05,13 Затухание спиновой прецессии в гетероструктурах манганит/нормальный металл

© Т.А. Шайхулов, Г.А. Овсянников

Институт радиоэлектроники им. В.А. Котельникова РАН, Москва, Россия

E-mail: shcaihulov@hitech.cplire.ru

Изучена температурная зависимость затухания магнитной спиновой прецессии в двухслойных структурах с верхним слоем Pt на основе эпитаксиальной пленки манганита La_{0.7}Sr_{0.3}MnO₃ (LSMO) путем измерения ширины линии спектра ферромагнитного резонанса (ФМР). Ферромагнитный резонанс в тонких ферромагнитных пленках манганита используется для создания спинового тока на границе раздела между металлическим и ферромагнитным слоями. Обсуждается значительное увеличение ширины линии в спектре ФМР в двухслойных структурах за счет генерации спинового тока, неоднородности ферромагнитного слоя, двухмагнонного рассеяния и вихревого тока.

Работа выполнена при частичной поддержке гранта РФФИ 18-37-00170.

DOI: 10.21883/FTT.2018.11.46662.22NN

1. Введение

Работа устройств спинтроники основана на переносе спина в магнитных гетероструктурах, связанных с переносом спинового момента. Магнитная гетероструктура, как правило, состоит из магнитного и немагнитного слоев. Редкоземельные манганитовые перовскиты со структурой Re_{1-x}A_xMnO₃ (Re — редкоземельные материалы типа La или Nd), а А — щелочноземельные металлы, такие как Sr, Ca, Ba) проявляют широкий спектр необычных электрических и магнитных свойств, включая высокую (до 100%) магнитную поляризацию, эффект колоссального магнитосопротивления и др. (см. обзор [1]). Параметры эпитаксиальных пленок этих материалов очень сильно отличаются от свойств монокристаллов. Значительное влияние на магнитные и электрические свойства пленок обусловлено деформацией пленок, вызванных несоответствием с подложкой, на которой осаждается манганитная пленка [1-3]. Эффекты разделения фаз и наличие немагнитного слоя на границе раздела подложки/пленки могут проявляться в очень тонких пленках (менее 10 nm). [4] Манганиты лантана-стронция La_{0.7}Sr_{0.3}MnO₃ (LSMO) имеют высокую спиновую поляризацию (до 100%) и могут быть использованы в магнитных туннельных переходах [5] и спиновых клапанах [6-8]. Манганитные пленки, для которых температура Кюри Т_С близка к комнатной температуре, особенно привлекательна для практического применения. Хотя был проведен ряд исследований по возбуждению спинового тока ферромагнитным резонансом в структурах LSMO/N (N — нормальный металл, обычно платина) [9, 10], нет данных о температурных зависимостях ширины линии ферромагнитного резонанса (ФМР) от спинового тока в ферромагнетиках и влиянии других источников ширины линии, таких как неоднородность ферромагнитного слоя, двухмагнонное рассеяние и вихревые токи.

2. Модель затухания спиновой прецессии

Затухание Гильберта α является мерой релаксации спиновой прецессии в однородных ферромагнетиках за счет спин-орбитального взаимодействия [12]. Ширина линии ФМР, индуцированная затуханием Гильберта при измерении ФМР, пропорциональна частоте ФМР $\omega \Delta H_G = \alpha \omega / \gamma$ ($\gamma = g \mu_B / h$ — гиромагнитное отношение) и описывает ситуацию для однородного случая. В ферромагнитной структуре из ферромагнетика и нормального металла линия ФМР дополнительно уширяется за счет генерации спинового тока, неоднородности намагниченности ферромагнетика, взаимодействием с другим материалом, двухмагнонным рассеянием и возникновением вихревого тока в ферромагнетике. Экспериментально измеренная ширина линии FMR ΔH_{PP} может быть представлена в виде суммы

$$\Delta H_{PP} = \Delta H_G + \Delta H_I + \Delta H_{2M} + \Delta H_E, \qquad (1)$$

где ΔH_I , ΔH_{2M} , ΔH_E — ширина линий для затухания, вызванного неоднородным состоянием ферромагнетика, двухмагнонным рассеянием и затуханием, вызванным вихревым током соответственно [13,14]. Изменение магнитных свойств материалов, таких как его анизотропия или намагниченность влияет на увеличение ширины линии ΔH_I , которая не зависит от частоты [13,14]. Магнитное поле переменного тока, вызванное ФМР, индуцирует вихревые токи в тонкой пленке. Эти токи производят дополнительное изменение амплитуды магнитных полей переменного тока гетероструктуры. Влияние вихревых токов на ферромагнитный резонанс в проводимой ферромагнитной системе может привести к уширению ширины линии ФМР и изменению формы спектра ФМР в неоднородной области микроволновых полей [15-17]. Механизм даухмагнонного рассеяния приводит к связи режима равномерной прецессии с k = 0, возбужденной ФМР, с вырожденными конечно спин-волновыми модами [17,18]. Увеличение параметра затухания Гильберта в гетероструктуре ферромагнетик/нормальный металл, вызванное прецессией намагниченности в ферромагнетике, вызывает протекание спинового тока через границу в нормальный металл [19]. Теория [19] предсказывает протекание спинового тока от ферромагнитного до немагнитного слоя перпендикулярно границы раздела

$$j_{s}^{0}\mathbf{s} = \frac{\hbar}{8\pi} Re(2g \uparrow\downarrow) \left[\mathbf{m} \times \frac{\partial m}{\partial t}\right], \qquad (2)$$

где $m = M/M_S$ — единичный вектор намагничивания ферромагнитного слоя, $Re(2g \uparrow\downarrow)$ — спиновая проводимость границы раздела, которая аддитивно добавляется к компонентам затухания Гильберта. Затухающий параметр Гильберта можно записать в виде: $\alpha = \alpha_0 + \alpha'$, где α_0 — собственный вклад и α' является дополнительным затуханием, обусловленным спиновой накачкой [19–23].

Образцы и экспериментальная техника

Эпитаксиальные пленки La_{0.7}Sr_{0.3}MnO₃ (LSMO) осаждались магнетронным распылением на монокристаллические подложки (110) NdGaO₃ (NGO) при $T = 820^{\circ}$ C

Рис. 1. a — ориентация образца относительно направлений постоянного и СВЧ-полей. b — угловая зависимость ширины линии резонансного поля для пленки h-LSMO при T = 300 К. Подгонка экспериментальных данных дает следующие магнитные параметры пленки LSMO: намагниченность $M_0 = 300$ Oe, $H_U = 190$ Oe, $H_C = 10$ Oe.

и давлении кислорода 0.15–1 mbar. 10–20 nm Pt или Au напылялись *ex situ* сразу после охлаждения пленки. Контактные площадки были получены путем распыления Pt через металлическую маску. Сопротивление пленок изучалось четырехточечным методом, что исключает влияние контактного сопротивления.

Магнитные характеристики измеряли методом магнитного резонанса с использованием спектрометра фирмы Bruker (частота 9.51 GHz). Исследованные образцы располагались в микроволновой полости спектрометра таким образом, чтобы плоскость образца всегда была параллельна направлению постоянного внешнего магнитного поля и магнитной составляющей СВЧ-поля (параллельная ориентация). Такое расположение образцов устранило изменение спектров магнитного резонанса изза размагничивающего фактора формы образца. Вращение образцов проводилось вокруг оси, перпендикулярной плоскости образцов (см. рис. 1, *a*). Были исследованы пленки сразу после осаждения до комнатной температуры (*d*-LSMO) и отожженные после роста при $T = 820^{\circ}$ С в течение одного часа (*h*-LSMO).

Экспериментальные результаты и обсуждение

4.1. Магнитные параметры пленок LSMO

Параметры магнитной анизотропии определялись из обработки угловых зависимостей резонансных полей спектров ФМР (см. рис. 1, b). Используется решение уравнения Ландау—Лифшица для эволюции намагниченности M во внешнем постоянном магнитном поле H под действием магнитной составляющей радиочастотного поля, которое дает аналитическое уравнение для резонансного поля H_0 и частоты ω [24].

На рис. 1, b показана угловая зависимость резонансного значения магнитного поля H₀ для пленки h-LSMO, измеренная при комнатной температуре, при повороте вокруг нормали к плоскости пленки на угол φ , который измерялся от одной из граней подложки (обозначенной n_{μ} на рис. 1, а). Поскольку подложка с пленкой имела площадь 5 × 5 mm, эффект анизотропии формы образца минимален, а весь сдвиг резонансного поля обусловлен магнитной анизотропией в плоскости пленки LSMO. Экспериментально измеренная угловая зависимость хорошо описывалась резонансным соотношением с учетом одноосной, вызванной влиянием анизотропии подложки, и двухосной (кубической) анизотропиями [24]. В результате были определены намагниченность M_0 , а также K_u и К_с — константы одноосной и двухосной анизотропии соответственно, поля которых определяются следующим образом: $H_{u,c} = 2K_{U,C}/M_0$.

Температурные зависимости магнитных параметров *h*-LSMO пленки показаны на рис. 2. Намагниченность пленки увеличивается до $2.2\mu_{\rm B}/Mn$ при $T \le 200$ К. Поля магнитной анизотропии возрастают с понижение

Рис. 2. Температурная зависимость намагниченности M_S (черные квадраты), двухосная H_u (светлые треугольники) и кубическая H_c (темные кружки) анизотропии магнитного поля соответственно для *h*-LSMO-пленки.

температруры T < 50 К. Видно, что одноосная магнитная анизотропия, индуцированная орторомбичностью подложки (110) NdGaO₃, доминирует над внутренней двухосной кубической анизотропией (H_C).

4.2. Однородное затухание

Ширина линии ферромагнитного резонанса (ФМР) ΔH , измеренная при сканировании внешнего магнитного поля H, определяется как разность положений по полю между экстремумами H_{p+} , H_{p-} первой производной dP/dH сигнала поглощения СВЧ-поля (см. рис. 3). При этом значении резонансное поле H_0 , определяемое как точка перехода сигнала dP/dH через нуль, всегда находится в диапазоне $H_{p+} < H_0 < H_{p-}$. Заметим, что определение ширины линии путем аппроксимации спек-

Рис. 3. Спектры ФМР для пленок *d*-LSMO и *h*-LSMO и rетероструктур Pt/h-LSMO. Спектры для *d*-LSMO и Pt/h-LSMO смещены по оси dP/dH.

тра ФМР несколькими линиями Лоренца дает примерно 10% поправку в величине ΔH_{PP} .

Для пленок *h*-LSMO толщиной 40 nm находим затухание спиновой прецессии при комнатной температуре из ширины линии $\Delta H_{PP} = 28$ Oe, $\alpha_0 = \Delta H_{PP}\gamma/\omega = 8 \cdot 10^{-3}$. При толщине Pt равной 10 nm, нанесенной на пленку *h*-LSMO α увеличивается на 10%. Увеличение затухания при напылении Pt на пленку LSMO $\alpha = \alpha_0 + \alpha'$ может возникнуть из-за протекания спинового тока [25,26] через границу Pt/LSMO. Используя [25,26] можно вычислить спиновую проводимость в гетероструктуре Pt/LSMO

$$g_{\text{eff}}^{\uparrow\downarrow} = \frac{4\pi M_s t_{\text{LSMO}}}{g\mu_{\text{B}}} \,\alpha',\tag{3}$$

 $\gamma = 17.605 \cdot 10^6$ — гиромагнитное отношение для электрона, $\omega = 2\pi \cdot 9.51 \cdot 10^9 \,\mathrm{s}^{-1}$ — микроволновая угловая частота, $M_s = 300 \,\mathrm{Oe}$ — намагниченность пленки LSMO, $t_{\rm LSMO} = 40 \,\mathrm{nm}$ — толщина пленки LSMO слоя, $\mu_{\rm B} = 9.274 \cdot 10^{-21} \,\mathrm{erg/G}$ — магнетон Бора, g = 2 — фактор Ланде. При комнатной температуре мы получаем увеличение ширины линии ФМР после напыления Pt $\Delta H_{\rm Pt/LSMO} - \Delta H_{\rm LSMO} = 4 \,\mathrm{Oe}$ и, следовательно, $g_{\rm eff} = 0.4 \cdot 10^{19} \,\mathrm{m}^{-2}$. Эта величина спиновой проводимости границы несколько превышает $g_{\rm eff} \sim 10^{18} \,\mathrm{m}^{-2}$, полученную из измерений на наших структурах Pt/LSMO спинового тока с помощью обратного спинового эффекта Холла [10]. Для сравнения для границ Py/Pt было получено $g_{\rm eff} = 2.1 \cdot 10^{19} \,\mathrm{m}^{-2}$ [27], а для YIG/Pt $g_{\rm eff} = 4.8 \cdot 10^{20} \,\mathrm{m}^{-2}$ [28].

При оценке спиновой проводимости, используя (3), не учитываются другие механизмы затухания спиновой прецессии. Эффективная одномерная спиновая проводимость нормального металлического слоя, соединенная последовательно со спиновой проводимостью границы раздела, *g*_{ext} дает свой вклад в эффективную спиновую проводимость [23,29]:

$$g_{\uparrow\downarrow}^{\text{eff}} = (1/g_{\uparrow\downarrow} + 1/g_{\text{ext}}). \tag{4}$$

Функциональная форма g_{ext} получается путем решения уравнения спиновой диффузии с соответствующими граничными условиями. В случае структуры ферромагнетик/нормальный металл получено следующее выражение для спиновой проводимости [26]:

$$g_{\text{ext}} = \tanh(d_{\text{Pt}}/\lambda_d)/(2\lambda_d\rho_{\text{Pt}}), \qquad (5)$$

где $\rho_{\rm Pt}$, $d_{\rm Pt}$ и λ_d — удельное сопротивление, толщина и длина диффузии для пленки Pt соответственно. Для $d_{\rm Pt} = 10$ nm больше, чем $\lambda_d = 3$ nm [26] $\tanh(d_{\rm Pt}/\lambda)_d) \approx 1$, вклад в ширину линии от спиновой проводимости в пленке Pt равен при комнатной температуре

$$\Delta H_{\rm ext} = (\omega/\gamma)g\,\mu_{\rm B}h/(2\pi 4e^2 M_s d_{\rm F}\rho_{\rm Pt}\,\lambda_d) \approx 6\,{\rm Oe},\qquad(6)$$

где g = 2, $M_s = 300$ Oe, $d_F = 4 \cdot 10^{-6}$ cm, $\rho_{Pt} = 3 \cdot 10^{-5} \Omega \cdot$ cm, $\lambda_d = 3 \cdot 10^{-7}$ cm, $h/e^2 = 2.6 \cdot 10^4 \Omega$.

Уширение линии ФМР за счет эффективной спиновой проводимости нормального металлического слоя оказывается равным вкладу от спинового тока. Большое значение этого уширения возможно вызвано ошибкой в определении диффузионной длины λ_d .

4.3. Вихревой ток

Температурные зависимости ширины линии для пленки манганита *h*-LSMO и для гетероструктуры Pt/*h*-LSMO представлены на рис. 4. С понижением температуры ΔH_{pp} заметно увеличивается. Увеличение M_s с понижением T может стать причиной увеличения ширины линии (см. выражение (3)). Но ниже T = 200 К M_s насыщается (см. рис. 2), а ширина линии ФМР продолжает расти.

Увеличение проводимости LSMO-пленки с понижением T может увеличить ширину линии за счет образования вихревого тока в пленках. Вихревой ток связан с потерей энергии из-за связи с электронами проводимости без привлечения тепловых магнонов. В случаях, когда глубина скин-слоя является большой по отношению к размеру структуры, потери на вихревые токи зависят от размера образца, проводимости и частоты [15,16,30].

Влияние вихревых токов в тонких пленках LSMO и Pt определяется из расчетов уширения линии Φ MP тонкого диска с радиусом *r* и толщиной *d* [30]:

$$\Delta H_E = k^2 d^2 \varepsilon'' 4\pi M_s / 10 (1 - (3/25)k^2 r), \qquad (7)$$

где $\varepsilon'' = 4\pi\sigma/\omega$, $k = 2\pi/\lambda$ — постоянная свободного пространства, $M_s = 300$ Ое — магнитная пленочная намагниченность, σ — проводимость ферромагнетика. При $\lambda = 3.16$ ст и $r \approx 0.1$ ст, $(3/25)k^2r \ll 1$ выражение для влияния вихревого тока на ширину линии выглядит

Рис. 4. Температурная зависимость сопротивления пленок Pt и *h*-LSMO, а также гетероструктуры Pt/*h*-LSMO. Удельные сопротивления пленок Pt в автономном случае (напыления на подложку) и для гетероструктуры различаются из-за разных толщин и типов роста.

Рис. 5. Температурная зависимость ширины линии ФМР для пленки *h*-LSMO (светлые прямоугольники) и гетероструктуры Pt/*h*-LSMO (темные прямоугольники) Сплошными линиями показаны зависимости обратного сопротивления структур.

Рис. 6. Температурная зависимость ширины линии ФМР для гетероструктуры Pt/*d*-LSMO (черный треугольник) и пленки *d*-LSMO (светлый треугольник) для двух углов направлений магнитного поля.

следующим образом

$$\Delta H_E = (4\pi)^2 d^2 M_s \omega \sigma / (10c^2), \qquad (8)$$

где c — скорость света. Для пленки LSMO с параметрами d = 40 nm, $\omega = 2\pi 9.51 \cdot 10^9 \, \text{s}^{-1}$, $\sigma = 300 \, (\Omega \cdot \text{cm})^{-1}$, вклад от вихревого тока в ширину линии FMR мал и составляет $\Delta H_E = 2$ Ое при комнатной температуре. С понижением температуры проводимость LSMO-пленки растет и пропорционально увеличивается ширина линии ФМР (см. рис. 5). Если при комнатной температуре вклад вихревого тока в ширину линии ФМР LSMO-пленки ΔH_{pp} мал, то с уменьшением температуры $T < 150 \, \text{K}$ он увеличивается пропорционально изменению проводимости ферромагнетика, как следует из (8). При азотной температуре ширина линии ФМР в два раза больше, чем ΔH_{pp} при комнатной температуре. При осаждении пленки Pt поверх пленки LSMO общая проводимость структуры увеличивается (см. рис. 4). Увеличение ΔH_{pp} , которое наблюдается в эксперименте после напыления Pt, вполне можно объяснить генерацией спинового тока в Pt/LSMO гетероструктуре. С понижением температуры удельное сопротивление пленки Pt уменьшается пропорционально T, а сопротивление LSMO-пленки изменяется более чем на один порядок. Вклад всех слоев в удельном сопротивлении гетероструктуры объясняется тем, что пленка LSMO вместе с пленкой Pt выступает в качестве параллельных резисторов [31].

4.4. Неоднородное затухание

Неоднородный вклад в уширение линии ФМР связан с магнитным беспорядком в пленке. Изменение магнитных свойств материалов, таких как его анизотропия или намагниченность, приводит к уширению линии, нелинейно зависит от частоты. Вклад в ширину линии ΔH_I зависит от неоднородности образца, которая связана с локальным изменением направления и амплитуды намагниченности. Неоднородное уширение ширины линии ΔH_I можно описать как

$$\Delta H_I = |\partial H_r / \partial \varphi| \Delta \varphi + |\partial H_r / \partial (M)| \Delta(M), \tag{9}$$

где $\Delta \varphi_H$ и $\Delta(M)$ — разброс ориентации кристаллографических осей и амплитуды намагниченности соответственно [14,32,33]. Влияние неоднородности наблюдается для пленок *d*-LSMO при *T* вблизи *T_C* (см. рис. 5). Вблизи температуры Кюри наблюдалось сильное увеличение ΔH_{pp} для переходных металлов, таких как Ni и Fe [14, 34]. Возможными причинами увеличения ширины линии вблизи T_C является рассеяние на границах и неоднородностях в пленках [35]. Для отожженых пленок *h*-LSMO нет увеличения ширины линии вблизи *T_C*. Поскольку ширина линии LSMO-пленки уменьшилась после нагревания, мы считаем, что пленка h-LSMO стала более однородной. Влияние неоднородного уширения линии, вызванного разбросом параметров уменьшилось. В последнем случае пик ширины линии вблизи Т_С отсутствует. Ниже температуры Кюри наблюдалось минимум ΔH_{pp} для пленок *d*-LSMO около 0.6*T_C*. Качественно увеличение ширины линии при более низкой температуре можно понимать как неоднородное уширение из-за влияния анизотропии магнитной пленки. Известно, что константы анизотропии сильно зависят от температуры и увеличиваются с уменьшением температуры.

Неоднородность пленки может вызвать режим прецессии намагниченности (k = 0), возбуждаемый в эксперименте ФМР, для вырождения конечных мод $k \neq 0$ спиновых волн. Этот механизм релаксации однородной моды известен как рассеяние магнонов [32,36]. Двухмагнонный процесс основан на модели, в которой один магнон однородной прецессии аннулируется, а создается еще один магнон с той же энергией и ненулевым волновым вектором, называемым вырожденным магноном. Рассеяние от однородной прецессии к вырожденной моде является важным источником релаксации в магнитных материалах. Это негильбертовский механизм затухания в кристаллических магнитных пленках.

Поведение ширины линии ФМР, описываемое двумагнонным рассеянием, показывает, что процесс нелинейный по ω . Если $f \ll f_M$ (ниже характерной частоты $f_M = (g\mu_B/h)M_S$), то ширина линии должна линейно меняться с частотой, аналогично предсказанию затухания Гилберта. Однако, если $f \sim f_M$, он проявляет существенные отклонения от линейного поведения и насыщается на высоких частотах $f \gg f_M$ [18,32,35].

Приведенная ниже угловая зависимость ΔH_{pp} с учетом кубической анизотропии учитывает двухмагнонное рассеяние [14,37]:

$$\Delta H_{pp} = \Delta H_0 + \alpha \omega / \gamma + \Delta H_{2m}^{100} \cos^2(2\varphi)$$
$$+ \Delta H_{2m}^{110} \cos^2(2[\varphi - \pi/4]). \tag{10}$$

Данные ширины линии могут иметь параметры ΔH_0 , α и Γ_{2m} . Сравнение данных для LSMO-пленки и гетероструктуры Pt/LSMO показывает, что Pt покрывая пленку LSMO, увеличивет параметр двухмагнонного рассеяния. В нашем эксперименте не наблюдается предсказанной выражением (10) угловой зависимости ширины линии ФМР. Возможно здесь проявляется доминирование одноосной магнитной анизотропией.

5. Заключение

Исследована температурная зависимость ширины линии ФМР и магнитных параметров пленок LSMO и гетероструктур Pt/LSMO. Наблюдалась немонотонная зависимость от температуры ширины линии спектра ФМР для пленки d-LSMO. Ширина линии при высокой температуре сначала уменьшается с понижением температруы, а потом возрастает при $T < 150 \, \text{K}$. Высокое значение ширины линии при комнатной температуре может быть объяснено неоднородностью магнитной структуры для d-LSMO пленки и увеличением ширины линии для гетероструктуры Pt/d-LSMO за счет двухмагнонного механизма затухания прецессии спина. Для отожженных пленок *h*-LSMO наблюдается только увеличение ширины линии при понижении температуры. Наблюдалось аномальное увеличение ширины линии спектра ФМР для эпитаксиальных пленок LSMO после осаждения пленки Pt сверху. Увеличение ширины линии в гетероструктуре Pt/h-LSMO при низких температурах T < 150 K можно объяснить уменьшением сопротивления пленки и вкладом механизма уширения ширины линии ФМР за счет возбуждения вихревого тока.

Авторы благодарны В.В. Демидову и В.А. Ацаркину за полезное обсуждение полученных результатов и помощь при проведении исследований.

Список литературы

- [1] A.-M. Haghiri-Cosnet, J.P. Renard. J. Phys D 36, R127 (2003).
- [2] Zh. Huang, G.Y. Gao, Zh.Zh. Yin, X.X. Feng, Y.Zh. Chen, X.R. Zhao, J.R. Sun, W.B. Wu. J. Appl. Phys. 105, 113919 (2009).
- [3] G.A. Ovsyannikov, A.M. Petrzhik, I.V. Borisenko, A.A. Klimov, Yu.A. Ignatov, V.V. Demidov, S.A. Nikitov. JETP 108, 48 (2009).
- [4] N.D. Mathur, G. Burnell, S.P. Isaac, T.J. Jackson, B.S. Teo, J.L. MacManus-Driscoll, L.F. Cohen, J.E. Evetts, M.G. Blamire. Nature 387, 266 (1997).
- [4] M. Bowen, M. Bibes, A. Barthélémy, J.P. Contour, A. Anane, Y. Lemaître, A. Fert. Appl. Phys. Lett. 82, 233 (2003).
- [6] Y. Ishii, H. Yamada, H. Sato, H. Akoh, M. Kawasaki, Y. Tokura. Appl. Phys. Lett. 87, 22509 (2005).
- [7] Z.H. Xiong, D. Wu, Z.V. Vardeny, J. Shi. Nature 427, 821 (2004).
- [8] V. Dediu, M. Murgia, F.C. Matacotta, C. Taliani, S. Barbanera. Solid State Commun 122, 181 (2002).
- [9] G.Y. Luo, C.R. Chang, J.G. Lin. J. Appl. Phys. 115–119, 17C508 (2014).
- [10] V.A. Atsarkin, B.V. Sorokin, I.V. Borisenko, V.V. Demidov, G.A. Ovsyannikov. J. Phys. D 49, 125003 (2016).
- [11] T.L. Gilbert. IEEE Trans. Magn. 40, 3443 (1949).
- [12] S.V. Vonsovskii. *Ferromagnetic Resonance*. Academic, N.Y. (1966).
- [13] T.G.A. Verhagen, H.N. Tinkey, H.C. Overweg, M. van Son, M. Huber, J.M. van Ruitenbeek, J. Aarts. J. Phys. Condens. Matter 28, 056004 (2016).
- [14] W. Platow, A.N. Anisimov, G.L. Dunifer, M. Farle, K. Baberschke. Phys. Rev. B 58, 5611 (1998).
- [15] V. Flovik, F. Macia, A.D. Kent, E. Wahlström. J. Appl. Phys. 117, 143902 (2015).
- [16] A.G. Flores, M. Zazo, V. Raposo, J. Iniguez. JAP 93, 8068 (2003).
- [17] B. Heinrich, R. Urban, G. Woltersdorf. J. Appl. Phys. 91, 7523 (2002).
- [18] J.-M. Beaujour, D. Ravelosona, I. Tudosa, E.E. Fullerton, A.D. Kent. Phys. Rev. B 80, 180415 (2009).
- [19] A. Tserkovnyak, Brataas, E.W. Bauer. Phys. Rev. Lett. 88, 117601 (2002).
- [20] A. Azevedo, L.H. Vilela-Leao, R.L. Rodriguez-Suarez, A.F. Lacerda Santos, S.M. Rezende. Phys. Rev. B 83, 144402 (2011).
- [21] O. Mosendz, V. Vlaminck, J.E. Pearson, F.Y. Fradin, G.E.W. Bauer, S.D. Bader, A. Hoffmann. Phys. Rev. 82, 214403 (2010).
- [22] M. Rezende, R.L. Rodriguez-Suarez, M.M. Soares, L.H. Vilela-Le, D. Ley Dominguez, A. Azeved. Appl. Phys. Lett. 102, 012402 (2013).
- [23] S. Emori, U.S. Alaan, M.T. Gray, V. Sluka, Y. Chen, A.D. Kent, Y. Suzuki. Phys. Rev. B 94, 224423 (2016).
- [24] V.V. Demidov, G.A. Ovsyannikov, A.M. Petrzhik, I.V. Borisenko, A.V. Shadrin, R. Gunnarsson. J. Appl. Phys. **113**, 163909 (2013).
- [25] G.Y. Luo, M. Belmeguenai, Y. Roussigné, C.R. Chang, J.G. Lin, S.M. Cherif. AIP Adv. 5, 097148 (2015).
- [26] J.-C. Rojas-Sanchez, N. Reyren, P. Laczkowski, W. Savero, J.-P. Attane, C. Deranlot, M. Jamet, J.-M. George, L. Vila, H. Jaffrés. Phys. Rev. Lett. **112**, 106602 (2014).

- [27] O. Mosendz, V. Vlaminck, J.E. Pearson, F.Y. Fradin, G.E.W. Bauer, S.D. Bader, A. Hoffmann. Phys. Rev. 82, 214403 (2010).
- [28] M. Rezende, R.L. Rodriguez-Suarez, M.M. Soares, L.H. Vilela-Le, D. Ley Dominguez, A. Azeved. Appl. Phys. Lett. 102, 012402 (2013).
- [29] C.T. Boone, H.T. Nembach, J.M. Shaw, T.J. Silva. J. Appl. Phys. 113, 153906 (2013).
- [30] M. Marysko. Phys. Status Solidi A 28, 159 (1975).
- [31] C.T. Boone, J.M. Shaw, H.T. Nembach, T.J. Silva. J. Appl. Phys. 117, 223910 (2015).
- [32] C. Luo, Z. Feng, Y. Fu, W. Zhang, P.K.J. Wong, Z.X. Kou, Y. Zhai, H.F. Ding, M. Farle, J. Du, H.R. Zhai. Phys. Rev. B 89, 184412 (2014).
- [33] C. Chappert, K.L. Dang, P. Beauvillain, H. Hurdequint, D. Renard. Phys. Rev. B 34, 3192 (1986).
- [34] Yi Li, K. Baberschke. Phys. Rev. Lett. 68, 1208 (1992).
- [35] Å. Monsen, J. Boschker, F. Macià, J. Wells, P. Nordblad, A.D. Kent, R. Mathieu, T. Tybell, E. Wahlström. J. Magn. Magn. Mater 369, 197 (2014).
- [26] R. Arias, D.L. Mills. Phys. Rev. B 60, 7395 (1999).
- [37] G. Woltersdorf, B. Heinrich. Phys. Rev. B 69, 184417 (2004).

Редактор К.В. Емцев