ${}^{2}F_{5/2}$

Рис. 1. Блок-схема экспериментальной установки для измерения спектров люминесценции Yb³⁺ в POCl₃-ZrCl₄: 1 — ксеноновая лампа, 2 — система линз, 3 — монохроматор МДР-12, 4 — криостат с образцом, 5 — кварцевые окна, 6 — монохроматор МДР-23, 7 — одноэлектронный ФЭУ-62, 8 — многоканальный счетчик импульсов, 9 — персональный компьютер.

Рис. 3. Электронные спектры поглощения растворов $POCl_3 - ZrCl_4 - Yb^{3+}$. $[Yb^{3+}] = 0.123$ (1) и 0.276 mol/l (2).

на три подуровня (5-7). Информацию о положении и структуре верхних штарковских подуровней получают из анализа ЭСП, а по спектрам люминесценции изучают структуру нижних штарковских подуровней Yb³⁺.

Электронные спектры поглощения растворов POCl₃-ZrCl₄Yb³⁺ показаны на рис. 3. Оптическая плотность описывается законом Бугера-Ламберта-Бера:

$$A(\lambda) = \varepsilon(\lambda)cl, \tag{1}$$

где $\varepsilon(\lambda)$ — молярный коэффициент поглощения Yb³⁺, *с* — концентрация Yb³⁺, l = 1 cm — толщина светопоглощающего слоя. На рис. 3 видно, что форма ЭСП

Рис. 4. Спектры люминесценции растворов $POCl_3 - ZrCl_4 - Yb^{3+}$, нормированные на единицу. $[Yb^{3+}] = 0.123$ (1) и 0.276 mol/l (2); T = 293 K.

Рис. 5. Спектры люминесценции растворов $POCl_3-ZrCl_4-Yb^{3+}$, нормированные на единицу. $[Yb^{3+}] = 0.123$ (1) и 0.276 mol/l (2); T = 78 K.

Υb³⁺ имеет три выраженных максимума $\lambda_{max} = 976, 956$ и 934 nm, которые обусловлены переходами Yb³⁺ из основного состояния ${}^{2}F_{7/2}$ на штарковские подуровни верхнего возбужденного состояния ${}^{2}F_{5/2}$. Эти переходы можно идентифицировать как переходы между нижним подуровнем основного состояния и верхними подуровнями возбужденного состояния: $1 \rightarrow 5, 1 \rightarrow 6$ и $1 \rightarrow 7$ (рис. 2). Зная концентрацию Yb³⁺ в образцах и используя выражение (1), рассчитали молярные коэффициенты поглощения Yb³⁺ в растворах POCl₃–ZrCl₄. В максимуме ЭСП $\lambda_{max} = 976.5$ nm молярный коэффициент поглощения $\varepsilon_{max} = 3.85 \pm 0.051 \cdot mol^{-1} \cdot cm^{-1}$. Молярный коэффициент поглощения ε связан с сечением поглощения σ_a через число Авогадро N_A :

$$\sigma_a = (\epsilon \ln 10) / N_A = (1.46 \pm 0.02) \cdot 10^{-20} \, \mathrm{cm}^2.$$

Оптика и спектроскопия, 2018, том 125, вып. 4

На рис. 4 показаны измеренные при комнатной температуре спектры люминесценции образцов № 1 и № 2, нормированные на единицу. Видно, что формы линий люминесценции подобны, но у образца № 2 с большой концентрацией Yb³⁺ левое и особенно правое плечо полосы люминесценции заметно выше, чем у образца № 1. Возможно, что это различие связано с перепоглощением излучения в максимуме поглощения на $\lambda_{max} = 977 \pm 1$ nm. Перепоглощение света с увеличением концентрации Yb³⁺ в среде увеличивается, а относительная интенсивность люминесценции обр. № 2 при $\lambda = 977$ nm снижается, что приводит к искажению его формы линии относительно формы линии люминесценции обр. № 1.

Спектры люминесценции, измеренные при охлаждении образцов до температуры жидкого азота, приведены на рис. 5. Спектры люминесценции растворов при разных температурах (рис. 4 и 5) существенно различаются. С целью учета влияния пропускания либо рассеяния света жидким азотом и замороженной матрицей на форму спектров люминесценции Yb³⁺ были проведены дополнительные измерения. В криостат на место образца помещали идентичную кварцевую кювету, заполненную раствором POCl₃-ZrCl₄ без иттербия, и измеряли спектры в тех же условиях, что и образцы № 1 и № 2. Было установлено, что в пределах точности измерений вклад в спектры от пропускания/рассеяния света жидким азотом и замороженной матрицей не превышал фона и был в 10³-10⁴ раз меньше интенсивности спектров люминесценции Yb^{3+} при T = 78 К.

Сравнивая спектры люминесценции Yb³⁺ на рис. 4 и 5, можно отметить, что формы спектров для образцов в жидком и замороженном состояниях заметно отличаются друг от друга. При $\lambda = 977 \pm 1$ nm, соответствующей переходу 5 — 1 с нижнего подуровня возбужденного состояния ${}^2F_{5/2}$ на нижний подуровень основного состояния ${}^{2}F_{7/2}$, интенсивность люминесценции максимальна при комнатной температуре, но при $T = 78 \, {\rm K}$ резко падает, что особенно заметно для образца № 2. В то же время интенсивность переходов на остальные подуровни состояния ${}^{2}F_{7/2}$ возрастает, достигая максимального значения на $\lambda = 1005 \pm 2 \,\mathrm{nm}$, соответствующей переходу $5 \rightarrow 3$ (рис. 2). Вполне вероятно, что на изменения в спектрах люминесценции в жидких и замороженных растворах влияет термодинамически равновесное распределение населенностей по подуровням, которое зависит от температуры среды и описывается выражением

$$N_i = N_1 d_i e^{-\frac{\Lambda E_i}{kT}},\tag{2}$$

где N_1 — населенность основного подуровня, d_i — вырождение *i*-го подуровня, $\Delta E_i = E_i - E_1$ — разница в энергиях между *i*-м подуровнем и подуровнем 1 основного состояния ${}^2F_{7/2}$, k — постоянная Больцмана, T — температура среды в кельвинах. Для всех подуровней ионов иттербия $d_i = 2$. В условиях термодинамического равновесия выражение (2) справедливо при равенстве

Рис. 6. ЭСП раствора $POCl_3-ZrCl_4Yb^{3+}$, нормированный на единицу. 1 — экспериментальные данные, 2 — сумма разложений по лоренцевым функциям, 3 — разложения по лоренцевым функциям, 4 — линия, обусловленная наличием другого типа комплексов Yb³⁺.

суммы населенностей всех подуровней полной концентрации активатора N_t в растворе. Для Yb³⁺

$$N_t = N_1 \sum_{i=1}^7 d_i \exp(-\Delta E_i/kT).$$
(3)

Так как концентрация Yb³⁺ не зависит от температуры среды, то, согласно выражениям (2) и (3) уменьшение температуры ведет к снижению населенности N_i штарковских подуровней уровня ${}^2F_{7/2}$ и одновременно к росту населенности подуровня N_1 .

Для оценки населенностей штарковских подуровней необходимо было определить энергию штарковских подуровней основного и возбужденного состояний Yb³⁺. Информация о положении верхнего состояния ${}^{2}F_{5/2}$ и его штарковских подуровней была получена из анализа ЭСП Yb³⁺. Для определения ширины и положения максимумов полос поглощения Yb³⁺ экспериментальные спектры аппроксимировали линейной комбинацией функций либо Гаусса, либо Лоренца. Функцию Гаусса рассчитывали по стандартной формуле:

$$A(\lambda) = \sqrt{\frac{2}{\pi}} \frac{B}{w} \exp\left(-\frac{2(\lambda - \lambda_c)^2}{w^2}\right), \qquad (4)$$

для функций Лоренца использовали выражение

$$A(\lambda) = \frac{2B}{\pi} \frac{w}{4(\lambda - \lambda_c)^2 + w^2}.$$
 (5)

В выражениях (4) и (5) A — оптическая плотность, B — площадь под линией разложения, w — дисперсия, λ — длина волны; λ_c — длина волны в максимуме распределения. Расчеты показали, что аппроксимация ЭСП более достоверна при использовании суперпозиции функций Лоренца. На рис. 6 показаны результаты разложения нормированного на единицу ЭСП Yb³⁺ образца № 1 по функциям Лоренца. Наилучшая аппроксимация ЭСП была получена описанием суммой пяти функций Лоренца. В табл. 1 для образцов № 1 и № 2 приведены основные параметры расчетов: длина волны в максимуме λ_c и дисперсия распределений w в нанометрах и эти же величины в обратных сантиметрах v_c и Δv , которые соответствуют положению и энергетической ширине возбужденного уровня и его штарковских подуровней

Рис. 7. Спектр люминесценции раствора $POCl_3 - ZrCl_4 - Yb^{3+}$ (образец *1*) при *T* = 293 К. *1* — экспериментальные данные, *2* — сумма разложений по лоренцевым функциям, *3* — разложения по лоренцевым функциям, *4* — линия, обусловленная наличием другого типа комплексов Yb³⁺.

Рис. 8. Спектр люминесценции раствора $POCl_3 - ZrCl_4 - Yb^{3+}$ (обр. № 1) при T = 78 К. 1 — экспериментальные данные, 2 — сумма разложений по гауссовым функциям, 3 — разложения по гауссовым функциям, 4 — линия, обусловленная наличием другого типа комплексов Yb³⁺.

Номер линии разло- жения	1			2			3				4				5					
Пара- метры	$\lambda_c,$ nm	w, nm	${{{\rm cm}}^{{{\rm v}}_{c}},}{{{\rm cm}}^{-1}}$	${\Delta v, \atop cm^{-1}}$	λ_c, nm nm	w, nm nm	${{ m v}_c}, {{ m cm}^{-1}}$	${\Delta \nu, \atop {\rm cm}^{-1}}$	$\lambda_c,$ nm	w, nm	${{{\rm cm}^{-1}}}$	${\Delta v, \atop {\rm cm}^{-1}}$	$\lambda_c,$ nm	w, nm	cm^{ν_c} , cm^{-1}	${\Delta v, \atop {\rm cm}^{-1}}$	$\lambda_c,$ nm	w, nm	${\scriptstyle {{{\scriptstyle v}_{c}},}\atop{{ m cm}^{-1}}}$	$\Delta v,$ cm ⁻¹
Образец № 1	933.7	12	10710	143	956.2	27	10458	296	976.5	8	10240	94	987.4	16	10128	164	1001.1	14	9989	143
Образец № 2	933.7	12	10710	143	956.4	26	10456	287	976.5	8	10240	94	988	15	10121	150	1001.2	14	9988	143

Таблица 1. Параметры функций Лоренца, описывающие наилучшим образом спектр поглощения образцов No 1 и No 2 при T = 293 K

Таблица 2. Параметры функций Лоренца, описывающие наилучшим образом спектры люминисценции образцов № 1 и № 2 при *T* = 293 K

Номер линии разло- жения	1			2			3				4				5					
Пара- метры	$\lambda_c,$ nm	w, nm	${{{\rm cm}}^{{{\rm v}}_{c}},}{{{\rm cm}}^{-1}}$	$\Delta \nu$, cm ⁻¹	λ_c, nm nm	w, nm nm	${{ u }_{c},}{{ m cm}^{-1}}$	${\Delta v, \atop {\rm cm}^{-1}}$	$\lambda_c,$ nm	w, nm	${{{\rm v}_c},\atop{{\rm cm}^{-1}}}$	$\Delta \nu$, cm ⁻¹	$\lambda_c,$ nm	w, nm	${\scriptstyle v_c,\ cm^{-1}}$	$\Delta \nu$, cm ⁻¹	$\lambda_c,$ nm	w, nm	$cm^{\nu_c},$ cm^{-1}	$\Delta \nu$, cm ⁻¹
Образец № 1	977.2	12	10233	126	988.6	20	10115	204	1002.5	19	9751	189	1014	19	9862	185	1029	13	9718	123
Образец № 2	977	11	10235	102	987.8	19	10123	220	1000	20	10000	230	1011.3	19	9888	205	1028.5	16	9723	146

Таблица 3. Параметры функций Гаусса, описывающие наилучшим образом спектр люминисценции образцов № 1 и № 2 при T = 78 K

Номер линии разло- жения	1			2			3				4				5					
Пара- метры	$\lambda_c,$ nm	w, nm	${{{\rm cm}}^{{{\rm v}}_{c}},}{{{\rm cm}}^{-1}}$	${\Delta v, \atop cm^{-1}}$	λ_c, nm nm	w, nm nm	${{{\rm cm}}^{{ m v}_c}},$	${\Delta v, \atop cm^{-1}}$	$\lambda_c,$ nm	w, nm	$\mathrm{cm}^{\nu_c},$ cm^{-1}	${\Delta v, \atop {\rm cm}^{-1}}$	$\lambda_c,$ nm	w, nm	$cm^{\nu_c},$ cm^{-1}	${\Delta v, \atop cm^{-1}}$	$\lambda_c,$ nm	w, nm	$cm^{\nu_c},$ cm^{-1}	${\Delta v, \atop {\rm cm}^{-1}}$
Образец № 1	977.4	8	10231	102	986.3	6	10139	74	995.5	8	10051	80	1005	11	9950	128	1021.7	19	9788	218
Образец № 2	981	13	10194	135	990	8	10101	82	996	6.8	10040	69	1005	11	9950	128	1022.8	18.8	9777	180

в шкале энергий. Сравнивая результаты аппроксимаций ЭСП образцов с разными концентрациями Yb³⁺, следует отметить очень хорошее согласие между ними. Первые три линии распределений (№№ 1, 2, 3 в табл. 1) с максимумами на $\lambda = 934$, 956 и 976.5 nm соответствуют переходам с основного подуровня состояния ${}^{2}F_{7/2}$ на штарковские подуровни состояния ${}^{2}F_{5/2}$. Небольшой пик с максимумом на $\lambda = 1001 \pm 1$ nm (№ 5 в табл. 1) можно приписать переходу $2 \rightarrow 5$ (рис. 2). Низкоинтенсивный

пик поглощения с максимум на $\lambda = 987 \pm 2$ nm сложно связать с каким-либо переходом между штарковскими подуровнями Yb³⁺. Однако известно, что в растворах на основе оксихлорида фосфора могут существовать несколько типов активных комплексов [2]. Возможно, что зарегистрированная в области максимального поглощения, соответствующего переходу 1 \rightarrow 5, малоинтенсивная полоса связана с поглощением света другими типами комплексов Yb³⁺ в POCl₃–ZrCl₄.

511

По аналогии с ЭСП были обработаны спектры люминесценции растворов POCl₃-ZrCl₄-Yb³⁺. Результаты разложения экспериментальных спектров люминесценции образца № 1 показаны на рис. 7 и 8. Спектр люминесценции, измеренный при комнатной температуре, так же как и ЭСП, лучше описывается суперпозицией разложений по функциям Лоренца (рис. 7). Данное обстоятельство свидетельствует об однородном уширении штарковских подуровней, которое может быть связано с динамическим возмущением энергетических уровней из-за колебаний молекул в активных комплексах, и в жидкости оно будет примерно одинаково для всех активных комплексов. Спектры люминесценции Yb³⁺, измеренные при температуре жидкого азота (рис. 8), лучше описываются распределениями Гаусса, что указывает на преимущественно неоднородное уширение штарковских подуровней основного состояния ${}^{2}F_{7/2}$. Действительно, в случае низких температур более важную роль начинает играть ближнее окружение активного иона. Незначительные изменения в симметрии окружения иона в разных комплексах приводят к небольшим энергетическим сдвигам в положении штарковских подуровней и как результат к неоднородному уширению суммарной линии перехода.

В табл. 2 и 3 приведены параметры аппроксимации спектров люминесценции суммой разложений по функциям Лоренца и Гаусса. Наибольший интерес представляют положения максимумов интенсивностей полос люминесценции λ_c и их ширина на полувысоте (дисперсия) w_c. Сравнивая положения максимумов полос люминесценции и их дисперсии для образцов с разными концентрациями Yb³⁺, можно отметить удовлетворительное согласие между описанием спектров люминесценции образцов № 1 и № 2, измеренных при комнатной температуре (табл. 2). Для образца № 1 результаты аппроксимации спектра люминесценции, измеренного при $T = 78 \,\mathrm{K}$ (табл. 3), хорошо согласуются с аналогичными данными, полученными при комнатной температуре. Для образца № 2 результаты аппроксимации спектров люминесценции, измеренных при комнатной температуре и при T = 78 K, существенно различаются, особенно сильно искажен низкотемпературный спектр в области 974-978 nm, что можно объяснить возросшим перепоглощением света из-за увеличения населенности подуровня 1.

Следует отметить, что в ЭСП и в спектрах люминесценции, измеренных как при комнатной температуре, так и при температуре жидкого азота, вблизи перехода 5 \leftrightarrow 1 λ = 977 \pm 1 nm обнаружена дополнительная полоса невысокой интенсивности, смещенная примерно на 10 \pm 2 nm (110 \pm 10 cm⁻¹) в ИК область. Как отмечалось выше, в растворах оксихлорида фосфора трехвалентные ионы лантанидов образуют сложные комплексы с продуктами взаимодействия кислоты Льюиса и РОСl₃. Так, в растворах активированных неодимом, было выявлено и изучено несколько типов активных центров с сильно различающимся ближайшим окружением [2].

Таблица 4. Населенности и энергии подуровней состояния ${}^{2}F_{7/2}$ иона Yb³⁺ в POCl₃-ZrCl₄-Yb³⁺

Номер	T = 29	93 K	$T = 78 \mathrm{K}$					
подуровней	E_i , cm ⁻¹	N_i/N_t	E_i , cm ⁻¹	N_i/N_t				
1	0	0.6645	0	0.9661				
2	265	0.1809	190	0.0290				
3	380	0.1029	290	$4.6 \cdot 10^{-3}$				
4	520	0.0517	450	$2.4\cdot 10^{-4}$				

Обнаруженная дополнительная полоса в спектрах поглощения и люминесценцииYb³⁺ в POCl₃-ZrCl₄ может быть объяснена наличием не менее двух типов активных центров с различающимся ближайшим окружением.

Полученные экспериментальные данные были использованы для определения положения штарковских подуровней Yb³⁺ в POCl₃-ZrCl₄-Yb³⁺. Энергию верхнего состояния ${}^{2}F_{5/2}$ и его штарковских подуровней определили непосредственно из ЭСП (табл. 1). Энергию штарковских подуровней основного состояния ²*F*_{7/2} получили, используя ЭСП и результаты обработки спектров люминесценции Yb³⁺ для образцов № 1 и № 2, измеренных при комнатной температуре (табл. 2) и при температуре жидкого азота (табл. 3). Для температуры жидкого азота расчеты были сделаны только для образца № 1, поскольку, как отмечалось выше, спектр люминесценции образца № 2 при T = 78 K был искажен из-за высокой концентрации Yb³⁺. Для расчетов энергию подуровня 5 верхнего состояния ²F_{5/2} брали из ЭСП. Как можно видеть в табл. 1-3, длина волны поглощения и люминесценции основного перехода $5 \rightarrow 1$ практически не зависит от температуры образца. Поэтому для расчетов энергию уровня 5 полагали равной 10240 cm⁻¹ для всех люминесцентных переходов как при комнатной, так и при температуре жидкого азота.

Результаты расчета энергии подуровней основного состояния ${}^{2}F_{7/2}$ представлены в табл. 4. Установлено, что энергия штарковских подуровней $2 \rightarrow 4$ при температуре жидкого азота на $70-90\,\mathrm{cm}^{-1}$ меньше, чем при комнатной температуре. В табл. 4 приведены в относительных единицах населенности всех подуровней основного состояния ${}^{2}F_{7/2}$, рассчитанные по формуле (3). Из табл. 4 видно, что при T = 78 К населенности подуровней 2-4 меньше, а населенность подуровня 1 намного больше, чем при T = 293 К. Такое изменение населенностей подуровней приводит к изменению вероятности спонтанного излучения на эти подуровни, а именно, вероятность излучения на подуровни 2-4 возрастает, а на подуровень 1 резко падает. По-видимому, перераспределение населенностей нижних подуровней в наибольшей степени влияет на изменения в спектральной зависимости интенсивности люминесценции Yb³⁺ в POCl₃-ZrCl₄ при разных температурах среды. Следует обратить внимание и на то, что существенные изменения

Рис. 9. Спектральная зависимость сечения излучения Yb³⁺ в POCl₃-ZrCl₄. Непрерывная линия — эксперимент, точки — расчет.

населенностей штарковских подуровней состояния ${}^{2}F_{7/2}$ при T = 78 и 293 К и увеличивающаяся с нагревом среды энергия теплового движения атомов в жидкости могут приводить к различиям во взаимодействии ионов иттербия с ближайшим окружением и, как следствие, к небольшим сдвигам в положении штарковских подуровней, которые были замечены в наших экспериментах.

Для определения сечений вынужденного излучения был использован метод взаимности Мак Камбера [9], который часто применяется для расчета сечений в двухуровневых системах и дает удовлетворительные результаты [10–13]. В этом методе устанавливается связь между сечениями излучения σ_e и поглощения σ_a в терминах энергетических уровней E_k и их вырождений d_k . В нашем случае выражение для расчета σ_e имеет следующий вид:

$$\sigma_e(\nu) = \sigma_a(\nu) \frac{Z_l}{Z_u} \exp\left(\frac{(E_i - E_j)}{kT}\right),\tag{6}$$

где

$$Z_l = \sum_{k=1}^4 d_k \exp\left(-\frac{E_k}{kT}\right)$$

И

$$Z_u = \sum_{k=5}^{7} d_k \exp\left(-\frac{E_k}{kT}\right).$$

Здесь Z_l и Z_u — статистические суммы верхнего и нижнего состояний соответственно.

При комнатной температуре образца сечение излучения в максимуме $\sigma_e(976.5 \text{ nm}) = 1.51 \cdot 10^{-20} \text{ cm}^2$. На рис. 9 приведены результаты расчета σ_e по формуле (6) для нескольких длин волн и экспериментально полученная спектральная зависимость сечения излучения Yb³⁺ в POCl₃-ZrCl₄. Можно отметить вполне удовлетворительное согласие расчета с экспериментальными данными.

Излучательное время жизни Yb³⁺ в POCl₃–ZrCl₄ рассчитывали с учетом связи сечения излучения с вероятностью спонтанного перехода между энергетическими уровнями с использованием формулы Фюхтбауэра–Ладенбурга (ФЛ) для линии люминесценции, имеющей лоренцеву форму [14]:

$$\tau_{\rm rad} = \left(\sum_{i=1}^4 A_{5i}\right)^{-1},\tag{7}$$

где

$$A_{5i} = 4\pi^2 n^2 c \frac{\Delta \nu_{5i} \sigma_{5i}}{\lambda_{5i}^2}.$$

В этом выражении A_{5i} — вероятность излучательного перехода с подуровня 5 возбужденного состояния ${}^2F_{5/2}$ на нижележащие *i*-подуровни основного состояния ${}^2F_{7/2}$, n — коэффициент преломления среды, c — скорость света, σ_{5i} — сечение вынужденного излучения, λ_{5i} длина волны и Δv_{5i} — ширина линии излучения. Рассчитанное излучательное время жизни Yb³⁺ в POCl₃–ZrCl₄ $\tau_{rad} = 1125 \,\mu$ s.

Экспериментально время затухания люминесценции Yb^{3+} было измерено на τ -метре. Временные зависимости интенсивности люминесценции Yb^{3+} при импульсном облучении образцов показаны на рис. 10. Затухание люминесценции хорошо аппроксимируется одной экспоненциальной функцией как для образца № 1, так и для образца № 2. Время затухания τ для образцов № 1 и № 2 составило 1090 и 1650 μ s соответственно. Следует отметить, что хорошее совпадение экспериментального τ и расчетного τ_{rad} для образца № 1 указывает на высокое качество приготовленного раствора. Для образца № 2 измеренное τ значительно больше расчетного

Рис. 10. Временные зависимости интенсивности люминесценции растворов $POCl_3 - ZrCl_4Yb^{3+}$. $[Yb^{3+}] = 0.123$ (1) и 0.276 mol/l (2).

Рис. 11. Спектральная зависимость линейного коэффициента усиления — поглощения среды $POCl_3 - ZrCl_4 - Yb^{3+}$ при $\beta = 0.2$ (1), 0.3 (2), 0.5 (3), 0.65 (4), 0.75 (5). Концентрация иттербия — $1.66 \cdot 10^{20}$ cm⁻³.

 $\tau_{\rm rad}$, что связано, скорее всего, с перепоглощением света из-за большой концентрации Yb³⁺.

И, наконец, для оценки возможности получения генерации представляет интерес определить спектральную зависимость линейного коэффициента усиления $K(\lambda)$ исследуемых растворов в условиях накачки Yb³⁺:

$$K(\lambda) = k_{\rm amp} - k_{\rm abs} = N_u \sigma_e(\lambda) - N_l \sigma_a(\lambda),$$

где k_{amp} и k_{abs} — линейные коэффициенты усиления и поглощения, N_u и N_l — населенности всех штарковских подуровней возбужденного ${}^2F_{5/2}$ и основного ${}^2F_{7/2}$ состояний в процессе накачки среды, $\sigma_a(\lambda)$ сечение поглощения, $\sigma_e(\lambda)$ — сечение вынужденного излучения. Введя безразмерный коэффициент $\beta = N_u/N_t$ и заменяя N_l на $(N_t - N_u)$, получаем выражение для расчета линейного коэффициента усиления в следующем виде:

$$K(\lambda) = N_t [\beta (\sigma_e(\lambda) + \sigma_a(\lambda)) - \sigma_a(\lambda)].$$

Здесь N_t — концентрация Yb³⁺ в лазерной жидкости. Зная N_t и привлекая спектральные зависимости для сечений $\sigma_e(\lambda)$ и $\sigma_a(\lambda)$, рассчитали спектральные зависимости $K(\lambda)$ для различных значений β (рис. 11). На рис. 11 видно, что, начиная с $\beta > 0.2$, усиление становится больше поглощения в области $\lambda = 1000-1040$ nm. С ростом $\beta K(\lambda)$ растет, расширяется и смещается в коротковолновую область. С увеличением мощности накачки в коротковолновую область смещается также и максимум $K(\lambda)$. При $\beta > 0.5$ область усиления расширяется от 980 до 1040 nm, что указывает на возможность создания на этой среде перестраиваемых лазеров с диодной накачкой. Таким образом, большой коэффициент усиления в широкой области длин волн делает перспективными среды на POCl₃–ZrCl₄–Yb³⁺ для изготовления прокачных жидкостных лазеров с диодной накачкой, работающих при комнатной температуре.

Заключение

Измерены и проанализированы спектральные зависимости поглощения и люминесценции Yb³⁺ в растворах POCl₃-ZrCl₄-Yb³⁺. Исследована структура штарковских подуровней основного состояния ²F_{7/2} при комнатной температуре и при температуре жидкого азота. В замороженных растворах обнаружен энергетический сдвиг штарковских подуровней в сторону меньших энергий на 70-90 cm⁻¹ по сравнению с энергией подуровней в жидких растворах. Получены экспериментальные данные о сечениях поглощения и вынужденного излучения переходов ${}^2F_{7/2} \leftrightarrow {}^2F_{5/2}$. Сечения в максимумах составили: $\sigma_a(976.5\,\mathrm{nm}) = 1.46\cdot 10^{-20}\,\mathrm{cm}^2$ и $\sigma_e(976.5\,\mathrm{nm}) = 1.51 \cdot 10^{-20}\,\mathrm{cm}^2$. По полученным данным рассчитаны спектральные зависимости коэффициента усиления для разных значений относительной заселенности верхнего возбужденного уровня ${}^{2}F_{5/2}$. Установлено, что спектры коэффициента усиления для растворов POCl₃-ZrCl₄-Yb³⁺ зависят от плотности накачки и представляют собой широкую полосу от 980 до 1050 nm.

Таким образом, генерация на неорганических жидкостях POCl₃–ZrCl₄–Yb³⁺ с использованием диодной накачки при комнатной температуре может быть получена на переходе ${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$ в области 980–1040 nm. Для эффективной генерации необходимо обеспечить высокие плотности энергии накачки и равномерную прокачку лазерной жидкости через резонатор.

Список литературы

- [1] Глухих И.В., Димаков С.А., Курунов Р.Ф., Поликарпов С.С., Фролов С.В. // ЖТФ. 2011. Т. 81. № 8. С. 70.
- [2] Аникиев Ю.Г., Жаботинский М.Е., Кравченко В.Б. Лазеры на неорганических жидкостях. М.: Наука, 1986. 248 с.
- [3] Ault Earl R., Comaskey Brian J., Kuklo Thomas C. High Average Power Laser Using a Transverse Flowing Liquid Host: U.S. Patent 6600766 B1. 2003.
- [4] Zheng X., Yi S., Chunling L., Mi L., Xiufang X., Liqing L., Yali W., Feng Y., Deyong W., Jianfeng J., Bo T., Wenqiang L(U). // High Power Laser and Particle Beams. 2006. V. 18. N 12. P. 1941.
- [5] Zheng X., Mi L., Chunling L., Yali W. // Acta Optica Sinica. 2010. V. 30. N 9. P. 2620.
- [6] Mi L., Yali W., Chunling L., Jiao W., Liqing L. // Acta Optica Sinica. 2011. V. 31. N 2. P. 135.
- [7] Boulon G. // J. All. Comp. 2008. V. 451. P. 1.
- [8] Тихонов Г.В., Бабкин А.С., Серёгина Е.А., Серёгин А.А. // Неорг. матер. 2017. Т. 53. № 10. С. 1122. doi 10.7868/S0002337X17100165; Tikhonov G.V., Babkin A.S., Seregina E.A., Seregin A.A. // Inorg. Mater. 2017. V. 53. N 10. Р. 1097. doi 10.1134/S0020168517100168
- [9] McCumber D. E. // Phys. Rev. 1964. V. 136. P. A954.

515

- [10] DeLoach Laura D., Payne Stephen A., Chase L.L., Smith Larry K., Kway Wayne L., Krupke William F. // IEEE J. Quant. Electron. 1993. V. 29. N 4. P. 1179.
- [11] Мелькумов М.А., Буфетов И.А., Кравцов К.С., Шубин А.В., Дианов Е.М. // Квант. электрон. 2004. Т. 34. № 9. С. 843.
- [12] Шукшин В.Е. // Труды ИОФ им. А.М. Прохорова РАН. 2008. Т. 64. С. 3.
- [13] Демеш М.П., Гусакова Н.В., Ясюкевич А.С., Кулешов Н.В., Григорьев С.В., Крот Ю.А., Космына М.Б., Шеховцов А.Н. // Приборы и методы измерений. 2015. Т. 6. № 2. С. 211.
- [14] Каменский А.А. Лазерные кристаллы. М.: Наука, 1975. 256 с.