02,12

Анизотропия эффекта Холла в квазидвумерном электронно-легированном сверхпроводнике Nd_{2-x}Ce_xCuO_{4+δ}

© А.С. Клепикова¹, Т.Б. Чарикова^{1,2}, Н.Г. Шелушинина¹, Д.С. Петухов¹, А.А. Иванов³

¹ Институт физики металлов им. М.Н. Михеева УрО РАН,

Екатеринбург, Россия

² Уральский федеральный университет им. Б.Н. Ельцина,

Екатеринбург, Россия

³ Национальный исследовательский ядерный университет "МИФИ",

Москва, Россия

E-mail: klepikova@imp.uran.ru

Представлены результаты исследования температурных зависимостей эффекта Холла электроннолегированного сверхпроводника $Nd_{2-x}Ce_xCuO_{4+\delta}$ на границе квантового фазового перехода антиферромагнетик — сверхпроводник (0.135 $\leq x \leq 0.15$) в проводящих плоскостях CuO₂ и в направлении, перпендикулярном плоскостям CuO₂. Экспериментально обнаружено, что величина коэффициента Холла между проводящими плоскостями на два порядка больше, чем в проводящих плоскостях во всем диапазоне температур, что обусловлено некогерентным характером переноса носителей заряда в направлении оси *с*.

Работа выполнена в рамках государственного задания по теме "Электрон" AAAA-A18-118020190098-5 и проекту № 18-10-2-6 Программы УрО РАН при поддержке РФФИ (грант № 18-02-00192).

DOI: 10.21883/FTT.2018.11.46650.14NN

1. Введение

Соединение $Nd_{2-x}Ce_xCuO_{4+\delta}$ — это сверхпроводник с электронным типом проводимости, имеет объемноцентрированную кристаллическую решетку и соответствует тетрагональной T'-фазе. Параметры решетки: a = b = 0.394 nm, c = 1.208 nm. В результате оптимального легирования (x = 0.15) и отжига ($\delta \rightarrow 0$) кристаллическая структура представляет собой набор проводящих плоскостей CuO₂, отделенных расстоянием 0.6 nm в направлении оси c [1]. Соединение обладает ярко выраженными двумерными свойствами — в том числе, квазидвумерным характером переноса носителей заряда.

Исследованное соединение $Nd_{2-x}Ce_xCuO_{4+\delta}$ характеризуется способностью обратимо поглощать и выделять кислород. Оптимальное содержание кислорода в элементарной ячейке, а, следовательно, и максимальная T_c наблюдается, когда $\delta \rightarrow 0$. Проблема анизотропии удельного сопротивления в нормальном состоянии систем оксидов меди давно привлекает внимание исследователей. Сопротивление в разных направлениях отличается не только величиной, но и характером температурной зависимости. Изучение металлического поведения $(d\rho_{ab}/dT > 0)$ в проводящих CuO₂ — плоскостях и неметаллического поведения $(d\rho_c/dT < 0)$ в с-направлении являются ключевым моментом в теоретическом и экспериментальном анализе системы носителей зарядов купратных высокотемпературных сверхпроводников (ВТСП) [2,3].

Неметаллическая проводимость вдоль оси c в сочетании с металлической проводимостью в CuO_2 — плоскости при сильной анизотропии проводящих свойств неоднократно наблюдалась в дырочных [4] и электронно-

легированных [5] ВТСП, что является экспериментальным свидетельством квазидвумерности оксидных систем. В данной работе проведено исследование сопротивления Холла, ρ_{xy} , в плоскости CuO₂ и между плоскостями CuO₂ в электронно-легированном ВТСП Nd_{2-x}Ce_xCuO_{4+ δ} в области перехода от фазы сосуществования антиферромагнитного (АФМ) и сверхпроводящего (СП) упорядочения в сверхпроводящую — фазу с целью анализа анизотропии переноса носителей заряда.

2. Методика эксперимента

Методом импульсного лазерного осаждения [6,7] были синтезированы эпитаксиальные пленки $Nd_{2-x}Ce_xCuO_{4+\delta}/SrTiO_3$ с x = 0.135, 0.145 и 0.15 трех типов:

1. Ориентация пленки (001) — c-ось решетки $Nd_{2-x}Ce_xCuO_{4+\delta}$ перпендикулярна плоскости подложки SrTiO₃.

2. Ориентация пленки $(1\overline{1}0)$ — ось *с* решетки $Nd_{2-x}Ce_xCuO_{4+\delta}$ направлена вдоль длинной стороны подложки SrTiO₃.

3. Ориентация пленки $(1\overline{10})$ — ось *с* решетки $Nd_{2-x}Ce_xCuO_{4+\delta}$ направлена вдоль короткой стороны подложки SrTiO₃. Такая конфигурация пленки была выбрана для измерения температурной зависимости эффекта Холла между плоскостями CuO₂.

В процессе импульсного лазерного осаждения был использован эксимерный лазер KrF с длиной волны 248 nm, с энергией 80 mJ/imp и плотностью энергии на поверхности мишени 1.5 J/cm². Длительность импульса составляла 15 ns, частота следования импульсов от 5 до 20 Hz. Далее синтезированные пленки были подвергнуты термообработке (отжигу) при различных условиях для получения образцов с разным содержанием кислорода. Рентгеноструктурный анализ (Со-Ка излучение) показал, что все пленки имели высокое качество и являлись монокристаллическими. Для измерений были отобраны пленки $Nd_{2-x}Ce_xCuO_{4+\delta}/SrTiO_3$ с оптимальным отжигом — это подразумевает образцы с максимальным значением температуры сверхпроводящего перехода для данного содержания церия (x). Условия оптимального отжига были следующие:

— для состава x = 0.15 ($T_c^{onset} = 23.5 \text{ K}, T_c = 22 \text{ K}$) $t = 60 \min, T = 780^{\circ} C, p = 10^{-5} \min Hg;$

 $(T_c^{onset} = 15.7 \,\mathrm{K},$ состава x = 0.145для $T_c = 10.7 \,\mathrm{K}) - t = 60 \,\mathrm{min}, T = 600^{\circ}\mathrm{C} \ p = 10^{-5} \,\mathrm{mm \, Hg};$ $(T_c^{onset} = 13.7 \,\mathrm{K})$ x = 0.135____ для состава $T_c = 9.6 \text{ K}$) — $t = 60 \text{ min.}, T = 600^{\circ} \text{C}, p = 10^{-5} \text{ mm Hg}.$ Толщина пленок составляла d = 140-520 nm.

Температурные зависимости продольного сопротивления $\rho_{xx}(T)$ и сопротивления Холла $\rho_{xy}(T)$ для всех исследованных типов пленок Nd_{2-x}Ce_xCuO_{4+δ}/SrTiO₃ были проведены на установке Quantum Design PPMS 9 и в соленоиде "Oxford Instruments" (ЦКП "Испытательный центр нанотехнологий и перспективных материалов" ИФМ УрО РАН). Электрическое поле было приложено всегда параллельно плоскости подложки SrTiO₃. Внешнее магнитное поле В всегда было направлено перпендикулярно плоскости подложки SrTiO₃. В зависимости от типа измеряемых образцов мы получили возможность измерить температурные зависимости сопротивления в проводящих плоскостях CuO2 и между плоскостями (вдоль оси с). В скрещенных электрическом и магнитном полях на разных типах образцов были измерены температурные зависимости сопротивления Холла: в проводящих плоскостях CuO2 и между плоскостями (вдоль оси c).

3. Результаты и обсуждение

Проведенное в [8] исследование температурных зависимостей сопротивления $ho_{ab}(T)$ и $ho_c(T)$ в стехиометрических (оптимально отожженных) соединениях $Nd_{2-x}Ce_xCuO_{4+\delta}$ на границе перехода $A\Phi M-C\Pi$ $(0.135 \le x \le 0.15)$ указывает на наличие некогерентного переноса носителей заряда в направлении оси с некогерентное туннелирование между проводящими плоскостями. Удельное сопротивление ρ_c в направлении оси с, поперек проводящих плоскостей CuO₂, является большим по сравнению с сопротивлением ρ_{ab} в проводящих плоскостях и имеет неметаллическую температурную зависимость в исследованных образцах. Таким образом имеет место квазидвумерный характер переноса носителей заряда в пленках с $0.135 \le x \le 0.15$ вблизи квантового фазового перехода АФМ-СП.

 σ_c/ρ_{ab} 800 400 0 0 100 200 300 *T*, K

Рис. 1. Температурная зависимость коэффициента анизотропии сопротивления для оптимально отожженных пленок $Nd_{2-x}Ce_{x}CuO_{4+\delta}/SrTiO_{3}$.

На рис. 1 представлена температурная зависимость коэффициента анизотропии сопротивления в проводящих плоскостях CuO₂ и в направлении, перпендикулярном этим плоскостям. Из рис. 1 видно, что коэффициент анизотропии удельного сопротивления велик даже при комнатной температуре: $\rho_c / \rho_{ab} \approx 10 - 10^2$ для всех исследованных пленок. Этот параметр существенно возрастает с понижением температуры, достигая значений $ho_c/
ho_{ab} \sim 10^3$ для соединений с x = 0.145 и 0.135 и $\rho_c/\rho_{ab} \approx 10^2$ для оптимально легированного соединения с x = 0.15 из-за резкого роста удельного сопротивления ρ_c при низких температурах.

Сильная анизотропия сопротивления в слоистой системе Nd_{2-x}Ce_xO_{4+δ} может быть объяснена некогерентным переносом носителей заряда в направлении с [9,10] при хорошей металлической проводимости в СиО2-плоскостях. В области нормального состояния, при температурах $T > T^* > T_c$ $(T^*$ — температура перехода в псевдощелевое состояние, Т_с — критическая температура сверхпроводящего перехода), когда сильные электронные корреляции не столь существенны и не приводят к возникновению фазы страйпового упорядочения, появлению волн зарядовой и спиновой плотности и к возникновению псевдощелевого состояния, эффектами электрон-электронного взаимодействия можно пренебречь [11]. Тогда если вероятность рассеяния носителя в плоскости, \hbar/τ , много больше, чем интеграл переноса, t_c, между плоскостями, т. е. электрон испытывает много столкновений прежде, чем перейти в другую плоскость, то последовательные процессы туннелирования между плоскостями не коррелированы (некогерентный перенос — неметаллическая проводимость вдоль оси c).

Согласно [9,10], в модели некогерентного переноса носителей заряда коэффициент диффузии квазидвумерной системы вдоль, и поперек, слоев описывается выра-

Рис. 2. Температурные зависимости удельного сопротивления в CuO₂-плоскости, ρ_{ab} (*a*) и коэффициента Холла при B = 1 Т в CuO₂-плоскости, R_H^{ab} (*b*) в пленках Nd_{2-x}Ce_xCuO_{4+ δ}/SrTiO₃ для 0.135 $\leq x \leq 0.15$ и оптимальном отжиге.

Рис. 3. Температурные зависимости удельного сопротивления вдоль оси c, ρ_c (a) и коэффициента Холла при B = 1 Т между плоскостями, R_H^c (b) в пленках Nd_{2-x}Ce_xCuO_{4+ δ}/SrTiO₃ для 0.135 $\leq x \leq$ 0.15 и оптимальном отжиге.

жениями:

$$D_{\parallel} = \frac{1}{2} \frac{l^2}{\tau}; \qquad D_{\perp} = \frac{1}{2} c^2 \left(\frac{t_c}{\hbar}\right)^2 \tau,$$
 (1)

где l — длина свободного пробега, а τ — время релаксации носителей в CuO₂-плоскости, c = 0.6 nm — расстояние между соседними CuO₂-плоскостями.

Из (1) находим

$$\frac{\rho_c}{\rho_{ab}} = \frac{D_{\parallel}}{D_{\perp}} = \left(\frac{l}{c}\right)^2 \left(\frac{\hbar}{t_c \tau}\right)^2,\tag{2}$$

и $\rho_c/\rho_{ab} \gg 1$, так как $l/c \gg 1$ и в условиях некогерентного туннелирования $t_c \tau \ll \hbar$.

Температурная зависимость коэффициента Холла в пленках с ориентацией оси c (001) и (110), в сопоставлении с поведением удельного сопротивления для тех же ориентаций, представлена на рис. 2 и 3. Коэффициент Холла R_H^{ab} , соответствующий движению носителей в плоскости CuO₂, отрицателен в температурном интервале T = (1.8-300) К для всех исследованных пленок, а его модуль увеличивается с ростом температуры (рис. 2, *b*). Более того, $|R_H^{ab}|$ уменьшается с увеличением уровня легирования, и в рамках однозонной модели ($n = 1/eR_H$) при T = 77 К находим:

$$n_{x=0.135} = 3.05 \cdot 10^{21} \, 1/\text{cm}^3;$$

 $n_{x=0.145} = 6.25 \cdot 10^{21} \, 1/\text{cm}^3;$
 $n_{x=0.15} = 2.16 \cdot 10^{22} \, 1/\text{cm}^3.$

Уменьшение $|R_H^{ab}|$ с увеличением уровня легирования сильнее, чем 1/x, указывает на дополнительный вклад носителей заряда второго типа (дырок) за счет реконструкции поверхности Ферми (см. работу [12] и ссылки в ней). Экспериментально обнаружено, что величина коэффициента Холла между проводящими плоскостями $|R_H^c|$ на два порядка больше, чем $|R_H^{ab}|$ в проводящих плоскостях во всем диапазоне температур (рис. 3, *b*).

В модели некогерентного переноса [9,10] (см. также [13]) можно показать, что коэффициент Холла для движения электронов поперек проводящих плоскостей, R_{H}^{c} , не дает информации о концентрации носителей, а отношение коэффициентов R_{H}^{c} и R_{H}^{ab} описывается выражением:

$$\frac{R_H^c}{R_H^{ab}} = \frac{1}{\omega_c \tau} \cdot \frac{\hbar}{t_c \tau} \cdot \frac{\rho_{ab}}{\rho_c},\tag{3}$$

где $\omega_c = eB/m$ — циклотронная частота. При B = 1 Т для исследованных образцов $\omega_c \tau \simeq 10^{-3}$. Тогда, если $\frac{\rho_{ab}}{\rho_c} \simeq (10^{-2} - 10^{-3})$ и $\frac{\hbar}{t_c \tau}$ (см. оценки в [8]), то из (3) находим $R_H^c/R_H^{ab} \simeq (10 - 10^2)$ в достаточно хорошем соответствии с экспериментальными данными.

4. Заключение

Впервые экспериментально измерено и исследовано поведение температурных зависимостей эффекта Холла электронно-легированного сверхпроводника $Nd_{2-x}Ce_xCuO_{4+\delta}$ на границе квантового фазового перехода антиферромагнетик—сверхпроводник (0.135 $\leq x \leq 0.15$) в проводящих плоскостях CuO₂ и в направлении, перпендикулярном плоскостям CuO₂, на монокристаллических пленках $Nd_{2-x}Ce_xCuO_{4+\delta}$ /SrTiO₃ с различной ориентацией оси с относительно плоскости подложки. Было установлено, что коэффициент Холла между проводящими плоскостями CuO₂ на два порядка больше, чем коэффициент Холла в плоскостях CuO₂, что может быть связано с особенностями некогерентного туннелирования носителей заряда между проводящими плоскостями.

Список литературы

- H. Takagi, S. Ushida, Y. Tokura. Phys. Rev. Lett. 62, 1197 (1089).
- [2] M.V. Sadovskii. Superconductivity and Localization. World Scientific, Singapore (2000). 261 p.
- [3] N. Plakida. High-Temperature Cuprate Superconductors, Experiment, Theory and Applications. Springer-Verlag Berlin-Heidelberg (2010). 569 p.
- [4] T. Ito, H. Takagi, S. Ishibashi, T. Ido, S. Uchida. Nature 350, 596 (1991).
- [5] Т.Б. Чарикова, А.И. Пономарев, Г.И. Харус, Н.Г. Шелушинина, А.О. Ташлыков, А.В. Ткач, А.И. Иванов. ЖЭТФ 132, 712 (2007).
- [6] A.A. Ivanov, S.G. Galkin, A.V. Kuznetsov, A.P. Menushenkov. Physica C 180, 69 (1991).
- [7] T.B. Charikova, N.G. Shelushinina, G.I. Harus, D.S. Petukhov, A.I. Ivanov. Solid State Phenomena 215, 77 (2014).
- [8] N.G. Shelushinina, A.S. Klepikova, D.S. Petukhov. O.E. Petukhova, T.B. Charikova, A.A. Ivanov. J. Phys.: Conf. Ser. (2018). In press.
- [9] A. Cassam-Chenai, D. Maily. Phys. Rev. B 52, 1984 (1995).
- [10] R.H. McKenzie, P. Moses. Phys. Rev. Lett. 81, 4492 (1998).
- [11] P.W. Anderson. Science 235, 1195 (1987).
- [12] T.B. Charikova. N.G. Shelushinina, G.I. Harus, D.S. Petukhov, V.N. Neverov, A.A. Ivanov. Physica C 488, 25 (2013).
- [13] Задачи по термодинамике и статистической физике / Под. ред. П. Ландсберга, Мир, М. (1974). гл. 19.

Редактор Т.Н. Василевская