07 Радиационная стойкость гетеропереходных солнечных элементов α-Si: H/Si с тонким внутренним слоем *i*-α-Si: H

© В.С. Калиновский¹, Е.И. Теруков^{1,2,¶}, Е.В. Контрош¹, В.Н. Вербицкий¹, А.С. Титов^{1,2}

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
 ² НТЦ тонкопленочных технологий в энергетике при Физико-техническом институте им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
 [¶] E-mail: eug.terukov@mail.ioffe.ru

Поступило в Редакцию 12 марта 2018 г.

Исследована деградация фотоэлектрических характеристик образцов гетеропереходных солнечных элементов на основе структур α -Si:H/Si при облучении электронами (с энергией 3.8 MeV) флюенсами $1 \cdot 10^{12} - 1 \cdot 10^{14}$ cm⁻². Показано, что КПД образцов исследованных гетеропереходных солнечных элементов в условиях освещенности AMO (0.136 W/cm²) снижается на 25% при флюенсе $2 \cdot 10^{13}$ cm⁻², что более чем на порядок превышает критический флюенс, достигнутый ранее при облучении высокоэнергетическими электронами кремниевых солнечных элементов с p-n-переходом и базой *n*-типа.

DOI: 10.21883/PJTF.2018.17.46576.17283

Эффективное использование солнечных элементов (СЭ) в качестве альтернативных источников энергии требует обеспечения их высокоэффективной и долговременной стабильной работы при различных воздействиях окружающей среды. Гетеропереходные солнечные элементы — HIT (heterojunction with intrinsic thin-layer solar cells)-элементы, изготовленные на основе структур α -Si:H/Si, — в настоящее время признаны одними из наиболее перспективных. В лучших образцах таких СЭ достигнут КПД более 25% (AM1.5) [1–4]. В настоящее

95

Рис. 1. Темновые ВАХ образцов НІТ-элементов, измеренные при прямом напряжении смещения до облучения (I — эксперимент; I' — расчет с использованием трехэкспоненциальной модели; $2 - J_{0t} \ge 1 \cdot 10^{-7}$ A/cm², $A_t > 2$; $3 - J_{0r} \ge 2 \cdot 10^{-8}$ A/cm², $A_r = 2$; $4 - J_{0d} \ge 2 \cdot 10^{-14}$ A/cm², $A_d = 1$) и после облучения электронами (с энергией 3.8 MeV) флюенсами $1 \cdot 10^{12}$ (5), $1 \cdot 10^{13}$ (6, 7) и $1 \cdot 10^{14}$ сm⁻² (8, 9). Кривые 6-9 соответствуют различным образцам.

время солнечные батареи на основе НІТ-элементов успешно функционируют в различных климатических поясах Земли в широком температурном диапазоне ($-40 - +50^{\circ}$ C). В данной работе сделана оценка радиационной стойкости и возможности применения НІТ-элементов на основе структур α -Si:H/Si в космических солнечных батареях.

Обеспечение современных космических аппаратов электрической энергией главным образом осуществляется за счет фотоэлектрического преобразования солнечного света. Срок службы солнечных батарей на околоземных орбитах определяется стойкостью СЭ к радиационному облучению. Радиационный энергетический спектр корпускулярных частиц определяется параметрами орбиты космического аппарата, фазой цикла солнечной активности и уровнем возмущенности магнитосферы

Номер СЭ	I_{sc} , mA	U_{oc}, V	I_{opt} , mA	U_{opt}, V	$P_{\rm max}$, mW	FF	КПД, %
1-1	43.5	0.66	40.6	0.45	18.2	0.64	16.4
1-2	46.7	0.66	42.1	0.45	19.3	0.64	17.4
1-4	46.0	0.64	42.0	0.45	18.7	0.64	16.8
2-3	43.9	0.63	41.0	0.43	17.6	0.64	15.8
2-5	43.5	0.62	40.0	0.44	17.7	0.65	15.8

Таблица 1. Значения фотоэлектрических параметров исследованных СЭ до облучения электронами (площадь фотоактивной поверхности СЭ $S = 1 \text{ cm}^2$)

Примечание. I_{sc} — ток короткого замыкания, U_{oc} — напряжение холостого хода, I_{opt} — значение тока в точке оптимальной нагрузки, U_{opt} — напряжение в точке оптимальной нагрузки, P_{max} — максимальная электрическая мощность, FF — фактор заполнения нагрузочной характеристики, КПД — коэффициент полезного действия.

Земли. Его принято задавать в виде усредненного потока электронов и протонов в радиационных поясах Земли и флюенса частиц солнечного и космического излучения за один цикл солнечной активности. Анализ, проведенный с целью определения радиационной стойкости СЭ в условиях ближнего космоса, показывает, что для СЭ, защищенных радиационно стойким стеклом либо другими защитными покрытиями, критичным является воздействие потоками высокоэнергетических частиц, например электронов, с энергиями 1–4 MeV, которые пронизывают защитные покрытия и создают дефекты в структуре СЭ [5,6].

Опытные образцы НІТ-элементов, предназначенные для радиационных испытаний, были изготовлены путем осаждения с двух сторон слоев α -Si:H на монокристаллическую кремниевую подложку (толщина $\leq 160\,\mu$ m) *n*-типа с концентрацией $\sim 10^{15}\,\mathrm{cm^{-3}}$. В экспериментах были использованы образцы площадью $\sim 1\,\mathrm{cm^2}$, вырезанные из середины исходной псевдоквадратной пластины НІТ-элемента со стороной 156 mm. Торцевые поверхности исследованных образцов не подвергались специальной обработке и не имели пассивирующих покрытий.

Радиационное облучение НІТ-элементов проводилось на воздухе при температуре 290–300 К. Плотность потока электронов составляла $2.5 \cdot 10^{11} \text{ cm}^{-2} \cdot \text{s}^{-1}$. Времена экспозиции для флюенсов $1 \cdot 10^{12}$, $1 \cdot 10^{13}$

Таблица 2. Значения фотоэлектрических параметров исследованных СЭ после облучения электронами с энергией 3.8 MeV (площадь фотоактивной поверхности СЭ $S = 1 \text{ cm}^2$)

Номер СЭ	$E_e,$ MeV	$F_e,$ cm ⁻²	I _{sc} , mA	U _{oc} , V	I _{opt} , mA	$U_{opt}, \ { m V}$	P _{max} , mW	FF	КПД, %
1-1 1-2 2-3 1-4 2-5	3.8	$ \frac{1 \cdot 10^{12}}{1 \cdot 10^{13}} \\ 1 \cdot 10^{14} $	41.0 38.8 36.5 32.6 32.2	0.62 0.57 0.57 0.54 0.53	38.1 36.1 33.4 30.1 30.2	0.47 0.46 0.46 0.43 0.42	18.1 16.5 15.4 13.0 12.7	0.72 0.74 0.74 0.74 0.74	16.3 14.8 13.8 11.7 11.4

и $1 \cdot 10^{14}$ сm⁻² были равны 4, 40 и 400 s соответственно. Погрешность плотности потока электронов и его девиация не превышали 2%. Были выполнены измерения темновых, фотовольтаических и спектральных характеристик исследованных образцов до и после радиационного облучения.

Темновые вольт-амперные характеристики (ВАХ) были получены при комнатной температуре в диапазоне токов $1 \cdot 10^{-13} - 10$ А и напряжений 0–10 V. Световые (нагрузочные) ВАХ НІТ-элементов измерялись на импульсном имитаторе при комнатной температуре со спектром излучения АМО (0.136 W/cm²). Экспериментальные данные представлены в табл. 1 и 2, а соответствующие кривые, полученные до и после облучения электронами, приведены на рис. 1–3.

Для анализа и объяснения полученных результатов использован теоретический и экспериментальный подход, разработанный авторами и использованный в предыдущих работах [7–9]. Согласно результатам анализа экспериментальных прямых темновых ВАХ исследованных образцов СЭ α-Si:H/Si, на характеристике уверенно выделяются три участка (рис. 1), соответствующие выражению

$$J = J_{0t} \left(\exp(V/A_t \varepsilon) - 1 \right) + J_{0r} \left(\exp(V/A_r \varepsilon) - 1 \right) + J_{0d} \left(\exp(V/A_d \varepsilon) - 1 \right)$$
(1)

и трем механизмам токопрохождения в области пространственного заряда (ОПЗ): туннельно-ловушечному ("избыточному") с диодным коэф-

Рис. 2. Зависимости предэкспоненциальных множителей J_{0d} (1), J_{0r} (2) и J_{0r} (3) и сопротивления R_S структуры (4) для образцов СЭ α -Si: H/Si от флюенса облучения электронами с энергией 3.8 MeV.

фициентом $A_t > 2$ и предэкспоненциальным множителем (током насыщения) $J_{0t} \ge 1 \cdot 10^{-7} \text{ А/cm}^2$; рекомбинационному (Саа–Нойс–Шокли) с $A_r = 2$, $J_{0r} \ge 2 \cdot 10^{-8} \text{ А/cm}^2$; диффузионному (Шокли) с $A_d = 1$, $J_{0d} \ge 2 \cdot 10^{-14} \text{ А/cm}^2$.

В (1) V — напряжение на ОПЗ p-n-перехода, равное разности квазиуровней Ферми на границах и внутри ОПЗ, $\varepsilon = q/kT$, J_{0t} , J_{0r} , J_{0d} предэкспоненциальные множители (токи насыщения), соответствующие указанным выше механизмам токопрохождения.

После облучения образцов СЭ α -Si:H/Si электронами с энергией 3.8 MeV и флюенсами в диапазоне $1 \cdot 10^{12} - 1 \cdot 10^{14} \text{ cm}^{-2}$ наблюдался незначительный рост предэкспоненциальных множителей, отвечающих туннельно-ловушечному ("избыточному") и рекомбинационному механизмам токопрохождения (рис. 2). Предэкспоненциальный множитель J_{0d} , соответствующий диффузионному механизму токопрохождения, при облучении в указанном диапазоне флюенсов возрастает более чем на два порядка и при флюенсе $1 \cdot 10^{14} \text{ cm}^{-2}$ достигает значения $2 \cdot 10^{-11} \text{ A/cm}^2$ (рис. 2). Это характеризует рост плотности радиационных дефектов в исследуемой структу-

Рис. 3. Зависимость изменения КПД образцов НІТ-элементов от флюенса облучения электронами с энергией 3.8 MeV, измеренные при импульсной засветке (AM0, 0.136 W/cm²).

ре, что соответственно ведет к снижению КПД сначала на 2%, а затем на ~5% (рис. 3). Отметим, что омическое сопротивление структур R_s с ростом флюенса облучения снижается до $1.5 \Omega \cdot \text{cm}^2$ (рис. 2), что подтверждается ростом фактора заполнения нагрузочных ВАХ (табл. 1 и 2) и формой нагрузочных кривых.

Таким образом, в работе приведены результаты экспериментального исследования влияния облучения электронами с энергией 3.8 MeV на характеристики гетеропереходных солнечных элементов на основе структур α -Si:H/Si. Прямые темновые BAX СЭ до и после облучения хорошо описываются суммой трех токовых компонент, соответствующих трем механизмам токопрохождения: туннельно-ловушечному (диодный коэффициент $A_t > 2$), рекомбинационному ($A_r = 2$) и диффузионному ($A_d = 1$). При облучении в исследованных образцах не наблюдается существенного роста предэкспоненциальных множителей

(токов насыщения), соответствующих туннельно-ловушечному ("избыточному") и рекомбинационному механизмам токопрохождения, в то время как для диффузионного механизма токопрохождения предэкспоненциальный множитель (J_{0d}) возрастает более чем на два порядка.

Наибольшее снижение внешней квантовой эффективности в исследованных образцах СЭ α -Si:H/Si наблюдалось в длинноволновой части спектральной чувствительности, в то время как коротковолновая часть чувствительности (≤ 550 nm) практически не изменяется.

Установлено, что критическое значение флюенса электронов с энергией 3.8 MeV, при котором генерируемая исследованными HIT-элементами мощность снижается на 25% в условиях AMO (0.136 W/cm²), составляет $2 \cdot 10^{13}$ cm⁻², что более чем на порядок превосходит критическую величину флюенса при облучении высокоэнергетическими электронами, достигнутую ранее в образцах кремниевых СЭ с p-n-переходом и базой n-типа.

Список литературы

- Masuko K., Shigematsu M., Hashiguchi T., Fujishima D., Kai M., Yoshimura N., Yamaguchi T., Ichihashi Y., Mishima T., Matsubara N., Yamanishi T., Takahama T., Taguchi M., Maruyama E., Okamoto S. // IEEE J. Photovoltaics. 2014. V. 4. N 6. P. 1433–1435.
- [2] Yamamoto K., Yoshikawa K., Yoshida W., Irie T., Kawasaki H., Konishi K., Asatani T., Kanematsu M., Mishima R., Nakano K., Uzu H., Adachi D. High efficiency α-Si/c-Si heterojunction solar cells // Program Book. 27th Int. Conf. on amorphous and nanocrystalline semiconductors. Seoul, Korea, 2017. P. 92.
- [3] Миличко В.А., Шалин А.С., Мухин И.С., Ковров А.Э., Красилин А.А., Виноградов А.В., Белов П.А., Симовский К.Р. // УФН. 2016. Т. 186. № 8. С. 801–852.
- [4] Shah A.V., Schade H., Vanecek M., Meier J., Vallat-Sauvain E., Wyrsch N., Kroll U., Droz C., Bailat J. // Prog. Photovolt.: Res. Appl. 2004. V. 12. P. 113– 142. DOI: 10.1002, pip.533
- [5] Markvart T. // J. Mater. Sci.: Mater. Electron. 1990. V. 1. N 1. P. 1-12.
- [6] Васильев А.М., Ландсман А.П. Полупроводниковые преобразователи. М.: Сов. радио, 1971. 248 с.

- [7] Андреев В.М., Евстропов В.В., Калиновский В.С., Лантратов В.М., Хвостиков В.П. // ФТП. 2009. Т. 43. В. 5. С. 671–678.
- [8] Андреев А.А., Андреев В.М., Калиновский В.С., Покровский П.В., Теруков Е.И. // ФТП. 2012. Т. 46. В. 7. С. 952–959.
- [9] Климко Г.В., Комиссарова Т.А., Сорокин С.В., Контрош Е.В., Лебедева Н.М., Усикова А.А., Ильинская Н.Д., Калиновский В.С., Иванов С.В. // Письма в ЖТФ. 2015. Т. 41. В. 18. С. 82–88.