01

Исследование переходного состояния и динамики фотохимических трансформаций молекул хромонов

© С.В. Гагарский¹, Е.П. Гребенников², В.В. Кийко¹, К.С. Левченко², А.Н. Сергеев¹, Я.Ю. Фомичева^{1,¶}, К. Oberhofer³, Н. Iglev³

¹ Университет ИТМО, 197101 Санкт-Петербург, Россия ² ЦНИТИ "Техномаш", 121108 Москва, Россия ³ Technical University of Munich, 80333 Munich, Germany ¶ e-mail: afuerra@gmail.com:

Поступила в Редакцию 16.05.2018 г.

Представлены результаты исследования динамики фотопреобразования молекул хромонов методом спектроскопии переходного состояния. Измерены спектры изменения оптической плотности раствора соединений хромонов в толуоле в процессе фототрансформации в диапазоне сотен fs-сотен ps. Релаксация наведенного спектра поглощения описывается двухэкспоненциальной функцией с характерными временными постоянными порядка единиц пикосекунд и единиц наносекунд. Предложена схема динамики фототрансформации молекул хромонов, соответствующая наблюдаемой динамике спектров поглощения.

DOI: 10.21883/OS.2018.10.46695.131-18

Введение

Светочувствительные органические соединения класса хромонов представляют интерес как с точки зрения изучения их фундаментальных свойств, так и для прикладных задач разработки систем оптической записи и хранения информации, в том числе для разработки многослойных флуоресцентных дисков [1]. Такие соединения при воздействии УФ излучения с длиной волны в области 250-350 nm необратимо преобразуются из исходного нелюминесцирующего состояния А в стабильную форму С через короткоживущее состояние В (рис. 1, а) [2,3]. У полученной в результате преобразования формы С появляется полоса поглощения в спектральной области 400-500 nm. При воздействии излучением в этой области спектра, преобразованные молекулы хромонов люминесцируют. В результате селекции по комплексу показателей, включая долговременную химическую и фотостабильность, а также квантовым выходам фотохимической реакции, из различных синтезированных соединений этого класса было выделено соединение 2-(фуран-2-ил)-3-(тиофен-2-карбонил)хромен-4-он (LHC-480) [2].

Соответствующие спектры поглощения в исходном и трансформированном состоянии, а также спектр люминесценции для формы C представлены на рис. 1, b.

Для практических применений [1] особый интерес представляет использование нелинейного режима записи. В работах [4,5] были приведены результаты измерения порогов нелинейной записи люминесцентных меток в соединениях хромонов, а также исследованы некоторые люминесцентные свойства этих соединений. Более детальное исследование механизмов и динамики фототрансформации молекул позволит выбрать оптимальные параметры записывающего источника лазерного излучения, а также сформулировать требования для модификации самих светочувствительных соединений и их свойств.

Одним из методов измерения быстрой (с разрешением до сотен фемтосекунд [6,7]) динамики фототрансформации молекул является спектроскопия переходного состояния, в частности спектроскопия поглощения, в которой измеряется быстрая динамика спектров поглощения образца ("pump-probe" спектроскопия). Такой метод широко используется для исследования динамики преобразования светочувствительных молекул [6–15].

Методика эксперимента

Схема экспериментальной установки приведена на рис. 2. Источником фемтосекундных импульсов являлся титан-сапфировый лазер с регенеративным усилителем "СРА-2010 Clark MXR". Длительность импульса составляла 150 fs, энергия — 900 µJ, центральная длина волны — 799 nm. Частота повторения импульсов составляла 1 kHz.

Излучение титан-сапфирового лазера разделялось на два канала. В одном канале формировался импульс возбуждения, инициирующий процессы фотопреобразования в молекуле, во втором — зондирующий импульс.

Для формирования импульса возбуждения излучение титан-сапфирового лазера проходило через оптический параметрический преобразователь (NOPA I, HORIBA SCIENTIFICN), обеспечивающий перестройку длины

Рис. 1. Трансформация соединения LHC-480 при воздействии УФ излучения (*a*). Спектры соединения LHC-480: *1* — спектр поглощения для состояния *A*; *2* — спектр поглощения для состояния *C*; *3* — спектр люминесценции для состояния *C* (*b*).

Рис. 2. Схема экспериментальной установки.

волны в диапазоне 550–1500 nm. Компрессор обеспечивал сокращение длительности фемтосекундного импульса до 30–50 fs. Для получения возбуждающего импульса в УФ диапазоне спектра использовался кристалл второй гармоники (BBO) толщиной 100 µm. Длительность полученного возбуждающего импульса составляла 50 fs, энергия в импульсе — 200 nJ, длина волны — 320 nm.

Во втором канале с помощью параметрического преобразователя (NOPA II, TOPAS LIGHT CONVERSION) формировался импульс с длиной волны 1500 nm и длительностью около 50 fs. Полученное излучение фокусировалось в сапфировую пластину толщиной 3 mm для формирования излучения суперконтинуума (WLC), перекрывающего диапазон длин волн от 450 до 1000 nm. Полученное излучение суперконтинуума использовалось в качестве зондирующего импульса. Линия задержки (Delay) обеспечивала смещение зондирующего импульса относительно возбуждающего в диапазоне от сотен фемтосекунд до 500 ps. С помощью эталонов обеспечивалась перестройка задержки в диапазоне до 10 ps, в большем диапазоне (до 500 ps) — с помощью механической линии задержки.

Зондирующий импульс разделялся на опорный и сигнальный каналы. Пропускание образца регистрировалось с помощью спектрометра (Horiba Scientific).

В качестве образца использовался раствор молекул хромонов в толуоле с концентрацией 5 wt.%. Раствор помещался в прокачиваемую кварцевую кювету толщиной 1 mm.

Результаты эксперимента и их обсуждение

Измерение спектров переходного состояния проводилось в два этапа. На первом этапе измерялась динамика спектров поглощения в диапазоне изменения задержек до 10 ps.

На рис. З представлены спектры изменения оптической плотности ΔOD образца для различных значений задержки между возбуждающим и зондирующим импульсами. Значение задержки — 1 рs соответствует начальному значению ΔOD , т.е. значению до момента воздействия возбуждающего импульса. Для полученных зависимостей достоверными являются значения в области длин волн 450–1000 nm, где соответствующие значения ΔOD близки к нулю.

На полученных спектрах видны характерные пики поглощения в области 450-500 nm и широкой полосы в области 600-1000 nm.

В течение первой пикосекунды происходит быстрая релаксация пика поглощения области 450–500 nm. В диапазоне задержек от 1 до 3 ps наблюдается смещение положения пика поглощения в более длинноволновую область.

На втором этапе эксперимента измерялась динамика спектров поглощения в большем диапазоне изменения задержек (до 500 ps), но с меньшим временным разрешением. Соответствующие зависимости приведены на рис. 4.

Как видно, на приведенных зависимостях наблюдается медленное продолжение релаксации спектров ΔOD . Характерных изменений в форме спектра не наблюдается.

На рис. 5 показаны экспериментально полученные зависимости изменения оптической плотности от времени задержки для различных длин волн и их аппроксимация двухэкспоненциальной функцией (1):

$$\Delta OD(t) = A_1 \exp\left(-\frac{t}{\tau_1}\right) + A_2 \exp\left(-\frac{t}{\tau_2}\right), \qquad (1)$$

где τ_1 , τ_2 — временные постоянные релаксации.

В таблице приведены постоянные времени для различных длин волн. Характерные значения постоянных релаксации для большинства длин волн близки и составляют ~ 1.5 ps для быстрой компоненты и ~ 1.5 ns для медленной. Существенное отличие в значениях постоянных релаксации наблюдается лишь для длины волны 500 nm, т. е. в области, где наблюдается смещение положения пика поглощения на спектрах ΔOD .

Для описания наблюдаемой динамики спектров может быть предложена схема возбуждения и трансформации молекул хромонов, энергетическая диаграмма для которой приведена на рис. 6. Поскольку в течение первой пикосекунды после возбуждения молекулы в спектрах наблюдается только релаксация наведенного при возбуждении поглощения, а в диапазоне от 1–1.5 до 3–5 рѕ происходит смещение пика поглощения в

Рис. 3. Зависимость изменения оптической плотности (ΔOD) от длины волны для задержек до 10 ps.

Рис. 4. Зависимость изменения оптической плотности (ΔOD) от длины волны для задержек до 500 рs.

Рис. 5. Зависимость изменения оптической плотности (ΔOD) от задержки для различных длин волн.

Рис. 6. Предполагаемая энергетическая диаграмма динамики трансформации молекул хромонов LHC480.

Постоянные времени релаксации наведенных спектров поглощения

Длина волны, nm	$ au_1\mathrm{ps}$	$ au_2\mathrm{ps}$
500	4.99	2670
600	1.44	1647
650	1.32	1673
700	1.32	1698
750	1.31	1784
800	1.14	1375

спектре, можно предположить существование некоторого потенциального барьера в возбужденном состоянии молекулы, на преодоление которого нужно время. Поэтому в течение 1–1.5 ps мы видим релаксацию без каких-либо смещений.

После преодоления потенциального барьера наблюдается смещение пика поглощения в длинноволновую область, что можно связать с релаксацией электрона к новому минимуму потенциальной энергии. Данному возбужденному состоянию молекулы можно поставить в соответствие промежуточное состояние молекулы *В* (рис. 1).

В дальнейшем с постоянной времени ~ 1.5 ns наблюдается релаксация спектров поглощения возбужденного состояния, соответствующая переходу молекулы в конечное флуоресцирующее состояние *C*.

Описанной динамике, предположительно, соответствуют следующие процессы в молекуле: после возбуждения внешних электронов фотонами светового импульса накачки начинается процесс трансформации возникает перераспределение электронной плотности и происходит разрыв химической связи в одном из колец исходной молекулы хромона. Данный процесс происходит в течение единиц пикосекунд. После разрыва связи молекула переходит в нестационарное состояние *B*: изменившееся распределение электронной плотности инициирует изменение обобщенной координаты молекулы, т.е. смещение ядер в молекуле к новым положениям, соответствующим минимуму потенциальной энергии, и развороту цепочки в молекуле в течение временного промежутка порядка единиц наносекунд.

Заключение

В настоящей работе были измерены спектры поглощения переходного состояния молекул хромонов LHC-480 с временным разрешением до сотен фемтосекунд при возбуждении импульсом излучения с длиной волны 320 nm. Динамика релаксации наведенных спектров поглощения описывается двухэкспоненциальной функцией с временными постоянными порядка 1.5 ps и 1.5 ns.

В области 450-500 nm наблюдается характерное смещение пика поглощения в более длинноволновую область в диапазоне задержек между зондирующим и возбуждающим импульсами от 1 до 5 ps. Для наблюдаемой динамики спектров поглощения была предложена модель процесса трансформации молекулы и соответствующее схематичное изображение энергетической диаграммы. В предложенной модели временам порядка пикосекунд соответствует разрыв связи в одном из углеродных колец и переход молекулы в нестационарное возбужденное состояние В с изменившемся распределением электронной плотности. В возбужденном состоянии атомы в молекуле смещаются к новым положениям с минимум потенциальной энергии, и в результате в течение времени порядка единиц наносекунд происходит трансформация молекулы в конечное люминесцирующее состояние.

Дополнительную информацию о динамике фотопреобразования, в том числе при двухфотонном возбуждении молекулы, позволят получить дополнительные эксперименты методами "pump-repump-probe" спектроскопии, в которой используются два независимых возбуждающих импульса, с одновременной регистрацией сигнала люминесценции молекулы в процессе фотопреобразования.

Список литературы

- [1] Kiyko V.V. Patent US8455079 B2 USA. 2013.
- [2] Krayushkin M., Levchenko K., Yarovenko V. // ARKIVOC. 2009.
- [3] Martynov I.Y., Barachevsky V.A., Ayt A.O., Kobeleva O.I., Valova T.M., Levchenko K.S., Yarovenko V.N., Krayushkin M.M. // Opt. Mater. (Amst). 2014. V. 37. P. 488–492. doi 10.1016/j.optmat.2014.07.011
- [4] Ayt A., Barachevsky V.A., Kobeleva O.I., Valova T.M., Gagarskiy S.V, Kiyko V.V, Sergeev A.N., Veniaminov A.V, Zakharov V.V, Krayushkin M., Iglev H. // 2014 International Conference Laser Optics. 2014. P. 1. doi 10.1109/LO.2014.6886252

- [5] Ayt A.O., Barachevsky V.A., Duensing A., Fomicheva Y.Y., Gagarskiy S.V, Iglev H., Kiyko V.V, Krayushkin M.M., Sergeev A.N., Veniaminov A.V, Zakharov V.V // Opt. Quantum Electron. 2017. V. 49, N 2. P. 72. doi 10.1007/s11082-017-0900-3
- [6] Ishibashi Y, Fujiwara M, Umesato T, Saito H, Kobatake S, Irie M, Miyasaka H. // J. Phys. Chem. C. 2011. V. 115. N 10.
 P. 4265–4272. doi 10.1021/jp112370a
- [7] Ward C.L., Elles C.G. // J. Phys. Chem. A. 2014. V. 118. N 43.
 P. 10011–10019. doi 10.1021/jp5088948
- [8] Irie M., Sayo K. // J. Phys. Chem. 1992. V. 96. N 19. P. 7671– 7674. doi 10.1021/j100198a035
- [9] Hiroshi M., TaNahiro N., Masataka M., Akira I., Tamai N., Irie M. // J. Phys. Chem. A. 2002. V. 106. N 35. P. 8096–8102. doi 10.1021/JP0206626
- [10] Miyasaka H., Ito S., Ishibashi Y. // Photon-Working Switches.
 2017. P. 225–235. doi 10.1007/978-4-431-56544-4_11
- [11] Fukaminato T., Doi T., Tanaka M., Irie M. // J. Phys. Chem. C. 2009. V. 113. N 27. P. 11623–11627. doi 10.1021/jp902880d
- [12] Shim S., Eom I., Joo T., Kim E., Kim K.S. // J. Phys. Chem. A. 2007. doi 10.1021/JP0715528
- [13] Tamai N., Miyasaka H. // Chem. Rev. 2000. V. 100. N 5.
 P. 1875–1890. doi 10.1021/cr9800816
- [14] Murakami M., Miyasaka H., Okada T., Kobatake S., Irie M. // J. Am. Chem. Soc. 2004. V. 126. N 45. P. 14764–14772. doi 10.1021/ja049177+
- [15] Ishibashi Y., Mukaida M., Falkenström M., Miyasaka H., Kobatake S., Irie M. // Phys. Chem. Chem. Phys. 2009. V. 11. N 15. P. 2640. doi 10.1039/b818591c