02,11,12

Влияние локальных корреляций на переход "однородный изолятор—сверхпроводник" в доменных границах фазы зарядового порядка 2D-системы со смешанной валентностью

© В.В. Конев, В.А. Улитко, Д.Н. Ясинская, Ю.Д. Панов, А.С. Москвин

Уральский федеральный университет, Екатеринбург, Россия

E-mail: vitaliy.konev@urfu.ru

В рамках (псевдо)спинового S = 1 формализма показано, что структура антифазных доменных границ в фазе зарядового упорядочения системы со смешанной валентностью типа "триплета" Cu^{1+,2+,3+} в купратах на двумерной квадратной решетке существенно зависит от параметра одноцентровых корреляций U. Компьютерное моделирование на больших квадратных решетках иллюстрирует изменение структуры границ от однородной моновалентной непроводящей типа Cu²⁺ до нитевидной сверхпроводящей при относительно небольшом изменении положительных значений U.

Работа выполнена при поддержке Программы 211 Правительства Российской Федерации, соглашение № 02.А03.21.0006 и проектов № 2277 и № 5719 Министерства Образования и Науки Российской Федерации.

DOI: 10.21883/FTT.2018.11.46644.01NN

1. Введение

Наряду с сильноанизотропными магнетиками на основе Ni²⁺ (S = 1), например, [Ni(HF₂)(3-Clpy)₁]BF₁] и NiCl₂4SC(NH₂)₂, интерес к системам со спином S = 1связан и с так называемыми псевдоспиновыми системами типа "полужестких" (semi-hard-core) бозонов с ограничением на заполнение узлов решетки *n* = 0, 1, 2, или системами ионов со смешанной валентностью типа "триплета" $Cu^{1+,2+,3+}$ в купратах $La_{2-x}Sr_xCuO_4$, $Bi^{3+,4+,5+}$ в висмутатах [1]. Во всех случаях фазованя диаграмма спиновых или псеводоспиновых систем с (S = 1) существенно богаче, чем в случае аналогичных систем с квантовым (псевдо)спином S = 1/2, прежде всего за счет появления принципиально новых слагаемых в гамильтониане типа одноионной анизотропии и биквадратичных взаимодействий и принципиально новых фаз типа квантового парамагнетика и спин-нематика.

В зависимости от величины параметров локальных и межцентровых заряд-зарядовых корреляций, интегралов одно- и двухчастичного переноса, а также полного заряда, основное состояние таких систем может соответствовать зарядовому упорядочению, различным типам сверхпроводящего упорядочения, комбинированным фазам типа "суперсолида" (supersolid) с сосуществованием сверхпроводимости и зарядового порядка, а также специфической для этих систем фазе типа квантового парамагнетика. Для этих систем характерно формирование различных метастабильных неоднородных состояний с развитой доменной структурой и топологическими дефектами типа вихрей и скирмионов [2–4].

В данной работе в рамках псевдоспинового формализма рассмотрена простая система зарядовых триплетов $Cu^{1+,2+,3+}$ в модельном купрате. Мы показываем, что

структура антифазных доменных границ в фазе зарядового упорядочения такой системы существенно зависит от параметра одноцентровых корреляций U, меняясь от однородной моновалентной непроводящей типа Cu^{2+} до нитевидной сверхпроводящей при относительно небольшом изменении положительных значений U.

2. Модельный купрат: псевдоспиновый *S* = 1 формализм

Модельный купрат представляет 2D-систему Си-центров в CuO₂ плоскости купратов, которые могут находиться в трех различных валентных зарядовых состояниях: Cu^{1+,2+,3+}. Этот зарядовый триплет мы связываем с тремя состояниями псевдоспина S = 1 следующим образом: Cu¹⁺ $\rightarrow M_S = -1$, Cu²⁺ $\rightarrow M_S = 0$, Cu³⁺ $\rightarrow M_S = +1$ и используем известные методы описания спиновых систем.

Спиновая алгебра систем с S = 1 ($M_S = 0, \pm 1$) включает восемь независимых нетривиальных операторов (три дипольных и пять квадрупольных)

$$S_{z}; S_{\pm} = \mp \frac{1}{\sqrt{2}} (S_{x} \pm iS_{y}); S_{z}^{2};$$
$$T_{\pm} = \{S_{z}, S_{\pm}\} \equiv S_{z}S_{\pm} + S_{\pm}S_{z}; S_{\pm}^{2}.$$
(1)

Операторы повышения/понижения S_{\pm} и T_{\pm} меняют проекцию псевдоспина на ± 1 , но различным образом: $\langle 0|S_{\pm}| \mp 1 \rangle = \langle \pm 1|S_{\pm}|0 \rangle = \mp 1$, $\langle 0|T_{\pm}| = \mp 1 \rangle = -\langle \pm 1|T_{\pm}|0 \rangle = +1$. Операторы повышения/понижения S_{\pm}^2 описывают переходы $|-1\rangle \leftrightarrow |+1\rangle$, то есть они "рождают" на узле дырочную (S_{\pm}^2) или электронную (S_{\pm}^2) пару, представляющих композитный локальный бозон, с кинематическим ограничением $(S_{\pm}^2)^2 = 0$, что подчеркивает его природу как "жесткого" (hard-core)

бозона. Локальный (узельный) недиагональный параметр порядка $\langle S_{+}^{2} \rangle$, являющийся фактически параметром локального сверхпроводящего порядка, отличен от нуля только в случае, если на узле имеется квантовая суперпозиция состояний $|-1\rangle$ и $|+1\rangle$.

Вводя псевдоспиновый *S* = 1 формализм для описания зарядовых триплетов, запишем эффективный гамильтониан, который коммутирует с *z*-компонентой полного псевдоспина $\Sigma_i S_{iz}$ и, таким образом, сохраняет полный заряд системы, как сумму потенциальной и кинетической энергий $H = H_{\rm pot} + H_{\rm kin}^{(2)},$

где

$$H_{\text{pot}} = \sum_{i} \left(\Delta S_{iz}^2 - \mu S_{iz} \right) + \frac{1}{2} V \sum_{\langle ij \rangle} S_{iz} S_{jz}, \qquad (3)$$

(2)

а в кинетической энергии мы учтем только вклад двухчастичного переноса локальных композитных бозонов

$$H_{\rm kin}^{(2)} = -\frac{1}{2} t_b \sum_{\langle ij \rangle} \left(S_{i+}^2 S_{j-}^2 + S_{i-}^2 S_{j+}^2 \right). \tag{4}$$

Первое слагаемое в (3), или "одноионная анизотропия", описывает корреляционные эффекты плотностьплотность на узлах, причем параметр Δ можно связать с известным корреляционным параметром U: $\Delta = U/2$. Второе слагаемое может быть связано с псевдомагнитным полем вдоль оси Ог, либо с химическим потенциалом относительно добавления новых частиц. Последний член описывает межузельные взаимодействия (корреляции) типа плотность-плотность. Ниже мы ограничиваемся учетом взаимодействия ближайших соседей с положительным (антиферромагнитным) знаком параметра межцентровых корреляций V.

В зависимости от соотношения между параметрами гамильтониана (2) и величины полного заряда основное состояние системы соответствует либо однородной непроводящей фазе типа квантового парамагнетика с $\langle S_z \rangle = \langle S_z^2 \rangle = 0$, реализуемой при больших положительных значениях корреляционного параметра Δ (large-U phase), либо непроводящей фазе зарядового упорядочения (СО) — аналогу антиферромагнитного упорядочения вдоль z-оси, либо сверхпроводящей (SF, superfluid) фазе с отличным от нуля параметром порядка $\langle S_{\pm}^2 \rangle$, сопровождаемой однородным ферроупорядочением, или неоднородным антиферроупорядочением (supersolid phase) *z*-компонент псевдоспина. Локальный параметр сверхпроводящего порядка $\langle S_{+}^{2} \rangle$ может быть представлен в стандартной форме $|\Psi|e^{\pm i\phi}$ с модулем $|\Psi|$ и фазой ϕ .

3. Особенности структуры антифазных доменных границ СО-фазы

С использованием графического процессора NVidia в рамках метода Монте-Карло мы моделировали фазовый

Рис. 1. Эволюция антифазной доменной границы с ростом параметра локальной корреляции Д. Выделен фрагмент решетки 256 × 256 с антифазной доменной границей, разделяющей домены зарядового порядка, обозначенные знаками плюс и минус. Черным ибелым цветом обозначены нитевидные "сверхпроводящая" и "родительская" Cu²⁺-фазы соответственно.

переход зарядового упорядочения в модельном купрате в двух-подрешеточном приближении для квадратной решетки 256 × 256 с периодическими граничными условиями при выборе параметров $t_b = 1$, V = 0.75, $\mu = 0$, обеспечивающим основное состояние типа зарядового упорядочения в достаточно широком диапазоне изменений параметра локальной корреляции Δ .

В процессе быстрой термализации (отжига), при $\Delta = -5$, происходило формирование разветвленной доменной структуры с появлением при низких температурах ярко выраженной нитевидной (филаментарной) сверхпроводимости в центре антифазных доменных границ СО-фазы, характеризуемой, прежде всего, отличным от нуля значением модуля локального параметра сверхпроводящего порядка, свидетельствующего о существовании локальных квантовых суперпозиций Cu¹⁺-Cu³⁺. С ростом интеграла переноса композитного бозона t_b происходит постепенное уширение доменных границ с увеличением объема сверхпроводящего состояния вплоть до полного вытеснения СО-фазы и перехода в неоднородное сверхпроводящее состояние.

Интересно, что как СО-доменная структура, так и сверхпроводящая структура доменной границы оказа-

Рис. 2. Распределение фазы локального сверхпроводящего параметра порядка (фазовый поток) в участке доменной границы, выделенном рамкой на рис. 1. Градация серого цвета указывает на неоднородность распределения модуля локального параметра сверхпроводящего порядка.

лись устойчивыми относительно изменения параметра Δ локальной корреляции в широком диапазоне, вплоть до значений $\Delta \approx +1.0$. Однако при дальнейшем росте локальных корреляций происходит коренная перестройка структуры доменных границ. На рис. 1 представлена картина эволюции антифазной доменной границы с ростом $\Delta \ge +1.0$, а на рис. 2 представлено распределение фазы локального сверхпроводящего параметра порядка (фазовый поток) в доменной границе. При постепенном повышении Δ нарушается регулярная структура нитевидной сверхпроводимости в центре антифазной доменной границы с появлением участков "родительской" Cu²⁺-фазы, то есть фазы квантового парамагнетика на псевдоспиновом языке, разрастающейся вплоть до полного вытеснения нитевидной сверхпроводимости при $\Delta \approx +1.4$ и перехода всей границы в Cu²⁺-фазу. При дальнейшем росте корреляций $\Delta \geq +1.5$ происходит уширение доменной границы с постепенным вытеснением зарядового порядка. Другими словами, фазовый переход: зарядовое упорядочение родительская фаза (large-U-phase) с ростом параметра локальной корреляции реализуется путем разрастания доменных границ.

Исследование температурных эффектов показывает, что с ростом температуры в доменных стенках СО-фазы при $\Delta = +1.0$ сперва происходит переход из сверхпроводящего состояния в родительскую фазу, а затем в неупорядоченное "парамагнитное" состояние. Однако при последующем охлаждении вплоть до очень низких температур T = 0.0001 восстанавливается только "родительская" структура доменных границ, то есть мы имеем дело с температурным гистерезисом структуры границ.

4. Заключение

Нами проведено исследование влияния величины локальных корреляций $\Delta = U/2$ на структуру доменных границ фазы зарядового упорядочения модельного купрата. В ходе численного моделирования методом Монте-Карло на больших квадратных решетках мы смогли наблюдать образование при быстром отжиге развлетвленной доменной структуры, в антифазных доменных границах которой формируется нитевидная филаментарная сверхпроводимость, устойчивая в широком интервале изменений U вплоть до положительных значений $U \approx 2$. Однако при дальнейшем росте локальных корреляций нитевидная сверхпроводимость разрушалась и в границах формировалась нитевидная "родительская" Cu²⁺-фаза, разделяющая домены с зарядовым упорядочением Cu¹⁺-Cu³⁺. Моделирование температурных эффектов указывает на наличие температурного гистерезиса структуры границ.

Список литературы

- [1] A.S. Moskvin. ЖЭТФ 121, 3, 477 (2015); [JETP 121, 3, 549 (2015)].
- [2] Y.D. Panov, A.S. Moskvin, F.N. Rybakov, A.B. Borisov. J. Low Temperature Phys. 185, 5–6, 488 (2016).
- [3] A.S. Moskvin, Yu.D. Panov, F.N. Rybakov, A.B. Borisov. J. Superconductiv. Nov. Magnet. 30, 1, 43 (2017).
- [4] Y.D. Panov, A.S. Moskvin. Physica C 548, 82 (2018); https://doi.org/10.1016/j.physc.2018.02.032.

Редактор Т.Н. Василевская