02

Флуоресцентные свойства и электронная структура комплексных соединений неодима(III) с карбоновыми кислотами

© И.В. Калиновская, Ю.М. Николенко

Институт химии Дальневосточного отделения РАН, 690022 Владивосток, Россия

e-mail: kalinovskaya@ich.dvo.ru

Поступила в редакцию 10.05.2018 г.

Методами люминесцентной и рентгеноэлектронной спектроскопии изучены разнолигандные комплексные соединения неодима(III) с карбоновыми кислотами, азот- и фосфорсодержащими нейтральными лигандами, люминесцирующие в ближней инфракрасной области. Обнаружено, что при координации нейтральных лигандов посредством донорного атома азота наблюдается тенденция к увеличению электронной плотности на ионе неодима(III).

DOI: 10.21883/OS.2018.09.46548.121-18

Комплексные разнолигандные соединения неодима(III) с карбоновыми кислотами, имеющие люминесценцию в ближней ИК области, представляют интерес в качестве преобразователей ультрафиолетового излучения в излучение ближнего инфракрасного диапазона. Эта способность комплексных соединений неодима(III) изучалась при решении ряда биомедицинских задач [1-3], использовании люминесцентных меток в иммунофлуоресцентном анализе [4]. Актуально также использование таких преобразователей для увеличения чувствительности кремниевых приемников, собственная чувствительность которых максимальна в ближнем ИК диапазоне [4,5]. Люминесцентные свойства комплексных соединений изучены в основном в растворах [6,7]. Известны работы по исследованию ИК люминесценции иона неодима(III) в комплексах с β -дикетонами [7–9], порфиринами [10]. В качестве β -дикетонов были использованы длинноцепочечные производные ацетилацетона, содержащие во фторированном радикале остатки перфторэнантовой и перфторпеларгоновой кислот [7]. Полученные нами ранее разнолигандные соединения неодима(III) с карбоновыми кислотами обладают люминесценцией в ближней ИК области [9]. Значительный вклад в изучение деталей электронного строения комплексов вносит метод рентгеноэлектронной спектроскопии (РЭС). Работ по изучению методом РЭС комплексных соединений редкоземельных элементов недостаточно [11–14].

Цель настоящей работы — изучение электронного строения и флуоресцентных характеристик ряда разнолигандных соединений неодима(III) с трифторуксусной, толуиловой (MBA), хинальдиновой (Quin), коричной (Cin) кислотами и нейтральными лигандами — 1,10-фенантролином (phen), дифенилгуанидином (dphg), 2,2-дипиридилом (dipy), трифенилфосфиноксидом (tppo), сопоставление спектрально-люминесцентных характеристик соединений с зарядовым состоянием иона неодима(III).

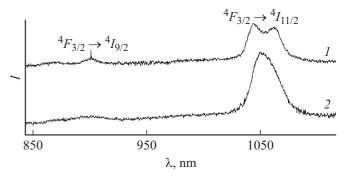
Экспериментальная часть

Для синтеза комплексных соединений использовали следующие препараты марки "ч": шестиводный хлорид неодима(III), карбоновые кислоты, нейтральные лиганды. Синтез разнолигандных комплексных соединений неодима(III) с карбоновыми кислотами осуществлялся по методикам [9]. Синтезированные соединения перекристаллизовывали из этилового спирта. Чистоту полученных соединений контролировали методом химического элементного анализа, рентгенофазового анализа, УФ и ИК спектроскопии. Спектры люминесценции регистрировали на спектрометре СДЛ-1 с фотоумножителем ФЭУ-62 в интервале 840-1100 nm. Люминесценцию возбуждали ксеноновой лампой ДКсШ-130 в интервале 500-600 nm с использованием светофильтров СЗС-23, СЗС-26 и ЖС-18. Образцы снимались при комнатной температуре в кюветах из пирекса. Концентрация этанольных растворов комплексных соединений равна 10^{-5} mol/l.. Спектры поглощения полученных разнолигандных соединений регистрировали на спектрофотометре СФ-256 УВИ.

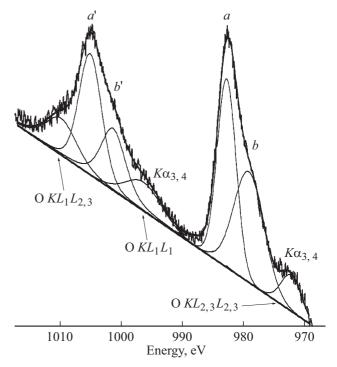
Рентгеноэлектронные спектры 1*s*-электронов углерода, кислорода, азота и 3*d*-электронов неодима измерены при комнатной температуре на электронном спектрометре ЭС-2401 (ФГУП ЭЗАН, г. Черноголовка, Россия) с использованием $AlK\alpha$ -излучения (1489.6 eV). Вакуум в камере анализатора энергий поддерживался на уровне $6 \cdot 10^{-8}$ mm Hg. Шкала энергии прибора была откалибрована с использованием справочных данных для энергии связи (E_c) Au4 $f_{7/2}$ и Cu2 $p_{3/2}$, равных 84.0 и 932.7 eV соответственно [15]. Спектры толуилатов, хинальдинатов и циннаматов калибровались по E_c С1*s*-электронов бензольных колец толуиловой, хинальдиновой и коричной кислот (284.9 eV) [16]. Точность определения E_c составляла 0.1 eV. Компьютерная аппроксимация спектров проводилась с помощью свободно распространяемой программы XPSPeak41.

Таблица 1. Рентгенометрические данные соединений неодима(III) с карбоновыми кислотами, азот- и фосфорсодержащими нейтральными лигандами

$[Nd(Cin)_3]_n$		[Nd(MBA) ₃ 2phen] ₂		[Eu(MBA) ₃ 2dipy] ₂	
d, Å	I/I_0	d, Å	$d, \mathrm{\AA}$	I/I_0	I/I_0
11.35 6.57 5.62 4.47 4.26 3.69 3.46 2.95 2.28 2.11 1.97 1.81	100.0 29.2 25.0 24.4 22.5 10.0 10.4 9.1 9.5 9.5 9.9	12.10 11.59 10.10 9.57 8.81 6.29 5.59 4.78 4.23 3.90 3.54 3.45	9.87 7.88 7.43 6.73 5.80 5.51 5.28 4.68 4.56 4.19	10.0 15.62 25.65 20.55 100.00 40.11 30.60 10.60 10.00 40.00 30.00	60.0 31.2 100.0 34.4 11.3 16.0 11.0 11.1 12.0 10.3 11.3
1.01	10.9	3.43	3.85 3.51	20.00 25.00	11.2 11.2


Результаты и их обсуждение

Рентгенографическое исследование синтезированных разнолигандных комплексных соединений неодима(III), выполненное по методу порошка, подтвердило их индивидуальность (табл. 1). Фазовый анализ свидетельствует об отсутствии рефлексов исходных веществ и возможных примесей. Полученные комплексные соединения неодима(III) устойчивы на воздухе.


В работе [9] нами подробно были изучены спектры поглощения полученных комплексных разнолигандных соединений неодима(III) с изучаемыми карбоновыми кислотами. Было установлено, что максимум поглощения сдвинут в более длинноволновую область в случае комплексных соединений неодима(III) с м-толуиловой кислотой (320 nm). Наибольшая интенсивность поглощения характерна для комплексных соединений неодима(III) с коричной кислотой.

На рис. 1 представлены спектры флуоресценции кристаллических разнолигандных соединений неодима(III) с коричной, м-толуиловой, хинальдиновой кислотами и нейтральными лигандами. Люминесценцию комплексных соединений в кристаллическом состоянии снимали при комнатной температуре. 4f-люминесценция синтезированных соединений неодима(III) наблюдается в области 850-1100 nm (ближняя ИК область) с максимумом при 1060 nm (при возбуждении в диапазоне 450-600 nm) (рис. 1). Спектры флуоресценции разнолигандных соединений неодима(III) с коричной, толуиловой и хинальдиновой кислотами характеризуются двумя достаточно интенсивными полосами переходов: первая $\lambda_{\text{max}} = 903 - 907 \,\text{nm}$ (переход ${}^4F_{3/2} - {}^4I_{9/2}$) и вторая $\lambda_{\text{max}} = 1060 - 1065 \,\text{nm}$ (переход ${}^4F_{3/2} - {}^4I_{11/2}$). Наиболее интенсивным в полученных спектрах флуоресценции являются полосы ${}^4F_{3/2} - {}^4I_{11/2}$ -перехода, состоящего из 1-2 интенсивных полос.

Методом РЭС нами впервые изучено электронное строение ряда синтезированных разнолигандных карбоксилатов неодима(III) с азот- и фосфорсодержащими нейтральными лигандами. Полученные данные позволили изучить изменение зарядового состояния центрального иона неодима(III) в группах комплексных карбоксилатов неодима(III). Характерный для всего ряда исследованных комплексных соединений экспериментальный спектр $\mathrm{Nd}3d$ образца $[\mathrm{Nd}(\mathrm{MBA})_3\text{-bipy}]_2$ представлен на рис. 2. Помимо компонент $3d_{5/2}$ и $3d_{3/2}$ спинорбитального дублета основного состояния $3d^94f^3$ в спектре наблюдаются сигналы, обусловленные немоно-

Рис. 1. Спектры люминесценции (77 K) соединений неодима(III): $I - [Nd(Cin)_3]_n$; $2 - [Nd(MBA)_3 \cdot bipy]_2$.

Рис. 2. Рентгеноэлектронные спектры Nd3d соединения $[Nd(MBA)_3 \cdot bipy]_2$ с разделением на компоненты: $a - Nd3d_{5/2}$, b - shake-down, $a' - Nd3d_{3/2}$, b' - shake-down. Интервалы энергий сателлитов $K\alpha_{3,4}$ и некоторых компонент ожеспектра О KLL совпадают.

Соединение	C1s	O1s	N1s	Nd3d	$I_{\rm rel}^4 F_{3/2} - {}^4 I_{11/2}, \%$
$[Nd(MBA)_4]_2{\cdot}2dphg$	284.9 289.0 291.6	532.3	400.0	983.4 983.4 1005.8	19.2
$[Nd(MBA)_3 \cdot bipy]_2$	284.9 288.6	532.0	399.5	982.9 1005.3	52.0
$[Nd(Cin)_3]_n$	284.9 288.9 291.8	531.8		983.2 1005.6	70.0
Nd(Cin) ₃ ·2phen·H ₂ O	284.9 288.7	531.5	399.2	982.4 1004.7	77.0
$[\mathrm{Nd}(\mathrm{Quin})_3]_n$	284.9 286.0 288.8	532.1	399.5	983.0 1005.3	19.0
Nd(Quin)₃· tppo	284.9 288.7	531.7	399.3	982.7 1005.2	17.0

Таблица 2. Относительная интенсивность ${}^4F_{3/2} - {}^4I_{11/2}$ -перехода и энергии связи (eV) C1s-, O1s-, N1s- и Nd3d-электронов соединений неодима(III) с карбоновыми кислотами, азот- и фосфорсодержащими нейтральными лигандами

хроматичностью источника рентгеновского излучения (присутствие в спектре возбуждающего излучения компоненты $CuK\alpha_{3,4}$). Соответствующие интервалы энергии обозначены " $K\alpha_{3,4}$ " (рис. 2). Также на энергетический спектр 3*d*-электронов неодима накладываются эмиссионные *KLL* оже-линии кислорода [17] карбоксильных групп лигандов (рис. 2). Кроме этого, регистрируются сигналы сателлитов shake-down. Присутствие последних характерно для некоторых редкоземельных металлов и связанно с особенностями экранирования остовных дырок, возникающих в процессе фотоионизации Изначально незанятое локализованное состояние на 4f-уровне при образовании остовной дырки становится ниже по энергии, чем другие нелокализованные валентные состояния с меньшим угловым моментом (5d, 6s). Оно может быть заполнено переносом делокализованного электрона лиганда с реализацией конечного состояния $3d^94f^4$ [18,19,20]. В итоге экранирование остовной дырки улучшается, и выбитый фотоэлектрон покидает образец с большей кинетической энергией. При этом в спектре регистрируются сателлитные линии с $E_{\rm cs}$ меньшими, чем $E_{\rm cs}$ основных компонент Nd3d спинорбитального дублета (рис. 2).

В табл. 2 приведены значения $E_{\rm cB}$ 1s-электронов углерода, кислорода, азота пиридинового кольца и 3d-электронов неодима(III). В однотипных рядах (при координации центрального иона донорным атомом азота нейтральных лигандов) $E_{\rm cB}$ Nd3d уменьшается, свидетельствуя о допировании электронной плотности с нейтральных лигандов на ион неодима(III) (табл. 2). Этот эффект наиболее заметен в случае разнолигандных комплексов толуилатов и циннаматов неодима(III). Так, при переходе от циннамата неодима(III) полимерного

строения к разнолигандному соединению с 1,10-фенантролином уменьшение $E_{\rm cB}$ компонент спектра Nd3d свидетельствует об увеличении электронной плотности на ионе неодима(III).

Впервые проведена оценка энергии связи Nd(III) и в хинальдинатах неодима(III), имеющих различное строение (полимерное и островное). Поэтому для хинальдинатов неодима(III) наблюдаемую закономерность не рассматриваем.

Нами была сопоставлена относительная интенсивность перехода ${}^4F_{3/2} - {}^4I_{11/2}$ спектров люминесценции с зарядовым состоянием иона неодима(III) в синтезированных разнолигандных комплексных карбоксилатов с азот- и фосфорсодержащими нейтральными лигандами (табл. 2). В комплексных толуилатах и циннаматах неодима(III) с увеличением электронной плотности на атоме неодима(III) относительная интенсивность полос перехода ${}^4F_{3/2} - {}^4I_{11/2}$ в спектрах люминесценции возрастает.

Таким образом, изучены флуоресцентные свойства и электронное строение ряда новых комплексных карбоксилатов неодима(III). Показано, что с увеличением электронной плотности на атоме неодима(III) относительная интенсивность полос ${}^4F_{3/2} - {}^4I_{11/2}$ -перехода в спектрах люминесценции комплексных соединений возрастает.

Список литературы

- [1] Werts M.H.V., Woudenberg R.H., Emmerink P.G., Gassel R.V., Hofstraat J.W., Verhoeven J.W. // Angew. Chem. Int. Ed. 2000. V. 39. N 24. P. 4542.
- [2] Smola S., Rusakova N., Korovin Yu. // J. Coord. Chem. 2011.V. 64. N 5. P. 863.

- [3] Мартынов А.Г., Сафонова Е.А., Горбунова Ю.Г., Цивадзе А.Ю. // ЖНХ. 2010. V. 55. № 3. Р. 389.
- [4] Цвирко М.П., Мешкова С.Б., Венчиков В.Я., Большой Д.В. // Опт. и спектр. 1999. Т. 87. № 6. С. 950.
- [5] Коровин Ю.В., Шевчук С.В., Бачериков В.А., Русакова Н.В., Алексеева А.А., Грень А.И. // Журн. неорг. химии. 2000. Т. 45. № 9. С. 1513.
- [6] Коровин Ю.В. // Укр. хим. журн. 2000. Т. 66. № 10. С. 101.
- [7] Мешкова С.Б., Топилова З.М., Лозинский М.О., Русакова Н.В., Большой Д.В. // ЖАХ. 1997. Т. 52. № 9. С. 939.
- [8] Mehta P.C., Tandon S.P. // J. Chem. Phys. 1970. V. 53. N 1. P. 414
- [9] Калиновская И.В., Мамаев А.Ю., Карасев В.Е. // ЖОХ. 2011. Т. 81. № 8. С. 1242.
- [10] Коровин Ю.В., Русакова Н.В., Жилина З.И., Водзинский С.В., Ишков Ю.В. // Укр. хим. журнал. 2002. Т. 69. № 6. С. 732.
- [11] Мешкова С.Б., Кузьмин В.Е., Юданова И.В., Топилова З.М., Большой Д.В. // ЖНХ. 1999. Т. 44. № 10. С. 1671.
- [12] Калиновская И.В., Мирочник А.Г., Карасев В.Е. // ЖНХ. 1991. Т. 36. № 7. С. 1778.
- [13] Короченцев В.В., Шурыгин А.В., Вовна В.И., Калиновская И.В., Мирочник А.Г. // ЖСХ. 2017. Т. 58. № 6. С. 1165. doi 10.1134/S0022476617060087
- [14] Короченцев В.В., Михайленко Е.В., Шурыгин А.В., Вовна В.И., Осьмушко И.С., Мирочник А.Г., Петроченкова Н.В. // Известия АН. 2017. № 11. С. 2081.
- [15] Seah M.P. // Surf. Interface Anal. 1989. V. 14. P. 448.
- [16] Нефедов В.И. Рентгеноэлектронная спектроскопия химических соединений. // Справочник. М.: Химия, 1984. 256 с.
- [17] Talik E., Kruczek M., Sakowska H., Ujma Z., Gala M., Neumann M. // J. Alloys Compd. 2004. V. 377 (1/2). P. 259.
- [18] Cummins T.R., Egdell R.G. // Phys. Rev. B. 1993. V. 48. P. 6556.
- [19] Szytula A., Penc B. // XVI National Symposium on Condensed Matter Physics. Sokobanja, 2004. P. 1.
- [20] Radutoiu N., Teodorescu C.M. // Digest J. Nanomaterials and Biostructures. 2013. V. 8. N 4. P. 1535.