05 Эффекты фазового перехода, индуцированные давлением, в модельных сегнетоэластиках Hg₂Br₂

© Е.М. Рогинский¹, А.С. Крылов², Ю.Ф. Марков¹

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

² Институт физики им. Л.В. Киренского СО РАН, Красноярск, Россия E-mail: e.roginskii@mail.ioffe.ru

Поступило в Редакцию 19 апреля 2018 г.

В широком интервале гидростатических давлений изучены спектры комбинационного рассеяния модельных несобственных сегнетоэластиков — кристаллов Hg₂Br₂. Получены барические зависимости частот фононов. При этом наибольший интерес вызывает обнаружение и аномальное поведение мягкой моды, генетически связанной с акустическим фононом (TA₁) на границе зоны Бриллюэна (*X*-точка) тетрагональной фазы. В спектрах сегнетоэластической фазы обнаружено также "возгорание" второго акустического фонона (TA₂) из этой же точки и изучено его барическое поведение. При достаточно больших давлениях обнаружено и объяснено расщепление дважды вырожденных фононов симметрии E_g .

DOI: 10.21883/PJTF.2018.17.46564.17346

1*

Кристаллы галогенидов одновалентной ртути Hg_2Hal_2 (Hal = F, Cl, Br, I) при комнатной температуре имеют очень простую структуру, состоящую из параллельных оптической оси $C_4(Z)$ цепочек линейных молекул Hal–Hg–Hg–Hal, слабо связанных друг с другом и образующих объемно центрированную тетрагональную решетку D_{4h}^{17} с двумя

3

Рис. 1. Кристаллическая решетка Hg₂Br₂ при комнатной температуре и нормальном атмосферном давлении.

молекулами в элементарной ячейке (рис. 1) [1]. Цепочечное строение этих кристаллов приводит к очень сильной анизотропии их физических свойств, в том числе упругих, оптических и др. Эти кристаллы демонстрируют уникальные физические свойства. Например, они имеют рекордно низкие среди твердых тел скорости поперечного (TA) звука $V_{[110]}^{[110]} = 282 \text{ m/s} (\text{Hg}_2\text{Br}_2)$ и 253 m/s (Hg₂I₂), рекордно высокое двулучепреломление $\Delta n = +0.85 (\text{Hg}_2\text{Br}_2)$, $+1.48 (\text{Hg}_2\text{I}_2)$ и акустооптическое

5

взаимодействие $M_2 = 1804 \cdot 10^{-18} \text{ CGS}$ units для TA-волны (Hg₂Br₂) и 4284 $\cdot 10^{-18} \text{ CGS}$ units (Hg₂I₂) [2].

Указанные уникальные свойства позволяют успешно использовать эти кристаллы в технике в качестве основных элементов поляризаторов, акустических линий задержки, акустооптических фильтров, модуляторов, дефлекторов и др.

Значительный интерес к этому семейству изоморфных кристаллов связан также с тем, что они являются модельными кристаллическими системами при исследовании общих проблем структурных фазовых переходов (ФП). При охлаждении до $T_c = 186$ K (Hg₂Cl₂) и 144 K (Hg₂Br₂) эти кристаллы испытывают несобственные сегнетоэластические ФП $D_{4h}^{17} \rightarrow D_{2h}^{17}$ из тетрагональной фазы в ромбическую. ФП индуцированы конденсацией наиболее "медленной", наиболее низкочастотной ТА-ветви в X-точке границы зоны Бриллюэна (ЗБ) тетрагональной парафазы и сопровождаются при $T \leq T_c$ удвоением элементарной ячейки, "перебросом" $X \rightarrow \Gamma$ в ЗБ, возникновением спонтанной деформации и сегнетоэластических доменов [3–5].

Однако в изоморфных кристаллах $Hg_2I_2 \Phi\Pi$ при атмосферном давлении не происходит даже при охлаждении до очень низких температур (вплоть до 1.5 K), но в рамановских спектрах наблюдалось смягчение одного из малоинтенсивных низкочастотных колебаний [6]. По аналогии с похожими эффектами в изоморфных кристаллах Hg_2Cl_2 и Hg_2Br_2 предполагалось, что это колебание является обертоном мягкой TA-моды с границы 3Б (X-точка). При атмосферном давлении кристаллы Hg_2I_2 являются виртуальными сегнетоэластиками ($T_c \approx -20$ K). $\Phi\Pi$ в этих кристаллах удалось реализовать лишь при высоком гидростатическом давлении; давление фазового перехода при комнатной температуре $P_c = 9$ kbar [7]. Значительное внимание было уделено изучению барического поведения мягких мод как в парафазе ($P < P_c$), так и в сегнетоэластической фазе ($P > P_c$) [8,9].

Недавно теоретически и экспериментально нами исследовался изоморфный и также модельный сегнетоэластик Hg₂Cl₂ [10], было изучено барическое поведение фононов, в том числе мягких, а также обнаружен принципиальный эффект — новый структурный фазовый переход.

В настоящей работе продолжены эти барические исследования, но уже на других модельных и изоморфных кристаллах Hg₂Br₂.

Эксперименты в условиях высокого гидростатического давления (до 13 GPa) проводились на установке с алмазными наковальнями

при температуре 295 К. Диаметр камеры с образцом 0.25 mm, высота 0.1 mm. В качестве передающей давление среды использовались различные масла при давлениях до 4–5 GPa, а при более высоких давлениях — тщательно обезвоженная смесь этилового и метилового спиртов. Давление в "алмазной" камере определялось по сдвигу полосы люминесценции рубина, микрокристалл которого помещался вблизи изучаемого образца [11]. Погрешность измеряемого давления не превышала 0.05 GPa.

Для получения рамановских спектров в качестве источника возбуждения было использовано поляризованное излучение 514.5 nm Ar-лазера (Spectra-Physics Stabilite 2017) мощностью 100 mW (20 mW на образце). Спектры в геометрии 180° были получены на спектрометре Horiba Jobin Yvon T64000 в частотном диапазоне 20–400 cm⁻¹.

Предварительно изучаемые кристаллы Hg_2Br_2 раскалывались по плоскостям спайности {110} и разрезались по плоскостям {001}, а затем образцы для измерений подгонялись под необходимый размер. Образцы размером не более $\sim 0.25 \times 0.1$ mm помещались в камеру с алмазными наковальнями, позволяющую проводить оптические исследования, в том числе поляризационные при давлениях от 0.2 до 13 GPa.

На рис. 2 приведены спектры комбинационного рассеяния (СКР) при комнатной температуре и давлении 0.2 GPa изучаемых монокристаллов Hg₂Br₂, полученные в алмазной камере. В спектрах наблюдается по две линии, разрешенных в поляризации XZ(YZ) (E_g -симметрия) — v_1 , v_2 и в поляризации ZZ (A_{1g} -симметрия) — v_3 , v_4 , что согласуется с результатами теоретико-группового рассмотрения, согласно которому в СКР первого порядка этих кристаллов, имеющих при комнатной температуре тетрагональную решетку симметрии D_{4h}^{17} и одну формульную единицу (четырехатомную линейную молекулу Br-Hg-Hg-Br) в примитивной ячейке, разрешены четыре колебания: два дважды вырожденных симметрии $E_g(XZ, YZ)$ и два полносимметричных $A_{1g}(XX + YY, ZZ)$ (в скобках указаны компоненты поляризуемости, активные в СКР). Собственные векторы (нормальные координаты) этих колебаний приведены также на рис. 2 (см. вставку). Следует заметить, что первое дважды вырожденное колебание симметрии E_g — это либрация, качание линейной молекулы как целого относительно горизонтальной оси X (или Y), оно обозначено как ν_1 . Второе колебание симметрии E_g —- деформационное "зигзагообразное" (v_2). Полносимметричные валентные колебания A_{1g} соответствуют главным образом смещениям Hg-Hg (v₃) и Br-Hg (v₄).

7

Рис. 2. Спектры комбинационного рассеяния кристаллов Hg₂Br₂ при низком (0.2 GPa) и высоком гидростатическом (4.3 GPa) давлении. На вставке — нормальные координаты фононов.

На рис. 2 приведен также спектр кристалла Hg₂Br₂ при высоком гидростатическом давлении (4.3 GPa), который в основном коррелирует со спектром при давлении 0.2 GPa, но в котором наблюдаются значительные и соизмеримые сдвиги частот v_2 , v_3 и v_4 , а в области либрационного колебания v_1 убедительно проявляются как небольшие сдвиги частот фононов, так и их аномальное поведение, в том числе расщепление вырожденных колебаний v_1 (E_g) (см. также рис. 3).

Для иллюстрации эффектов фазового перехода в этих кристаллах на рис. З приведен набор СКР при различных гидростатических давлениях в области низких частот (0–50 cm⁻¹). Основной результат — проявление (наблюдение) в спектрах мягкого фонона $v_{sm}(TA_1)$ (в низкочастотной области и в окрестности либрационного колебания v_1), частота которого аномально уменьшается при уменьшении давления ($P \rightarrow P_c$). Барическая зависимость частоты этого фонона $v_{sm} \sim [(P - P_c)/P_c]^{\beta}$, где давление фазового перехода $P_c = 0.3$ GPa при комнатной температуре, индекс $\beta = 0.4 \pm 0.02$. Такая зависимость в принципе не противоречит модели фазового перехода, происходяще-

Рис. 3. Низкочастотные спектры комбинационного рассеяния кристаллов Hg_2Br_2 при различных гидростатических давлениях. На вставке — зависимость частоты "мягкой моды" v_{sm} (TA₁) от приведенного давления $p = P/P_c - 1$ в двойном логарифмическом масштабе.

го вблизи трикритической точки, полученной ранее [3–5] исходя из температурного поведения мягкой моды, аналогичной наблюдаемой в настоящей работе.

9

Здесь следует отметить также и другие аномальные эффекты, связанные с динамикой решетки этих кристаллов, главным образом с фазовым переходом и "схлопыванием" ЗБ в направлении $X \to \Gamma$. В результате этого в спектре становятся разрешенными нечетные колебания (акустические и ИК-активные) с границы ЗБ (X-точка), в частности появляется вторая поперечная акустическая ветвь (TA₂) с границы ЗБ из X-точки.

В принципе мы могли бы обнаружить в спектрах проявление продольной акустической ветви из X-точки 3Б, а также ИК-активные фононы из этой точки, как например в случае кристаллов Hg₂I₂ [7,8]. Но это задача довольно сложная, так как эксперименты в алмазной камере с маленькими кристалликами и малой апертурой камеры в разы понижают полезный сигнал. Кроме того, нельзя не учитывать влияние полидоменности изучаемых образцов, а также значительный сдвиг края поглощения в низкочастотную область спектра, понижающий прозрачность исследуемых образцов при возрастании давления в камере.

В спектре также удалось наблюдать расщепление дважды вырожденного колебания v_1 на две компоненты, связанное с наличием в изучаемом образце (пластинке) Hg₂Br₂ двух неэквивалентных типов доменов с компонентами тензора рассеяния XZ и YZ.

Экспериментальные зависимости фундаментальных колебаний v_1 , v_2 , v_3 , v_4 от гидростатического давления (рис. 2 и 3) также получены при комнатной температуре. Следует заметить, что частоты фонона v_1 почти не зависят от давления, т.е. константы Грюнайзена, характеризующие его барическое поведение, очень малы или даже отрицательны. Похожие эффекты также имели место в случае кристаллов Hg₂I₂ [9]. Совсем другое (аномальное) поведение проявляют колебания v_2 , v_3 , v_4 , демонстрирующие сильные сдвиги частот при увеличении гидростатического давления (рис. 2) и соответственно большие и положительные значения констант Грюнайзена.

Таким образом, в результате изучения СКР кристаллов Hg_2Br_2 при высоких гидростатических давлениях обнаружено "возгорание" в рамановских спектрах фононов, в том числе мягких, выполнена интерпретация и обсуждены полученные результаты, а также под-тверждена модель фазового перехода $D_{4h}^{17} \rightarrow D_{2h}^{17}$, предложенная для случая фазового перехода, индуцированного понижением температуры Hg_2Br_2 [3–5].

Работа выполнена при частичной финансовой поддержке программы Президиума РАН № 1.4 "Актуальные проблемы физики низких температур" и программы Президиума РАН № 1.8 "Физика конденсированных сред и материалы нового поколения".

Список литературы

- [1] Mark H., Steinbach J. // Z. Krist. 1926. V. 64. N 1-6. P. 79-112.
- [2] Proc. 2nd Int. Symp. on univalent mercury halides. Trutnov, ČSFR, 1989. 265 p.
- [3] Барта Ч., Каплянский А.А., Кулаков В.В., Малкин Б.З., Марков Ю.Ф. // ЖЭТФ, 1976. Т. 70. В. 4. С. 1429–1444.
- [4] *Каплянский А.А., Марков Ю.Ф., Барта Ч.* // Изв. АН СССР. Сер. физ. 1979. Т. 43. № 8. С. 1641–1650.
- [5] Задохин Б.С., Марков Ю.Ф., Юрков А.С. // ЖЭТФ. 1993. Т. 104. В. 2. С. 2799–2814.
- [6] Барта Ч., Каплянский А.А., Марков Ю.Ф., Мировицкий В.Ю. // ФТТ. 1985.
 Т. 27. В. 8. С. 2500–2501.
- [7] Марков Ю.Ф., Тураев А.Ш. // Письма в ЖЭТФ. 1996. Т. 63. В. 4. С. 227–231.
- [8] Марков Ю.Ф., Мировицкий В.Ю., Рогинский Е.М. // Письма в ЖТФ. 2014. Т. 40. В. 22. С. 12–20.
- [9] Марков Ю.Ф., Мировицкий В.Ю., Рогинский Е.М. // ФТТ. 2015. Т. 57. В. 3. С. 469–474.
- [10] Рогинский Е.М., Крылов А.С., Марков Ю.Ф., Смирнов М.Б. // Изв. РАН. Сер. физ. 2016. Т. 80. № 9. С. 1132–1136.
- [11] Datchi F., Dewaele A., Loubeyre P., Letoullec R., Le Godec Y., Canny B. // High Press. Res. 2007. V. 27. N 4. P. 447–463.