Релаксорные свойства TIInS₂, легированного Fe

© Р.М. Сардарлы, О.А. Самедов, И.Ш. Садыхов, В.А. Алиев*

Институт радиационных проблем Национальной академии наук Азербайджана,

370143 Баку, Азербайджан

* Институт физики Национальной академии наук Азербайджана,

370143 Баку, Азербайджан

E-mail: sardarli@yahoo.com

(Поступила в Редакцию 28 октября 2002 г.)

Показано, что TlInS₂, легированный Fe, проявляет все особенности, характерные для релаксорных сегнетоэлектриков. Установлены температурная область существования микродоменного (релаксорного) состояния и температура перехода в макродоменное состояние.

Анализ температурных зависимостей диэлектрической проницаемости $\varepsilon(T)$ в области фазовых переходов соединения TIInS₂ показал, что зависимость $\varepsilon(T)$ имеет разный вид для образцов, взятых из разных технологических партий. В работе [1] установлено, что разный вид кривых $\varepsilon(T)$ связан с тем, что TIInS₂ относится к классу соединений, у которых происходит перераспределение состава в процессе роста (бертоллиды). Однако эта особенность не приводит к размытию фазовых переходов, а зависимость $\varepsilon^{-1}(T)$ подчиняется закону Кюри–Вейса с постоянной $\approx 10^{-3}$, начиная с субмиллиметровых областей спектра вплоть до измерений $\varepsilon(T)$ в области kHz [2,3]. Нейтронодифракционными исследованиями установлено, что соединение TIInS₂ является несобственным сегнетоэлектриком с несоразмерной фазой [4].

Температурная область, в которой наблюдается неустойчивость кристаллической решетки TIInS₂, весьма чувствительна к трехвалентным катионным примесям, имеющим различные ионные радиусы и координационные числа. При этом для одних примесей наблюдается повышение температур фазовых переходов, в то время как для других — понижение (результаты этих исследований находятся в печати). Представляет интерес исследовать природу этих процессов в кристаллах TIInS₂. Переходные металлы группы железа, являясь многозарядными примесными ионами, могут образовывать глубокие центры с сильной локализацией, способные к значительному взаимодействию с высокополяризуемой кристаллической решеткой TIInS₂.

В данной работе представлены результаты исследований диэлектрических поляризационных и пироэлектрических свойств кристаллов TIInS₂(Fe).

1. Методика эксперимента

Монокристаллы TIInS₂(Fe) выращены модифицированным методом Бриджмена–Стокбаргера. Анизотропия диэлектрических свойств в плоскости слоя не наблюдалась. Измерения проводились на гранях, вырезанных перпендикулярно полярной оси. Грани шлифовались, полировались и покрывались серебряной пастой. Диэлектрическая проницаемость ε и тангенс угла диэлектрических потерь tg δ измерялись при помощи моста переменного тока E7–8 на частоте 1 kHz и E7–12 на частоте 1 MHz в интервале температур 150–250 К. Скорость температурного сканирования составляла 0.1 К/min. Петли диэлектрического гистерезиса изучались на частоте 50 Hz по модифицированной схеме Сойера–Тауера. Пироэффект исследовался квазистатическим методом при помощи универсального вольтметра B7–30.

2. Результаты и обсуждение

На рис. 1 представлены температурные зависимости диэлектрической проницаемости $\varepsilon(T)$ кристаллов TlInS₂ и TlInS₂/Fe/, снятые в режимах охлаждения и нагрева. Как видно из рис. 1, для кристаллов TlInS₂ (кривые *1, 2*) наблюдается известная последовательность фазовых переходов [3], начинающаяся с перехода из

Рис. 1. Зависимости $\varepsilon(T)$ кристалла TlInS₂ (I — охлаждение, 2 — нагрев) и кристалла TlInS₂(Fe) (3, 5 — охлаждение, 4 — нагрев). Частота измерительного поля кривых I-4 составляет 1 kHz, кривой 5 — 1 MHz.

параэлектрической в несоизмеримую фазу при 216 К. Два перехода при 204 и 200 К, природа которых широко обсуждается в [5], по всей видимости, связаны с перестройкой модулированной структуры. И, наконец, переход в полярную фазу происходит при 196 К.

В интервале температур $T - T_1(216) \leq 50 \text{ K}$ зависимость $\varepsilon(T)$ описывается законом Кюри–Вейса с константой Кюри $C^+ = 5.3 \cdot 10^3 \text{ K}$. Аномалия при 196 К проявляется при охлаждении кристалла, все пики явно выражены без характерных признаков размытия. Как видно из рисунка, диэлектрический гистерезис для TIInS₂ наблюдается только в области температуры 196 К, в то время как для легированных образцов гистерезис в области T_m (температура максимума кривой $\varepsilon(T)$) составляет около 2 К (кривые 3, 4 на рис. 1).

Характер диэлектрической проницаемости в этой же температурной области для кристаллов $(\text{TIInS}_2)_{1-x}(\text{Fe})_x$, где x = 0.001, существенно иной. А именно зависимость $\varepsilon(T)$ сильно размывается, наблюдается смещение фазовых переходов в область низких температур на 10 К и расширение области существования несоразмерной фазы с сохранением двух аномалий при 190 и 209 К. Возникает естественный вопрос о причине столь радикальной перестройки зависимости $\varepsilon(T)$ при введении 0.1 mol.% Fe.

Как известно, флуктуация состава является основной причиной размытия температур фазовых переходов [6,7]. Однако не всякое увеличение концентрации дефектов может быть причиной размытия. Согласно [8], этой причиной являются дефекты, обладающие дипольными моментами, создающими электрические поля, в соседних областях кристалла. Кроме того, поскольку TlInS₂ является полупроводником, введение примесей создает соответствующие центры локализации носителей, которые могут создать локальные электрические поля, стимулирующие возникновение индуцированной поляризации вблизи фазового перехода [9-11]. Важной особенностью сегнетоэлектриков с размытыми фазовыми переходами является то, что диэлектрическая поляризация выше температуры Т_т меняется не по закону Кюри-Вейса $(\varepsilon')^{-1} = C^{-1}(T - T_0)$, а по закону $(\varepsilon')^{-1}A + B(T - T_0)^2$. На рис. 2 приводится зависимость $\varepsilon^{-1/2}(T)$ для кри-

тна рис. 2 приводится зависимоств $C^{-1}(T)$ для кристалла TIInS₂(Fe). Со стороны высокотемпературной фазы она пересекает температурную ось при температуре T = 164 K, совпадающей с максимумом низкотемпературного пирокоэффициента (рис. 3). Исследования поляризационных свойств TIInS₂(Fe) показали, что ниже 164 K наблюдаются петли диэлектрического гистерезиса, максимальное значение спонтанной поляризации которых достигает $7.5 \cdot 10^{-8}$ C/cm². Для нелегированных кристаллов TIInS₂ $P_S = 1.8 \cdot 10^{-7}$ C/cm². В температурной области 164–190 K величина $P_S = 1.5 \cdot 10^{-8}$ C/cm². Во вставках к рис. 2 приводятся петли диэлектрического гистерезиса TIInS₂(Fe). Первая вставка отображает наблюдаемую петлю в температурной области 164–190 K. Как видно из рисунка, петля узкая и вытянутая, характерная для релаксорных сегнетоэлектриков. Во второй

Рис. 2. Температурная зависимость $\varepsilon^{-1/2}$ для соединения TIInS₂(Fe). Частота измерений — 1 MHz. На вставках — петли диэлектрического гистерезиса для TIInS₂(Fe).

Рис. 3. Температурная зависимость пироэлектрического коэффициента $\gamma(T)$. *1* — TIInS₂; *2* — TIInS₂(Fe).

вставке приводится вид петли диэлектрического гистерезиса ниже 164 К. Как видно, петля становится насыщенной, что характерно для типичного сегнетоэлектрика.

Исследование частотной дисперсии проводилось на двух частотах f измерительного поля — 1 kHz и 1 MHz. С ростом частоты f для кристалла TIInS₂ не наблюдалось смещения максимумов T_m кривой $\varepsilon(T)$, в то время как для кристаллов TIInS₂ (Fe) смещение размытых максимумов $\varepsilon(T)$ составляло 3 K (кривые 3, 5 на рис. 1).

На рис. З приводится температурная зависимость пироэлектрического коэффициента $\gamma(T)$ для чистого кристалла TIInS₂ (кривая *I*) и для легированного Fe (кривая *2*). Измерения проводились в квазистатическом

режиме; пироэлектрический коэффициент γ вычислялся из следующего соотношения: $\gamma = J/A_0 \cdot dT/dt$, J пироэлектрический ток, A_0 — площадь электродов, dT/dt — скорость нагрева. Измерения проводились на образцах, предварительно заполяризованных во внешнем электрическом поле. Как видно из рис. 3, для чистого кристалла TlInS₂ при 196 К наблюдается один пик на кривой $\gamma(T)$ с максимальным значением пироэлектрического коэффициента $1.4 \cdot 10^{-7}$ C/K·cm². В легированных Fe образцах TlInS₂ проявляются две аномалии на кривой $\gamma(T)$: при $T_m = 190$ и при $T_0 = 164$ К. Кроме того, в температурной области выше 190 К, т.е. в области существования несоизмеримой фазы, наблюдается слабый ток.

Анализ кривых, приведенных на рис. 1–3, позволяет утверждать, что кристаллы $\text{TIInS}_2\langle \text{Fe} \rangle$ проявляют все особенности, характерные для релаксорных сегнетоэлектриков, а именно: легирование TIInS_2 катионами Fe^{3+} приводит к размытию фазовых переходов, наблюдается частотная дисперсия диэлектрической проницаемости, в области размытого фазового перехода обнаруживается вытянутая петля диэлектрического гистерезиса, температурная зависимость диэлектрической проницаемости со стороны высокотемпературной фазы описывается не законом Кюри–Вейса, а по закону $(\varepsilon')^{-1} = A + B(T - T_0)^2$.

Размытие фазовых переходов и особенности сегнетоэлектрических свойств в соединении TlInS₂(Fe), безусловно, связаны со структурным разупорядочением, которое приводит к появлению локальных искажений симметрии и внутренних электрических полей в широком интервале температур. Несмотря на то, что исследование фазовых переходов в TIInS2 началось довольно давно, удовлетворительного понимания механизмов происходящих в них процессов до сих пор нет. На наш взгляд, это может быть связано с тем, что при исследовании фазовых переходов в соединении TIInS₂ недостаточно учитывались его полупроводниковые свойства. В особенности это относится к кристаллам, легированным катионными примесями. Эти примеси могут образовывать уровни прилипания (ловушки) у дна зоны проводимости. При этом следует учитывать процессы локализации носителей заряда на центрах и их влияние на фазовые переходы. Этот вопрос подробно рассматривался Маминым в работах [9–11], где показано, что термозаполнение ловушек может привести к сложной последовательности фазовых переходов и возникновению неустойчивого, пограничного между фазами (несоразмерная-соразмерная) состояния.

Как видно на кривой $\gamma(T)$, при температуре 164 К наблюдается пик, не проявляемый на зависимости $\varepsilon(T)$ (ср. рис. 1 и 3). Согласно [11], эта особенность является характерной для релаксоров. Она связана с тем, что характерная частота колебаний индуцированной поляризации будет определяться характерными временами релаксации не только решеточной подсистемы (как это имеет место в обычных сегнетоэлектриках), но и временами релаксации электронной подсистемы. Естественно, характерные времена изменения параметра порядка η и концентрации электронов в ловушках *т* сильно разнятся ($\tau_{\eta}/\tau_m \ll 1$). Это позволило автору работы [11] исследовать данную проблему методом разделения быстрых и медленных процессов. В результате установлено, что эффективная температура фазового перехода Т_{ст} вследствие термозаполнения уровней прилипания будет смещена ниже по температурной шкале. При температуре T_{cm} произойдет фазовый переход в состояние со спонтанной поляризацией. Для кристаллов $TIInS_2$ (Fe) эта температура соответствует 164 K (рис. 2). Как видно из рисунка, ниже 164 К петля становится насыщенной. Поскольку локализованные заряды создают локальные электрические поля, в слабых внешних полях спонтанная поляризация в отдельных микрообластях будет иметь различные направления в соответствии с пространственным распределением локализованных зарядов. Поэтому петля гистерезиса в температурной области 164-190 К является узкой и вытянутой. По этой же причине особенностей в $\varepsilon(T)$, связанных с фазовым переходом при T_{cm}, мы не наблюдаем.

Таким образом, легирование кристаллов TIInS₂ железом приводит к появлению температурной области, в которой кристалл проявляет все особенности, характерные для релаксоров. При температуре 164 К происходит фазовый переход из релаксорного (микродоменного) в макродоменное сегнетоэлектрическое состояние, которому соответствует скачок в температурной зависимости $\gamma(T)$.

Список литературы

- P.M. Сардарлы, О.А. Самедов, И.Ш. Садыхов, А.И. Наджафов, И.И. Асланов, Н.А. Эюбова. Physics and astronomy XXII, 2, 31 (2002).
- [2] А.А. Волков, Ю.Г. Гончаров, Г.В. Козлов, К.Р. Аллахвердиев, Р.М. Сардарлы. ФТТ 25, 12, 3583 (1983).
- [3] Р.А. Алиев, К.Р. Аллахвердиев, А.И. Баранов, Н.Р. Иванов, Р.М. Сардарлы. ФТТ 26, 5, 1271 (1984).
- [4] С.Б. Вахрушев, В.В. Жданова, О.Е. Квятковский, Н.М. Окунева, К.Р. Аллахвердиев, Р.А. Алиев, Р.М. Сардарлы. Письма в ЖЭТФ 39, 6, 245 (1984).
- [5] Р.А. Сулейманов, М.Ю. Сеидов, Ф.И. Салаев, Р.А. Микаилов. ФТТ 35, 2, 348 (1993).
- [6] И.П. Раевский, В.В. Еремкин, В.Г. Смотраков, Е.С. Гагарина, М.А. Малицкая. ФТТ 42, 1, 154 (2000).
- [7] М.Д. Глинчук, Е.А. Елисеев, В.А. Стефанович, Б. Хильгер. ФТТ 43, 7, 1247 (2001).
- [8] L. Benguigai, K. Bethe. J. Appl. Phys. 47, 2728 (1976).
- [9] Р.Ф. Мамин. ФТТ **33**, *9*, 2609 (1991).
- [10] Р.Ф. Мамин. Письма в ЖЭТФ 58, 7, 534 (1993).
- [11] Р.Ф. Мамин. ФТТ 43, 7, 1262 (2001).