05,09

Оптические и магнитооптические свойства многослойных наноразмерных пленок [Co/TiO₂]_n

© В.В. Павлов¹, П.А. Усачев¹, С.Г. Нефедов¹, А.И. Стогний², Н.Н. Новицкий², Р.В. Писарев¹

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
² НПЦ НАН Беларуси по материаловедению, Минск, Беларусь

E-mail: pavlov@mail.ioffe.ru

Проведено исследование оптических и магнитооптических свойств металл-диэлектрических многослойных структур $[Co/TiO_2]_n$ с толщинами слоев 2–4 nm, приготовленных на кремниевой подложке Si(001) методом ионно-лучевого осаждения. С помощтю метода оптической эллипсометрии измерена комплексная диэлектрическая проницаемость в спектральном диапазоне 0.6–5.6 eV. Проведен анализ комплексной диэлектрической проницаемости многослойных структур $[Co/TiO_2]_n$ с помощью оптических матриц отражения для изотропных многослойных диэлектрических структур с учетом оптических потерь, а также методом анизотропной эффективной среды. Поляриметрическим методом измерен магнитооптический эффект Керра в спектральном диапазоне 1.2-4.5 eV в полярной и меридиональной геометриях. На основе полевых зависимостей магнитооптического эффекта Керра определен тип магнитной анизотропии. Установлено, что наноразмерные структуры $[Co/TiO_2]_n$ можно рассматривать как искусственные оптически одноосные среды с сильной магнитной и оптической анизотропией при комнатной температуре.

Работа выполнена при поддержке Российского научного фонда (грант № 17-12-01314).

DOI: 10.21883/FTT.2018.11.46664.26NN

1. Введение

Многослойные структуры с толщинами слоев в нанометровом диапазоне представляют собой новый тип материалов, обладающих рядом уникальных физических свойств — оптических, магнитных, транспортных и др., отсутствующих в их объемных составляющих [1-4]. Повышенный интерес к структурам, состоящим из чередующихся слоев магнитных и немагнитных материалов, обусловлен рядом присущих им фундаментальных и практически значимых явлений, например, таких как гигантский магнитный импеданс [5], аномальный эффект Холла [6], сильный магнитооптический отклик [7,8] и аномальные оптические эффекты [9]. Металл-диэлектрические структуры проявляют свойства метаматерилов [10], гиперболических сред [11] или материалов с нулевым значением диэлектрической проницаемости [12]. Ферромагнитные структуры металлдиэлектрик перспективны для различных технических приложений, например, для устройств магниторезистивной памяти с магнитными туннельными переходами, оптических невзаимных устройств [13-15]. Физические свойства многослойных систем, в которых толщина слоев составляет порядка нескольких нанометров, определяются особенностями их структуры, возможными эффектами спиновой поляризации на границе раздела разнородных фаз, а также другими интерфейсными явлениями, возникающими между металлическими слоями [16]. В последние годы большое внимание уделяется исследованиям спиновой поляризации при прохождении

тока в структурах ферромагнетик/полупроводник, управлять которой можно внешним магнитным полем [17].

Использование традиционных рентгеновских и электронных методов исследования позволяет определить особенности кристаллической структуры многослойных материалов, выявить формирование новых фаз, определить размер, форму и топологию неоднородностей с характерным масштабом от нескольких нанометров до микрометров. Дополнительным эффективным инструментом для исследования ряда важных физических параметров таких структур являются линейные оптические и магнитооптические методы. Использование этих методов при изучении структур, в состав которых входят переходные металлы, позволяет определить параметры процесса технического намагничивания, выявить взаимосвязь магнитной анизотропии и структуры материалов, определить характер связи магнитных слоев в многослойных структурах, установить спектральные особенности в области электронных переходов. Изучение оптических свойств пленочных нанофаз в комплексе с другими измерениями, помимо получения фундаментальной информации, позволяет вести целенаправленный поиск необходимых параметров структур, требуемых для практических применений, в том числе для их использования в устройствах наноспинтроники и интегральной оптоэлектроники.

Оптические и магнитооптические свойства ферромагнитных металл-диэлектрических структур определяются оптическими константами магнитных и немагнитных

Рис. 1. *а*) Эскиз структур $[Co/TiO_2]_n$ на подложке Si(001). *b*) Поперечное сечение многослойной пленочной структуры $[Co(4 \text{ nm})/TiO_2(4 \text{ nm})]_n$, полученное методом СЭМ [27].

слоев [18,19], Такие материалы, как SiO₂ и Al₂O₃ чаще всего используются в качестве диэлектрических прослоек. Диоксид титана TiO2 характеризуется более высокими величинами оптических констант, чем SiO₂ и Al₂O₃, поэтому TiO₂ был использован в многослойных структурах Co/TiO₂ [8,20–22]. Диоксид титана TiO₂ относится к группе широкозонных полупроводников с шириной запрещенной зоны порядка 3-3.3 eV. В природе TiO₂ встречается в нескольких кристаллических формах таких как рутил, анатаз и брукит. Недавний интерес к легированному диоксиду титана TiO₂ был вызван проблемой поиска ферромагнитных полупроводников с высокой температурой Кюри [23,24] и электрически индуцированным ферромагнетизмом [25]. В нашей работе изучены оптические и магнитооптические свойства высококачественных сверхтонких металлдиэлектричееких многослойных структур $[Co/TiO_2]_n$ на кремниевой подложке. Такие искусственные структуры можно рассматривать в некотором смысле в качестве упорядоченных аналогов материалов Со-легированного ТіО₂, упомянутых выше.

2. Экспериментальные образцы

В настоящей работе представлены результаты исследования магнитооптических свойств нанокомпозитных пленок Со/ТіО2, измготовленных в виде сверхрешетки из 15 пар слоев Co/TiO2, отличающихся толщиной магнитного (кобальт) и немагнитного (диоксид титана) слоев, входящих в пару. Образцы получены в едином вакуумном цикле путем последовательного осаждения слоев Со и ТіО2 методом ионно-лучевого распыления-осаждения [26-28]. Скорость осаждения Со и ТіО₂ составляла соответственно 0.33 nm/s и 0.09 nm/s. Осаждение пленок производилось на кремниевую подложку, предварительно подготовленную по ионно-лучевой методике [29], Для определения толщины парциальных слоев использовались адаптированные к условиям ионно-лучевого распыления [30] стандартные методы атомно-силовой микроскопии (АСМ) и сканирующей электронной микроскопии (СЭМ). Послойный анализ состава многослойных структур Co/TiO₂ проводился методом Оже-электронной спектроскопии. Спектры пропускания для нескольких типов многослойных пленочных структур Co/TiO2 приведены в работе [31]. Многослойные структуры [Co(2nm)/TiO₂(4nm)]₁₅, [Co(2nm)/TiO₂(2nm)]₁₅ и $[Co(4 nm)/TiO_2(4 nm)]_{12}$ имели прозрачность более 7%, 0,7% и 0.05% соответственно. Сравнение спектров показало, что при практически равной прозрачности парциальных слоев TiO2 толщиной 2 nm и 4 nm многослойная структура [Co(2 nm)/TiO₂(2 nm)]₁₅ характеризуется существенно меньшей прозрачностью, чем $[Co(2 nm)/TiO_2(4 nm)]_{15}$, хотя структуры отличаются только суммарной толщиной парциальных слоев TiO₂. Изучение поперечных сечений образцов показало, что при толщине слоев Со и TiO2 менее 2 nm эти слои и границы между ними становятся практически неразличимыми. Это может быть связано с процессами перемешивания распыленных атомов при осаждении, среди которых есть достаточно быстрые с длиной пробега до 1 nm [28]. Толщина парциальных слоев от 2 до 4 nm уже достаточна, чтобы характерные области концентрации слоев как Со, так и ТіО₂ хорошо разделялись, а границы между ними стали достаточно резкими и плоскопараллельными. Это подтверждает рис. 1, где показано характерное поперечное сечение многослойной структуры из слоев Со и TiO₂ толщиной 4 nm каждого. Наличие резких границ у парциальных слоев толщиной более 2 nm подтверждается также данными оже-спектроскопии. При этом интересен тот факт, что области максимальной и минимальной концентрации О и Ті совмещены друг с другом. Это в первом приближении позволяет считать, что химическое взаимодействие и формирование связей типа Со-О и Со-Ті-О в области интерфейсов отсутствует. Данный вывод не противоречит известному свойству геттерирования атомов кислорода несвязанными атомами Ті в тонких слоях (см. например [32]). Рентгеновские исследования показали, что парциальные слои Со толщиной до 4 nm не формируют рефлексов, интенсивность которых существенно превышает уровень шума, но для многослойных структур Co/TiO2 наблюдаются рефлексы (100) и (002) гексагональной структуры Со простран-

Рис. 2. Экспериментальные спектры для двух основных эллипсометрических параметров ψ и Δ в металл-диэлектрических структурах [Co/TiO₂]₁₅/Si для двух углов падения света.

ственной группы Р63/ттс(194) [28]. АСМ-анализ поверхности установил, что образцы имеют среднеквадратичную шероховатость менее 0.9 nm и сплошные поверхности. Электрические измерения показали, что структура $[Co(2 nm)/TiO_2(4 nm)]_{15}$ имеет наибольшее значение удельного поверхностного сопротивления, а структуры $[Co(2 nm)/TiO_2(2 nm)]_{15}$ и $[Co(4 nm)/TiO_2(2 nm)]_{15}$ имеют на порядок меньшие значения, причиной чего могут быть проколы и утечки тока по ним. Структура $[Co(2 nm)/TiO_2(4 nm)]_{15}$, сформированная на подложке Si(100) *п*-типа с удельным сопротивлением $4.5 \Omega \cdot cm$ является наиболее совершенной по совокупности ее оптических и структурных свойств. В ней потенциальный барьер между пленкой и подложкой составляет около 0.4 eV, и высота этого барьера сравнима е величиной потенциального барьера в структуре Co/GaAs, в которой наблюдалась эффективная спиновая инжекция в полупроводник при комнатной температуре [33]. Таким образом, экспериментальные образцы многослойных структур $[Co(2 nm)/TiO_2(2 nm)]_{15}$, $[Co(2 nm)/TiO_2(4 nm)]_{15}$ и $[Co(4 nm)/TiO_2(2 nm)]_{15}$ представляют собой модельные

Физика твердого тела, 2018, том 60, вып. 11

объекты магнитооптики и спинтроники, так как анализ их свойств может быть проведен на основе табличных данных для их объемных составляющих. Исследование магнитооптических свойств образцов проводилось путем измерения величин угла поворота плоскости поляризации и эллиптичности полярного и меридионального эффектов Керра. Измерения на фиксированной длине волны проводились по модуляционной методике, а исследование спектральных зависимостей проводилось с помощью спектрометра путем регистрации сигнала с последующим многократным усреднением.

3. Эллипсометрическое исследование структур [Co/TiO₂]_{*n*}

Оптические свойства многослойных наноразмерных пленок $[Co/TiO_2]_n$ были исследованы поляризационнооптическим эллипсометрическим методом [34], основанном на измерении состояния поляризации света после его взаимодействия с поверхностью среды. Метод от-

Рис. 3. Экспериментальные спектры (точки) комплексной диэлектрической проницаемости ε^{xx} для структур [Co/TiO₂]₁₅/Si. На (*a*) линиями показаны значения ε^{xx} , рассчитанные по уравнению (3). Штриховая линия для энергии 1 eV показывает численные значения ε^{xx} .

ражательной эллипеометрии состоит в измерении отношения амплитуд ψ и разности фаз Δ для световых волн с *p*- и *s*-поляризациями [34,35]. Эллипсометрические параметры ψ и Δ связаны с отношением R_{pp}/R_{ss} для комплексных коэффициентов отражения следующим образом:

$$\frac{R_{pp}}{R_{ss}} = \tan \psi e^{i\Delta},\tag{1}$$

где R_{pp} и R_{ss} — комплексные коэффициенты отражения Френеля для *p*- и *s*-поляризованного света соответственно. Для определения комплексной диэлектрической проницаемости металл-диэлектрических структур [Co/TiO₂]_n в спектральном диапазоне 0.6–5.6 eV был использован отражательный эллипсометр V-VASE® (J.A. Woollam) с переменным углом падения света. Эллписометрические параметры ψ и Δ для нескольких углов падения измерялись при комнатной температуре T = 295 К. На рис. 2 показаны спектральные зависимости параметров ψ и Δ в металл-диэлектричееких

структурах $[Co/TiO_2]_{15}/Si$ для углов падения света в 40 и 70 градусов,

В случае изотропной среды, зная эллипсометрические параметры ψ и Δ , можно найти ее диэлектрическую проницаемость $\langle \varepsilon \rangle$ [34,35]

$$\langle \varepsilon \rangle = \sin^2 \varphi \left[1 + \tan^2 \varphi \left(\frac{1 - \tan \varphi e^{i\Delta}}{1 + \tan \varphi e^{i\Delta}} \right)^2 \right],$$
 (2)

где ϕ — угол падения светового луча.

Структура, образованная чередующимися тонкими слоями с различными комплексными показателями преломления, проявляет оптические свойства одноосного кристалла с оптической осью, совпадающей с нормалью к ее поверхности [36]. В этом случае метод отражательной эллипсометрии чувствителен только к компонентам тензора диэлектрической проницаемости $\varepsilon^{xx} = \varepsilon^{yy}$ [34]. Хотя параметры ϕ и Δ были измерены для нескольких углов падения света φ , рассчитанные значения $\varepsilon^{xx} = \varepsilon^{yy}$ для этих углов оказались идентичными, что подтверждает надежность полученных данных. На рис. 3 показаны значения $\varepsilon^{xx} = \varepsilon^{yy}$, полученные из экспериментальных спектральных зависимостей параметров ψ и Δ для трех структур [Co/TiO₂]₁₅/Si. Хорошо видны систематические изменения в спектрах при изменении отношения толщин Co/TiO_2 в структурах $[Co/TiO_2]_{15}/Si$.

Комплексная диэлектрическая проницаемость металлдиэлектрических структур может быть описана с помощью модели Друде–Лоренца, учитывающей диэлектрические проницаемости металла Со [37] и аморфного диэлектрика TiO₂ [38,39]. По этой модели диэлектрическую проницаемость $\varepsilon = \varepsilon_1 + i\varepsilon_2$ можно представить следующим образом:

$$\varepsilon = \varepsilon_{\infty} \left(1 - \frac{E_p^2}{E^2 + iE\Gamma} \right) + \frac{f}{E_L^2 - E^2 - E\gamma}, \quad (3)$$

где ε_{∞} — диэлектрическая проницаемость для металлдиэлектрических структур в области энергии фотонов выше исследованного спектрального диапазона, Е_р — плазменная энергия, а Г — параметр затухания Друде. Параметры для осциллятора Лоренца: *E_L* — резонансная энергия, *f* и *γ* — сила осциллятора и параметр затухания Лоренца соответственно. Используя процедуру подгонки на основе уравнения (3) к измеренным спектрам диэлектрической проницаемости, можно получить следующие подгоночные параметры $\varepsilon_{\infty} = 2.46(8), E_p = 4.54(7), \Gamma = 1.95(2),$ $E_L = 5.35(5), f = 6.6(2)$ и $\gamma = 2.4(1)$ для структуры [Co(2 nm)/TiO₂(4 nm)]₁₅. Экспериментальные значения вещественной и мнимой частей диэлектрической проницаемости $\varepsilon^{xx} = \varepsilon^{yy}$ очень близки к их рассчитанным величинам, см. рис. 3, а.

3.1. Метод оптических матриц отражения

Для описания оптических спектров комплексной диэлектрической проницаемости в металл-диэлектричес-

Рис. 4. Оптические спектры комплексной диэлектрической проницаемости ε^{xx} , рассчитанной по методу оптических матриц отражения для структур [Co/TiO₂]₁₅/Si [40]. Штриховая линия для энергии 1 eV показывает численные значения ε^{xx} .

ких многослойных структурах [Co/TiO₂]_n/Si удобно использовать код MATLAB, специально написанный для анализа отражения света от изотропных многослойных диэлектрических структур с потерями [40]. Для моделирования оптических спектров (ε) для структур [Co/TiO2]_n/Si мы использовали литературные данные по оптическим константам N = n + ik для Со [37], ТіО₂[38,39] и кремниевой подложки [39]. Рассчитанные значения $\langle \varepsilon \rangle$ с использованием оптических матриц для изотропных многослойных структур с потерями показаны на рис. 4. Имеется хорошее количественное согласие между экспериментальными и рассчитанными значениями диэлектрической проницаемости $\langle \varepsilon \rangle$. Возможно появление небольшого несоответствия экспериментальных и рассчитанных значений вследствие некоторой вариации оптических констант N = n + ik для Со и TiO₂ в зависимости от плотности упаковки этих материалов в исследуемых структурах [41]. Дополнительные факторы несоответствия могут быть обусловлены влиянием неравномерной плоскостности и шероховатости интерфейсов Со/ТіО2.

3.2. Метод эффективной среды

Комплексную диэлектрическую проницаемость металл-диэлектрических структур можно смоделировать на основе метода эффективной среды. В этом методе две тонкие пленки в паре разнородных материалов размещаются параллельно или последовательно [34,36,42]. Данная модель применима также для полубесконечной пластики, состоящей из чередующихся пар разнородных материалов с толщинами слоев каждой пленки намного меньше длины волны света. Согласно этой модели, для анизотропной тонкослойной структуры, состоящей из двух изотропных материалов, можно получить простые

Рис. 5. Оптические спектры комплексной диэлектрической проницаемости ε^{xx} , рассчитанной на основе уравнения (4) для структур [Co/TiO₂]₁₅/Si. Для сравнения дан спектр ε^{xx} в объемном Со. Штриховая линия для энергии 1 eV показывает численные значения ε^{xx} .

Рис. 6. Оптические спектры комплексной диэлектрической проницаемости ε^{zz} , рассчитанной на основе уравнения (5) для структур [Co/TiO₂]₁₅/Si. Для сравнения дан спектр ε^{zz} в объемном аморфном TiO₂. Штриховая линия для энергии 1 eV показывает численные значения ε^{zz} .

уравнения для компоненты диэлектрической проницаемости $\varepsilon^{xx} = \varepsilon^{yy}$ [34,36,42]

$$\varepsilon^{xx} = \varepsilon^{yy} = f_a \varepsilon_a + f_b \varepsilon_b, \tag{4}$$

и для компоненты диэлектрической проницаемости ε^{zz}

$$\frac{1}{\varepsilon^{zz}} = \frac{f_a}{\varepsilon_a} + \frac{f_b}{\varepsilon_b},\tag{5}$$

где f_a и $f_b = 1 - f_a$ — объемные доли материалов a и b, ε_a и ε_b — их комплексные диэлектрические проницаемости соответственно.

Результаты расчетов по методу анизотропной эффективной среды с использованием уравнения (4) для компоненты диэлектрической проницаемости $\varepsilon^{xx} = \varepsilon^{yy}$ показаны на рис. 5, a-c, При увеличении относительной доли Со с 0.33 до 0.66 поведение ε^{xx} в области энергий фотонов 0.6-3 eV становится близким к металлическому типу, то есть спектральному поведению ε^{xx} в чистом объеме Со (см. рис. 5, *d*). В то же время, аномалии ε_1^{xx} и ε_2^{xx} при 3.9 eV и 4.4 eV, связанные с аморфным TiO₂ (см. рис. 6, d), становятся менее выраженными. Используя уравнение (5), можно смоделировать компоненту диэлектрической проницаемости ε^{zz} , результаты показаны на рис. 6, *a*-*c*. Оптические спектры комплексной диэлектрической проницаемости ε^{zz} в структурах [Co/TiO₂]_n/Si существенно отличаются от спектров $\varepsilon^{xx} = \varepsilon^{yy}$. При увеличении относительной доли Со с 0.33 до 0.66 абсолютные значения ε_1^{zz} увеличиваются более чем в два раза в диапазоне энергий фотонов 0.6-2 eV, а аномалии ε_1^{zz} и ε_2^{xx} при 3.6 eV и 4.1 eV сильно сдвинуты к энергиям 2.2 eV и 3.0 eV соответственно. Комплексная диэлектрическая проницаемость $\varepsilon^{xx} = \varepsilon^{yy}$ структур [Co/TiO₂]_n отражает металлический тип спектрального поведения, а єгг отражает диэлектрический тип спектрального поведения. Таким образом, продемонстрированы свойства структур [Co/TiO₂]_n как сильноанизотропных оптически одноосных сред. Заметим, что методом оптической эллипсометрии нельзя определить компоненту диэлектрической проницаемости єгг, поскольку оптическая ось металл-диэлектрических структур [Co/TiO₂]_n/Si перпендикулярна поверхности [34].

4. Магнитооптический эффект Керра

Рассмотрение магнитооптических эффектов будет строиться на основе тензора диэлектрической проницаемости $\varepsilon_{ik}(\omega)$. Для оптически одноосной среды, обладающей спонтанной намагниченностью **М**, тензор ε_{ik} имеет вид [43]

$$\varepsilon^{ij} = N^2 \begin{pmatrix} 1 & iM^z Q^{\parallel} & -iM^y Q^{\perp} \\ -iM^z Q^{\parallel} & 1 & iM^x Q^{\perp} \\ iM^y Q^{\perp} & -iM^x Q^{\perp} & 1 \end{pmatrix}, \quad (6)$$

где комплексные величины N и Q являются показателем преломления и коэффициентом магнитооптической связи материала, соответственно. Причем имеются два различных коэффициента магнитооптической связи, а именно Q^{\parallel} и Q^{\perp} , когда намагниченность **M** ориентирована вдоль оптической оси c и перпендикулярно соответственно, а ось c ориентирована вдоль оси zструктуры. При нормальном падении света компонента тензора диэлектрической проницаемости iM^zQ^{\parallel} отвечает за полярный магнитооптический эффект Керра; при отсутствии M^z -компоненты намагниченности и при наклонном падении света iM^xQ^{\perp} и iM^yQ^{\perp} определяют меридиональный и экваториальный магнитооптические

Рис. 7. Петли гистерезиса для структур [Co/TiO₂]₁₅/Si, измеренные в полярной (*a*) и меридианальной (*b*) геометриях магнитооптического эффекта Керра.

эффекты Керра соответственно. В случае оптически одноосной среды с намагниченностью $\mathbf{M} \parallel z \parallel c$ для произвольного угла падения φ полярный магнитооптический эффект Керра $\tilde{\Phi} = \vartheta + i\Psi$, где ϑ и Ψ — измеряемые на опыте вращение и эллиптичность, может быть записан в следующем виде [19]:

$$\tilde{\Phi} = i \, \frac{N^2 \left(\sin \varphi \, \mathrm{tg} \, \varphi \pm \sqrt{N^2 - \sin^2 \varphi} \, \right)}{(N^2 - 1)(N^2 - \mathrm{tg}^2 \, \varphi)} \, Q^{\parallel}. \tag{7}$$

Меридиональный магнитооптический эффект Керра при $\mathbf{M} \parallel x \perp c$ может быть записан следующим выражением:

$$\tilde{\Phi} = i \frac{N^2 \sin\varphi \left(\sin\varphi \operatorname{tg}\varphi \pm \sqrt{N^2 - \sin^2\varphi}\right)}{(N^2 - 1)(N^2 - \operatorname{tg}^2\varphi)\sqrt{N^2 - \sin^2\varphi}} Q^{\perp}.$$
 (8)

В уравнениях (7) и (8) для *р*-поляризации перед корнем в числителе следует брать знак "+", для *s*-поляризации — знак " – ".

4.1. Полевые зависимости магнитооптического эффекта Керра

Поскольку магнитооптический эффект Керра является линейной функцией намагниченности среды **M**, то он может быть использован для мониторинга петель технического намагничивания структур $[Co/TiO_2]_n$ и выяснения типа их магнитной анизотропии. На рис. 7 показаны петли гистерезиса для структур $[Co/TiO_2]_{15}/Si$, измеренные с помощью полярного и меридионального эффектов Керра. Измеренные зависимости в полярной и меридиональной геометриях проявляют качественно различное поведение. Полярный эффект Керра является практически линейной функцией внешнего магнитного поля,

тогда как петли гистерезиса, измеренные с помощью меридионального эффекта Керра, имеют прямоугольную форму с малым полем коэрцитивности 0.8-1.7 mT. Во всех трех структурах значения полярного эффекта Керра для энергии фотонов 1.96 eV и магнитного поля 1.6 T соизмеримы по порядку величины с известным значением для этого эффекта в объемном Co [44]. Измеренные значения полярного эффекта Керра в наших структурах превышают значения для данного эффекта, измеренного в тонких пленках магнитного полупроводника TiO₂/Co [21]. Сравнивая полярный и продольный эффекты Керра, можно сделать вывод, что структуры [Co/TiO₂]_n обладают сильной магнитной анизотропией типа "легкая плоскость" с полем эффективной анизотропии более 1.6 T.

4.2. Расчет эффекта Керра в зависимости от толщины слоев структуры

Соотношение взаимных концентраций компонентов структуры, состоящей из ферромагнетика и диэлектрика может влиять на величину магнитооптических эффектов сложным образом. Например, в работе [45] показано, что увеличение концентрации частиц Со, находящихся в прозрачном диэлектрике CaF₂, приводит к качественному изменению магнитооптических спектров. Для выяснения влияния взаимных концентраций компонентов структуры [Co/TiO₂]_{*n*} на магнитооптический отклик был проведен расчет величины эффект Керра в зависимости от толщины слоев Со и ТіО2. Выполнен модельный расчет меридионального эффекта Керра для многослойных структур, состоящих из 15 пар слоев Со и TiO₂, где суммарная толщина каждой пары слоев составляет 6 nm. Были рассчитаны величины керровского вращения и эллиитичности в зависимости от соотношения толщин слоев Со и ТіО₂ в каждой паре. На рис. 8 представлен

Рис. 8. Рассчитанные зависимости поворота плоскости поляризации и эллиптичности света для меридионального эффекта Керра от соотношения толщин слоев Co/TiO₂ для *p*-поляризации на длине волны гелий-неонового лазера 632.8 nm для структур [Co/TiO₂]₁₅/Si.

результат расчета для данной модели с использованием специальной программы [46] на основе оптического матричного метода [47-49]. Состав модельной структуры меняется от объемного Со (толщина слоя TiO2 равна 0, толщина слоя Со равна 6 nm) до объемного TiO2 (тощина слоя TiO_2 6 nm, толщина слоя Со равна 0). Расчет показывает увеличение меридионального эффекта Керра в структурах [Co/TiO₂]_n по сравнению с эффектром Керра в объемном Со с резким максимумом для структуры $[Co(0.3-0.4) \text{ nm}/\text{Ti}O_2(5.6-5.7) \text{ nm}]_n$. Для данной структуры возможно увеличение величины эффекта Керра приблизительно в 5 раз по сравнению с объемом Со. Вместе с тем следует отметить, что величина эффекта Керра не сильно отличается для исследуемых многослойных структур $[Co(2 nm)/TiO_2(4 nm)]_{15}$ и $[Co(4 nm)/TiO_2(2 nm)]_{15}$ с существенно различным соотношением толщин слоев Со и ТіО2. Это подтверждается экспериментальными данными, приведенными на рис. 7.

4.3. Спектральные зависимости эффекта Керра

На рис. 9 и 10 приведены спектральные зависимости магнитооптического эффекта Керра, измеренные для структур $[Co/TiO_2]_n$ в магнитном поле величиной 0.2 Т в полярной и меридиональной геометриях соответственно. Измерения проводились по методике, описанной в работе [50]. Полученные зависимости носят достаточно сильно немонотонный характер. В спектральном диапазоне 1.2–4.5 eV в полярной геометрии оптическое вращение дважды меняет знак для 3.2-3.9 eV и 4.2-4.5 eV, а эллиптичность во всем диапазоне не меняет знак. Наибольшие абсолютные значения эллиптичности соответствуют энергии фотонов, где вращение меняет знак.

Рис. 9. Оптические спектры полярного магнитооптического эффекта Керра для структур [Co/TiO₂]₁₅/Si.

Рис. 10. Оптические спектры меридионального магнитооптического эффекта Керра для структур [Co/TiO₂]₁₅/Si.

В меридиональной геометрии ситуация обратная. В этой геометрии оптическое вращение не меняет знак во всем спектральном диапазоне, а эллиптичность испытывает смену знака для 3.5-4.0 eV и $\sim 4.2 \text{ eV}$. В полярной и меридиональной геометриях наибольшие эффекты наблюдаются в области края фундаментального поглощения $TiO_2 \sim 3.5 \text{ eV}$, причем максимальная величина эффекта наблюдается для структуры $[Co(2 \text{ nm})/TiO_2(4 \text{ nm})]_{15}$ с наименьшений концентрацией кобальта.

5. Заключение

В настоящей работе исследовались оптические магнитооптические свойства сверхтонких И многослойных $[Co(2 nm)/TiO_2(2 nm)]_{15}$ структур $[Co(4 nm)/TiO_2(2 nm)]_{15}$ на $[Co(2 nm)/TiO_2(4 nm)]_{15}$ кремнии. Ультратонкие многослойные структуры были приготовлены методом ионно-лучевого осаждения. Оптические спектры диэлектрической проницаемости в плоскости $\varepsilon_{xx} = \varepsilon_{yy}$ были получены в диапазоне энергий фотонов 0.6-5.6 eV методом спектральной эллипсометрии. Были использованы различные модели для расчетов оптической части диэлектрической проницаемости є. Первая модель основана на использовании оптических матриц отражения для расчета отклика изотропных многослойных металл-диэлектрических структур. Вторая модель использует приближение эффективной среды для сверхтонких слоистых структур. Установлено, что обе модели дают удовлетворительное согласие с экспериментом для диэлектрической проницаемости в плоскости $\varepsilon_{xx} = \varepsilon_{yy}$. Выполнены спектральные измерения магнитооптического эффекта Керра в диапазоне энергий фотонов 1.2-4.5 eV в полярной и меридиональной геометриях. На основе полевых зависимостей эффекта Керра установлено, что структуры обладают магнитной анизотропией типа "легкая плоскость" с полем эффективной анизотропии более 1.6 Т. Таким образом, искусственные ферромагнитные металл-диэлектрические структуры [Co/TiO₂]_n/Si проявляет свойства анизотропных сред с сильной одноосной оптической и магнитной анизотропией, что является важным как для фундаментальных исследований, так и для практических приложений.

Мы благодарны коллегам, которые принимали участие в этих исследованиях: А.А. Астрецову и А.К. Зыбину, а также Prof. Th. Rasing (Radboud University Nijmegen, Institute for Molecules and Materials, Nijmegen, The Netherlands) за любезно предоставленное эллипсометрическое оборудование.

Список литературы

- [1] Multilayer Thin Films: Sequential Assembly of Nanocomposite Materials. / Eds G. Decher, J.B. Schlenoff. Wiley-VCH Verlag Weinheim (2012).
- [2] Magnetic Multilayers / Eds L.H. Bennett, R.E. Watson. World Scientific Singapore (1994).

- [3] Oxide Thin Films, Multilayers, and Nanocomposites / Eds P. Mele, T. Endo, S. Arisawa, C. Li, T. Tsuchiva. Springer, Caham. Heidelberg (2015).
- [4] J. Macdonald. *Metal-dielectric multilayers* (Monographs on applied optics). American Elsevier Publ. Co (1971).
- [5] M.-H. Phan, H.-X. Peng. Prog. Mater. Science 53, 323 (2008).
- [6] J.C. Slonczewski. Phys. Rev. B 39, 6995 (1989).
- [7] E. Ganshina, A. Granovsky, B. Dieny, R. Kumaritova, A. Yurasov. Physica B 229, 260 (2001).
- [8] V.V. Polyakov, K.P. Polyakova, V.A. Seredkin, G.S. Patrin. Solid State Phenomena 215, 254 (2014).
- [9] И.В. Быков, Е.А. Ганьшина, А.Б. Грановский, В.С. Гущин. ФТТ 42, 487 (2000).
- [10] A. Orlov, I. Iorsh, P. Belov, Y. Kivshar. Opt. Express 21, 1593 (2013).
- [11] S.V. Zhukovsky, A. Andryeuski, A.V. Lavrinenko. SPIE Newsroom; DOI: 10.1117/2.1201410.005626 (2014).
- [12] G. Subramania, A.J. Fischer, T.S. Luk. Appl. Phys. Lett. 101, 241107 (2012).
- [13] G.E. Rowlands, T. Rahman, J.A. Katine, J. Langer, A. Lyle, H. Zhao, J.G. Alzate, A.A. Kovalev, Y. Tserkovnyak, Z.M. Zheng, H.W. Jiang, K. Galatsisi, Y.M. Huai, P.K. Amiri, K.L. Wang, I.N. Krivorotov. J. Wang. Appl. Phys. Lett. 98, 102509 (2011).
- [14] A.R. Davoyan, I.V. Shadrivov, S.I. Bozhevolnyi. Y.S. Kivshar. J. Nanophotonics 4, 043509 (2010).
- [15] V.I. Belotelov, I.A. Akimov, M. Pohl, V.A. Kotov, S. Kasture, A.S. Vengurlekar, A.V. Gopal, D.R. Yakovlev, A.K. Zvezdin, M. Bayer. Nature Nanotech. 6, 370 (2011).
- [16] P. Grünberg, D.E. Bürgler. *Metallic Multilayers: Discovery of Interlayer Exchange Coupling and GMR*. In: Handbook of Sontribics / Eds Y. Xu, D. Awschalom. J. Nitta Springer, Dordrecht (2016).
- [17] A. Makarov, T. Windbacher, V. Sverdlov, S. Selberherr. Semicond. Sci. Technol. 31, 113006 (2016).
- [18] M. Mansuripur. The Physical Principles of Magneto-optical Recording. Cambridge Univ. Press, Cambridge (1995).
- [19] A.K. Zvezdin, V.A. Kotov. Modern magnetooptics and magnetooptical materials. Institute of Physics Publishing Bristol, Philadelphia (1997).
- [20] N. Richard. Eur. Phys. J. B 16, 411 (2000).
- [21] H.-Q. Song, L.-M. Mei, Y.-P. Zhang, Sh.-Sh. Yan, X.-L. Ma, Y. Wang, Z. Zhang, L.-Y. Chen. Physica B 388, 130 (2007).
- [22] В.В. Поляков, К.П. Полякова, В.А. Середкин, Г.С. Патрин. Письма ЖТФ **38**, 15 (2012).
- [23] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikvow, Sh. Koshihara, H. Koinuma. Science **291** 854 (2001).
- [24] S.R. Shinde, S.B. Ogale, S. Das Sarma. J.R. Simpson, H.D. Drew, S.E. Lolland, C. Lanci, J.P. Buban, N.D. Browning, V.N. Kulkarni, J. Higgins, R.P. Sharma, R.L. Greene, T. Venkatesan. Phys. Rev. B 67, 115211 (2003).
- [25] Y. Yamada, K. Ueno, T. Fukumura, H.T. Yuan, H. Shimotani, Y. Iwasa, L. Gu, S. Tsukimoto, Y. Ikuhara, M. Kawasaki. Science **332**, 1065 (2011).
- [26] А.И. Стогний, В.Ф. Мещеряков, Н.Н. Новицкий, F. Fettar, М.В. Пашкевич. Письма в ЖТФ 35, 11, 97 (2009).
- [27] А.И. Стогний, М.В. Пашкевич, Н.Н. Новицкий, А.В. Беспалов. Письма в ЖТФ **36**, *9*, 73 (2010).
- [28] А.И. Стогний, М.В. Пашкевич, Н.Н. Новицкий. Неорган. материалы **45**, 1323 (2009).
- [29] А.И. Стогний, Н.Н. Новицкий, О.М. Стукалов. Письма в ЖТФ 28, 1, 39 (2002).

- [30] А.И. Стогний, Н.Н. Новицкий, О.М. Стукалов. Письма в ЖТФ 29, 4, 39 (2003).
- [31] Г.Д. Нипан, А.И. Стогний, В.А. Кецко. Успехи химии 81, 458 (2012).
- [32] L. Sangaletti, F.F. Canova, A. Sepe, S. Pagliara, M.C. Mozzatti, P. Galinetto, C.P. Azzoni, M. Bettinelli, A. Speghini. Surf. Sci. 601, 4375 (2007).
- [33] T. Trypiniotis, D.H.Y. Tse, S.J. Steinmuller, W.S. Cho, J.A.C. Bland. IEEE Trans. Magn. 43, 2872 (2007).
- [34] H. Fujiwara. Spectroscopic Ellipsometry: Principles and Applications. John Wiley & Sons, Chechester (2007).
- [35] R.M.A. Azzam, N.M. Bashara. Ellipsometry and Polarized Light North-Holland, Amsterdam (1977); перевод Р. Аззам, Н. Башара. Эллипсометрия и поляризованный свет. Мир, М. (1981).
- [36] Л.А. Головань, В.Ю. Тимошенко, П.К. Кашкаров. УФН 177, 6198 (2007).
- [37] P.B. Johnson, R.W. Christy. Phys. Rev. B 9, 5056 (1974).
- [38] A.R. Forouhi, I. Bloomer. Phys. Rev. B 34, 7018 (1986).
- [39] Handbook of optical constants of solids II / Ed. E.D. Palik. Academic Press, USA (1991).
- [40] S.J. Orfanidis. *Electromagnetic Waves and Antennas*; http://www.ece.rutgers.edu/ orfanidi/ewa, (2016).
- [41] Z.G. Hu, W.W. Li, J.D. Wu, J. Sun, Q.W. Shu, X.X. Zhong, Z.Q. Zhu, J.H. Chu. Appl. Phys. Lett. 93, 181910 (2008).
- [42] S.M. Rytov. Sov. Phys. JETP 2, 466 (1956).
- [43] J.A. Arregi, P. Riego, A. Berger. J. Phys. D: Appl. Phys. 50, 03LT01 (2017).
- [44] D. Weller, G.R. Harp, R.F.C. Farrow, A. Cebollada, J. Sticht. Phys. Rev. Lett 72, 2097 (1994).
- [45] В.А. Кособукин, Б.Б. Кричевцов. ФТТ 52, 759 (2010).
- [46] M. Buchmeier. http://hdl.handle.net/2128/2605, (2007).
- [47] P. Yeh. Surf. Sci. 96, 41 (1980).
- [48] Š. Višňovský. Czech. J. Phys. 41, 663 (1991).
- [49] K. Postava, D. Hrabovský, J. Pistora, A.R. Fert, Š. Višňovský, T. Yamaguchi. J. Appl. Phys. 91, 7293 (2002).
- [50] G.X. Du, S. Saito, M. Takahashi. Rev. Sci. Instrum. 83, 013103 (2012).

Редактор Ю.Э. Китаев