13,05

Детекторы циркулярно-поляризованного излучения на основе полупроводниковых гетероструктур с барьером Шоттки CoPt

© А.В. Кудрин^{1,2}, А.В. Здоровейщев^{1,2}, О.В. Вихрова¹, М.В. Дорохин^{1,2}, И.Л. Калентьева¹, П.Б. Дёмина¹

¹ Научно-исследовательский физико-технический институт
Нижегородского государственного университета им. Н.И. Лобачевского,
Нижний Новгород, Россия
² Физический факультет Нижегородского государственного университета им. Н.И. Лобачевского,
Нижний Новгород, Россия

E-mail: kudrin@nifti.unn.ru

Показана возможность практической реализации детекторов циркулярно-поляризованного излучения на основе планарного фоторезистора, использующего эффект магнито-циркулярного дихроизма в слое CoPt, а также на основе структур, использующих эффект спиновой фильтрации слоем CoPt фотогенерированных поляризованных по спину носителей заряда. Установлено, что процесс спиновой фильтрации позволяет увеличить эффективность детектирования до 1.3%.

Работа выполнена в рамках реализации государственного задания — проект № 8.1751.2017/ПЧ Минобрнауки России и при поддержке РФФИ (гранты №17-37-80008_мол_эв_а, 16-07-01102_а).

DOI: 10.21883/FTT.2018.11.46669.11NN

1. Введение

Приборы на основе спин-зависимых эффектов являются важной составляющей современной полупроводниковой технологии. Одним из базовых элементов спинтроники является детектор циркулярно-поляризованного излучения (ЦПИ) — прибор, реализующий связь электрической величины (тока или напряжения) со знаком и степенью поляризации света при фиксированном магнитном поле [1]. Такие детекторы могут быть частью системы оптической передачи данных в электронно-оптических интегральных схемах.

Одним из основных направлений по созданию детекторов циркулярно-поляризованного излучения является использование систем "ферромагнитный металл/полупроводниковая структура". Анализ работ, описывающих конструкцию фотодетекторов, показывает, что большинство из них сформировано на основе полупроводниковых структур A_3B_5 , а в качестве ферромагнитного слоя в основном используются металлические материалы, для которых установлена возможность эффективной спиновой инжекции (Fe, NiFe, CoFe, CoFeB) [2–4].

Ранее нами была предложена планарная конструкция детектора ЦПИ на основе МДП-структуры с ферромагнитным слоем CoPt [5]. Металлический сплав CoPt сохраняет ферромагнитные свойства при комнатной температуре, имеет ось легкого намагничивания, расположенную перпендикулярно поверхности структуры и обладает остаточной намагниченностью, близкой по величине к намагниченности насыщения [6].

МДП-структура состояла из проводящего слоя $In_xGa_{1-x}As$ (x = 0.1-0.15), сформированного методом

МОС-гидридной эпитаксии (МОСГЭ) на пластине полуизолирующего GaAs, слоев комбинированного диэлектрика Al₂O₃/SiO₂ и сплава CoPt [5]. Относительно толстый (200 nm) слой диэлектрика между слоем InGaAs и пленкой CoPt обеспечивал электрическую изоляцию относительно высокоомного полупроводника от металлического сплава CoPt. При этом детектор функционировал в режиме фотосопротивления. Количество фотогенерированных носителей заряда в слое InGaAs при облучении светом с левой и правой циркулярной поляризацией было пропорционально коэффициенту пропускания слоя CoPt для левой и правой поляризации света (эффект магнито-циркулярного дихроизма — МЦД). Следовательно, продольное сопротивление слоя InGaAs было различно при облучении светом с разным знаком циркулярной поляризации.

В настоящей работе представлены: 1) результаты дальнейшего развития конструкции детектора типа фоторезистора; 2) результаты создания фотодетектора циркулярно-поляризованного излучения, функционирующего с использованием эффекта спиновой фильтрации.

2. Методика эксперимента

Изготовление структур для детекторов было реализовано в два этапа. Полупроводниковые слои: буфер GaAs (толщиной ≈ 100 nm) и слой $\ln_x Ga_{1-x} As (x = 0.1-0.15)$ толщиной 200–250 nm, формировались на подложках GaAs методом МОСГЭ при 600°С. Диэлектрический слой Al₂O₃ (около 2 nm) и металлический сплав Co_{0.45}Pt_{0.55} (8 nm) были изготовлены в едином ростовом цикле с применением метода электронно-лучевого ис-

0.6

парения (ЭЛИ) в вакууме при температуре 200–400°С. Диэлектрические и металлические слои наносились через специальную маску, затем с использованием фотолитографии и химического травления полупроводниковых слоев формировались образцы двух типов: 1) детектор циркулярно-поляризованного излучения типа фоторезистора на подложках *i*-GaAs; 2) детектор циркулярно-поляризованного излучения, функционирующий с использованием эффекта спиновой фильтрации на подложках $n^+(p^+)$ -GaAs.

Эффективность детектирования ЦПИ ($D_{\rm Eff}$) определялась по разнице в падении напряжения на омических контактах детекторов при освещении 100% лево- (V_L) или право-поляризованным (V_R) излучением: $D_{\rm Eff} = 100\% \cdot (V_L - V_R)/(V_L + V_R)$. В качестве источника света использовалась галогенная лампа накаливания. Направление циркулярной поляризации излучения определяло положение четвертьволновой пластины. Структура помещалась в магнитное поле напряженностью до $H = \pm 1900$ Ое, ориентированное перпендикулярно плоскости детекторов. Дополнительно проводились измерения вольт-амперных характеристик (BAX) структур. Все исследования проведены при комнатной температуре.

3. Экспериментальные результаты

В процессе исследований было установлено, что для создания детектора циркулярно-поляризованного излучения на основе фоторезистивной структуры диэлектрик между проводящим полупроводниковым слоем (в частности InGaAs) и слоем CoPt может быть значительно тоньше, чем ранее нами использованный слой комбинированного диэлектрика Al₂O₃/SiO₂/Al₂O₃ общей толщиной $\sim 200\, nm$ [5]. При нанесении слоя CoPt на полупроводниковый слой (InGaAs или GaAs) через тонкий диэлектрический слой Al₂O₃ (около 2 nm) формируется барьер Шоттки, который предотвращает утечку тока из полупроводникового слоя в слой CoPt. Кроме того, диэлектрический слой в этом случае предотвращает диффузию Со в полупроводник. На вставке к рис. 1 представлена подтверждающая наличие барьера Шоттки ВАХ структуры CoPt (8 nm)/ Al₂O₃ (2 nm)/In_{0.1}Ga_{0.9}As (200 nm)/*i*-GaAs, измеренная при комнатной температуре при создании разности потенциалов между слоем CoPt площадью 32 mm² и слоем InGaAs ($n_v = 5 \cdot 10^{16} \, {\rm cm}^{-3}$). Магнитополевая зависимость эффективности детектирования ЦПИ, полученная для фоторезистивной структуры при комнатной температуре (длина волны 632.8 nm) приведена на рис. 1. Видно, что максимальная величина $D_{\text{Eff}}(H)$ для детектора данного типа, определяемая эффектом магнито-циркулярного дихроизма в слое CoPt, составляет $\sim 0.5\%$.

Эффективность детектирования циркулярно-поляризованного излучения может быть увеличена путем использования дополнительно к эффекту МЦД эффекта

Рис. 1. Магнитополевые зависимости эффективности детектирования ЦПИ для фоторезистивного детектора CoPt (8 nm)/ Al₂O₃ (2 nm)/In_{0.1}Ga_{0.9}As(200 nm)/*i*-GaAs. На вставке приведена ВАХ при создании разности потенциалов между контактом CoPt площадью 32 mm² и слоем InGaAs ($n_v = 5 \cdot 10^{16}$ cm⁻³).

спиновой фильтрации. Данный процесс определяется зависимостью величины тока фотогенерированных спинполяризованных носителей заряда от намагниченности металлического слоя CoPt. При облучении циркулярно-поляризованным светом в объеме полупроводника генерируются спин-поляризованные носители заряда. Эти носители притягиваются к области ферромагнитного металлического контакта электрическим полем потенциального барьера. Прохождение спин-поляризованных носителей через такой контакт зависит от направления его намагниченности, которая управляется внешним магнитным полем. Таким образом, с помощью магнитного поля осуществляется управление сигналом фотодиода, содержащего ферромагнитный слой в качестве спинового фильтра.

Формирование барьера Шоттки в структуре CoPt/ Al₂O₃/InGaAs(GaAs)/ $n^+(p^+)$ GaAs позволило создать детектор циркулярно-поляризованного излучения с поперечным протеканием тока. Схематичное изображение структуры для фотодетектора приведено на рис. 2, *а.* Измерение вольт-амперных характеристик подтвердило формирование качественных барьеров Шоттки с темновыми обратными токами ~ 10^{-8} A.

На рис. 2, *b* представлены магнитополевые зависимости эффективности детектирования циркулярно-поляризованного лазерного излучения с длиной волны 632.5 nm для структуры CoPt (8 nm)/Al₂O₃ (2 nm)/ In_{0.1}Ga_{0.9}As (200 nm, $n_v = 7 \cdot 10^{16}$ cm⁻³)/ n^+ -GaAs. При регистрации эффективности детектирования в режиме разомкнутой цепи, величина $D_{\rm Eff}$ определяется эффектом МЦД и составляет ~ 0.3% (зависимость *I*). В этом случае эффективность детектирования сравнима по величине с $D_{\rm Eff}$ для фоторезистивного детектора ЦПИ (рис. 1). При регистрации $D_{\rm Eff}(H)$ в

Рис. 2. a — конструкция с поперечным протеканием тока. b — магнитополевые зависимости эффективности детектирования ЦПИ фотодетектора на основе барьера Шоттки при 295 К: I) в режиме разомкнутой цепи (вклад МЦД); в режиме замкнутой цепи, при приложении различного напряжения — 2) 0 V, 3) – 2 V.

режиме замкнутой цепи (рис. 2, b), приложенное к контакту CoPt относительно подложки n^+ -GaAs напряжение составляло 0 и -2 В (зависимости 2 и 3 соответственно). Видно, что эффективность детектирования циркулярно-поляризованного излучения значительно возрастает благодаря вкладу от эффекта спиновой фильтрации. Величина $D_{\rm Eff}$ достигает 1.3% в магнитном поле до 1900 Ое при комнатной температуре.

В указанной геометрии также была реализована и исследована конструкция детектора ЦПИ на основе гетероструктур, использующихся для создания спиновых светоизлучающих диодов (ССИД) со слоем CoPt [6]. Гетероструктуры содержали подложку $n^+(p^+)$ -GaAs, буферный слой n(p)-GaAs, квантовую яму InGaAs, покровный слой GaAs, дельта-легированный углеродом (в случае подложки n^+ -GaAs) или кремнием (p^+ -GaAs — подложка). На поверхность структур методом электронно-лучевого испарения наносился тонкий (1–2 nm) слой диэлектрика Al₂O₃ и слой CoPt. Затем с использованием фотолитографии и химического

травления формировались меза-структуры диаметром 500 mkm (рис. 3, a). Изготовленные светодиоды испускали циркулярно-поляризованное электролюминесцентное излучение с длиной волны около 1 mkm в широком диапазоне температур (от 10 до 300 K).

В случае применения ССИД в качестве детектора, циркулярно-поляризованное излучение с длиной волны 632.5 nm заводили со стороны контакта CoPt. Установлено, что в данном случае также наблюдается возрастание величины $D_{\rm Eff}$ в режиме замкнутой цепи (учет эффекта спиновой фильтрации дополнительно к МЦД) относительно режима разомкнутой цепи (использование только МЦД). Эффективность детектирования $D_{\rm Eff}$ составляет $\approx 1.3\%$ (при 300 K), при этом вклад МЦД не превышает 0.3%. Величина $D_{\rm Eff} \approx 1\%$ обусловлена эффектом спиновой фильтрации (рис. 3, *b*). Следует отметить, что

Рис. 3. a — конструкция детектора ЦПИ на основе гетероструктур, использующихся для создания спиновых светоизлучающих диодов. b — магнитополевые зависимости эффективности детектирования ЦПИ при 295 К при приложении различного напряжения: I) в режиме разомкнутой цепи (вклад МЦД); в режиме замкнутой цепи, при приложении различного напряжения — 2) 0 V, 3) – 2 V.

в случае применения ССИД в качестве детектора одна и та же структура может служить как источником, так и детектором ЦПИ. Данный факт делает перспективной возможность практической реализации спинового оптрона, прибора, включающего в себя спиновый светоизлучающий диод и фотодетектор ЦПИ, интегрированные на единой подложке.

4. Заключение

Таким образом, в процессе выполнения работы были исследованы два типа конструкций детекторов циркулярно-поляризованного излучения на основе гетероструктур InGaAs/GaAs с CoPt: 1) детектор циркулярно-поляризованного излучения типа фоторезистора на подложках *i*-GaAs; 2) детектор циркулярно-поляризованного излучения, функционирующий с использованием эффекта спиновой фильтрации на подложках $n^+(p^+)$ -GaAs.

Показана возможность использования тонкого диэлектрического слоя Al_2O_3 (толщиной $\sim 2\,nm$) в конструкции детектора циркулярно-поляризованного излучения типа фоторезистора. При этом величина эффективности детектирования ЦПИ, определяемая эффектом магнито-циркулярного дихроизма в слое CoPt, составляет $\sim 0.5\%$.

Установлено, что детектор циркулярно-поляризованного излучения, функционирующий с использованием эффекта спиновой фильтрации, позволяет достичь эффективности детектирования ~ 1.3%. При этом вклад, обусловленный эффектом магнито-циркулярного дихроизма, составляет около 0.3%. Продемонстрировано использование полупроводниковой гетеронаноструктуры InGaAs/GaAs с барьером Шоттки CoPt в качестве спинового светоизлучающего диода и детектора циркулярно-поляризованного излучения с эффектом спиновой фильтрации.

Необходимо отметить, что полученные результаты по величинам эффективности детектирования представленных нами образцов детекторов ЦПИ соответствуют мировым достижениям в данной области. Так, в работе [1] максимально зафиксированная величина $D_{\rm Eff}$ составляла $\sim 1\%$ для детектора с конструкцией, подобной ССИД (Co₂FeSi/InGaAs/GaAs) в магнитном поле 5 Т.

Перспектива практического применения разработанных конструкций детекторов при создании оптоэлектронных интегральных схем обусловлена такими достоинствами полученных приборов, как возможность их использования при комнатной температуре и в отсутствии внешнего магнитного поля (благодаря сохранению величины остаточной намагниченности слоя CoPt на уровне намагниченности насыщения).

Авторы выражают благодарность Б.Н. Звонкову за изготовление полупроводниковых структур методом МОС-гидридной эпитаксии.

Список литературы

- R. Farshchi, M. Ramsteiner, J. Herfort, A. Tahraoui, H.T. Grahn. Appl. Phys. Lett. 98, 162508 (2011).
- [2] A. Hirohata, Y.B. Xu, C.M. Guertler, J.A.C. Bland. J. Appl. Phys. 87, 4670 (2000).
- [3] Y.H. Li. Condens. Mater. Phys. 15, 13701 (2012).
- [4] C. Rinaldi, M. Cantoni, D. Petti, R. Bertacco. J. Appl. Phys. 111, 07C312 (2012).
- [5] А.В. Кудрин, М.В. Дорохин, А.В. Здоровейщев, П.Б. Дёмина, О.В. Вихрова, И.Л. Калентьева, М.В. Ведь. ФТТ 11, 2203 (2017).
- [6] А.В. Здоровейщев, М.В. Дорохин, О.В. Вихрова, А.В. Кудрин, П.Б. Демина, А.Г. Темирязев, М.П. Темирязева. ФТТ 58, 2186 (2016).

Редактор К.В. Емцев

Публикация материалов Симпозиума завершена.