01

Электронные спектры поглощения нейтральных и заряженных молекулярных кластеров серебра

© М.В. Столярчук, А.И. Сидоров

Университет ИТМО, 197101 Санкт-Петербург, Россия e-mail: maxim.stolyarchuk@corp.ifmo.ru

Поступила в редакцию 13.02.2018 г. В окончательной редакции 16.05.2018 г.

В рамках теории функционала плотности (DFT) промоделированы структурные, энергетические и оптические свойства заряженных и нейтральных молекулярных кластеров (MK) серебра Ag_n (n = 2-5). Показано, что электронный спектр поглощения нейтральных MK смещен в сторону меньших энергий по сравнению с заряженными. Силы осцилляторов нейтральных MK в основном больше сил осцилляторов заряженных MK. Проведено сопоставление результатов моделирования с полученными ранее экспериментальными результатами для стекол с MK серебра.

DOI: 10.21883/OS.2018.09.46540.42-18

Введение

Субнаноразмерные молекулярные кластеры (МК) по своим свойствам занимают промежуточное положение между отдельными атомами, наночастицами и объемным состоянием вещества. Так, наличие квантоворазмерных эффектов у МК металлов, состоящих из нескольких атомов, определяет их свойства, подобные молекулярным: дискретный спектр энергетических уровней, отсутствие плазмонного резонанса и др. [1]. Оптические свойства МК металлов являются предметом экспериментальных и теоретических исследований из-за возможности их практических применений в качестве материалов для солнечной энергетики, устройств фотоники и сенсорики [2-4]. Молекулярные кластеры, состоящие из атомов элементов 11 группы (Cu, Ag, Au), диспергированные в различных средах, включая неорганические матрицы, обладают поглощением в видимой и УФ областях оптического спектра, а также флуоресцируют [5]. В отличие от макроскопического состояния вещества, где добавление или удаление нескольких электронов практически не вызывает изменений, в МК такое добавление или удаление оказывает существенное влияние на электронную структуру, что сказывается и на оптических свойствах.

На сегодняшний день существует значительное количество экспериментальных и теоретических работ, посвященных исследованию различных свойств изолированных МК серебра. Экспериментальные исследования МК серебра проводились в том числе с помощью фотоэлектронной спектроскопии [6] и оптической спектроскопии в цеолитах и твердых инертных газах [7–9]. Ряд теоретических работ был направлен на изучение равновесной (стабильной) геометрии основного состояния, энергетических и электронных свойств МК металлов [10–12]. В работе [13] методом нестационарного приближения локальной плотности (TDLDA) были изучены оптические свойства нейтральных МК. Позднее разными группами были представлены исследования нейтральных МК серебра с применением нестационарной теории функционала плотности с иными функционалами [8,14]. В то время как свойства нейтральных МК обширно изучены различными теоретическими методами, наблюдается дефицит работ по изучению строения и оптических свойств заряженных МК металлов, в частности, по сравнению их энергетических свойств со свойствами нейтральных МК. Так, в работе [15] с помощью метода, основанного на формализме уравнений движений (ЕОМ–СС), рассматриваются возбужденные состояния нейтральных Ag_{2-4}^2 и положительно заряженных Ag_{2-4}^2 .

Ранее нами было экспериментально показано [16], что в фототерморефрактивных стеклах, содержащих серебро и фотосенсибилизатор — ионы Се³⁺, серебро исходно находится в виде ионов и положительно заряженных МК. Такие стекла обладают чрезвычайно слабой люминесценцией в видимой области спектра при возбуждении УФ излучением. При воздействии на такие стекла интенсивного УФ излучения, попадающего в полосу поглощения ионов церия ($\lambda = 305 - 310 \text{ nm}$), происходит фотоионизация Се³⁺ с образованием в стекле свободных электронов. Электроны захватываются ионами Ag⁺ и заряженными MK Ag^{*q*+}, что переводит часть заряженных МК в нейтральное состояние. При этом происходит существенное изменение спектров люминесценции и возбуждения люминесценции (рис. 1) и значительное увеличение интенсивности люминесценции стекол с МК серебра в видимой области спектра (см. вставку в рис. 1, a). Из рис. 1, b видно, что спектры возбуждения люминесценции структурированы, что указывает на наличие в стекле нескольких люминесцентных центров. Как было показано в работе [16], вклад в люминесценцию в данном случае вносят в основном атомы Ag^0 и нейтральные MK Ag_n (n = 2-4). Термообработка таких стекол при температуре, меньшей температуры стеклования, приводит к увеличению размера МК

Excitation wavelength, nm

Рис. 1. Нормированные спектры люминесценции (a) и возбуждения люминесценции (b) заряженных (1) и нейтральных (2) МК серебра в фототерморефрактивном стекле. a длина волны возбуждения люминесценции 350 nm. b — длина волны люминесценции 570 nm. На вставке — фотография люминесценции фототерморефрактивного стекла с областями, содержащими заряженные (1) и нейтральные (2) МК серебра. Длина волны возбуждения 365 nm.

(увеличению n) и их концентрации за счет термической диффузии атомов серебра, что также влияет на спектры люминесценции и их интенсивность [17]. Таким образом, появляется возможность управлять спектральнолюминесцентными свойствами фототерморефрактивных стекол. В связи с этим возникает ряд вопросов, имеющих как научное, так и прикладное значение. В частности, как влияют зарядовое состояние и размеры МК серебра на их спектрально-люминесцентные свойства? Кроме того, представляет интерес выяснение того, какой вклад вносят в люминесценцию в видимой области спектра МК серебра с различным количеством атомов.

Методика моделирования

Геометрия и оптические свойства МК серебра исследовались в рамках теории функционала плотности (DFT) с применением программного пакета Amsterdam Density Functional (ADF2014.11) [18]. Уравнения Кона-Шэма решались с использованием градиентно-обобщенного обменно-корреляционного функционала РВЕ [19] вместе с трехэкспоненциальным базисным набором орбиталей слэтеровского типа с включением двух поляризационных функций (TZ2P). Молекулярные кластеры исследовались в вакуумном приближении. В то же время необходимо принимать во внимание, что в силикатных стеклах МК серебра располагаются вблизи структурных дефектов сетки стекла, что может оказывать влияние на их свойства, в частности приводить к уширению спектра, изменению амплитуды спектральных полос и их сдвигу по спектру. Все исследуемые структуры подвергались геометрической оптимизации с последующим колебательным анализом, целью которого было установление наличия мнимых частот. Отсутствие мнимых частот свидетельствует, что найденная стационарная точка отвечает минимуму потенциальной энергии. Системы с открытой электронной оболочкой рассматривались в рамках неограниченного по спину формализма. Расчет возбужденных состояний производился с использованием теории функционала плотности, зависящей от времени (TDDFT) [20] на уровне CAM-B3LYP/QZ4P. Как было показано в [21], ранжированный (range-separated) функционал САМ-ВЗLYP [22] аккуратнее описывает асимптотическое поведение обменно-корреляционного потенциала, что позволяет корректнее рассчитать вертикальный спектр электронных возбуждений МК переходных металлов.

Результаты и обсуждение

Равновесные геометрии МК и их энергетические свойства

Наиболее стабильные геометрические структуры после оптимизации приведены на рис. 2 вместе с длинами межатомных связей. Расчет проводился методом PBE/TZ2P. Полученные равновесные структуры находятся в хорошем согласии с результатами большинства предыдущих исследований [11,12]. Длина связи Ag₂ составила 2.572 Å, что близко к экспериментальному значению 2.533 Å [23]. Для Ag₃ наблюдается эффект Яна-Теллера [24], вследствие чего МК является не равносторонним треугольником (D_{3h}), а представляет собой равнобедренный треугольник (C_{2v}). Для рассматриваемых нейтральных МК Ag_n характерна плоская

МК	Ag_n					Ag_n^+				
	Г	Состояние	r _e	E_b/n	E_g	Г	Состояние	r _e	E_b/n	E_g
Ag ₂	$D_{\infty h}$	$^{1}\Sigma_{g}^{+}$	2.57	0.88	2.05	$D_{\infty h}$	$^{2}\Sigma_{g}^{+}$	2.73	0.89	0.56
Ag_3	C_{2v}	${}^{2}B_{2}$	2.76	0.87	0.28	D_{3h}	${}^{1}A_{1}$	2.69	1.55	3.01
Ag ₄	D_{2h}	$^{1}A_{g}$	2.74	1.15	0.84	D_{2h}	${}^{2}B_{1u}$	2.76	1.48	0.34
Ag ₅	C_{2v}	${}^{2}A_{1}$	2.72	1.25	0.36	D_{2d}	${}^{1}A_{1}$	2.78	1.53	1.96

Таблица 1. Точечная группа симметрии Γ , основное состояние, среднее межатомное расстояние r_e (Å), энергия связи в пересчете на атом E_b/n (eV/atom), энергетический промежуток НОМО–LUMO E_g (eV) для МК Ag^{0,+}, рассчитанные методом PBE/TZ2P

структура. Для катионных МК Ag_n^+ переход между двумерной и трехмерной структурой наблюдается при n = 5. В этом случае плоская трапецевидная структура Ag_5^+ с симметрией C_{2v} преобразуется в ромбовидную (D_{2d}) . Из приведенных на рис. 2 данных видно, что с увеличением количества атомов длины связи Ag-Agнейтральных МК увеличиваются и приближаются к экспериментальному значению межатомного расстояния для массивного металлического серебра (2.89 Å) [25]. Нейтральные МК, за исключением Ag_3 , образуют более компактную структуру по сравнению с заряженными (см. также табл. 1). Для оценки термодинамической стабильности нейтральных и заряженных МК была использована энергия связи на атом E_b/n для МК Ag_n^q , которая определяется как

$$E_b/n = [(n-1)E(\operatorname{Ag}) + E(\operatorname{Ag}^q) - E(\operatorname{Ag}^q_n)]/n,$$

где $E(Ag_n^q)$ — полная энергия МК, E(Ag) и $E(Ag^q)$ — энергии отдельного атома и иона, q = 0, +1 — заряд.

Рассчитанные значения E_b/n представлены в табл. 1. Энергии связи в пересчете на один атом для МК с четным числом атомов больше, чем соответствующие величины для случая нечетного числа атомов. Помимо этого, энергия связи E_b/n постепенно возрастает с увеличением количества атомов в МК и приближается к когезивной энергии объемного серебра, которая равна 2.95 eV [25]. Однако Ag_4^+ менее стабилен, чем Ag_3^+ , что свидетельствует о большей стабильности катионных МК с закрытой электронной оболочкой (с нечетным количеством атомов). Полученные данные показывают, что рассматриваемые катионные МК более стабильны по сравнению с нейтральными.

Количество валентных электронов в МК влияет на энергетическую стабильность за счет изменения электронной плотности. Энергетический промежуток E_g отражает энергию, необходимую для переноса электрона с высшей занятой молекулярной орбитали (НОМО) на низшую вакантную молекулярную орбиталь (LUMO) и характеризует кинетическую стабильность системы. Как отмечалось ранее, системы с открытой оболочкой рассчитывались спин-поляризованным методом. Для систем с открытой электронной оболочкой E_g относится к энергетическому зазору между α -НОМО и β -LUMO.

Рис. 2. Наиболее стабильные конфигурации $Ag_n^{0,+}$ (n = 2-5), рассчитанные методом PBE/TZ2P. Длины связей приведены в ангстремах. В скобках указаны длины связей для заряженных MK.

Из табл. 1 видно, что значения энергетического зазора E_g осциллируют с изменением размера МК. Максимумы наблюдаются для систем со спаренными электронами. При этом граничные орбитали нейтральных МК лежат выше по сравнению с соответствующими орбиталями катионных МК.

Электронные спектры поглощения МК

Оптический спектр поглощения может быть охарактеризован энергией электронных переходов и их силой осциллятора. При расчетах дискретный спектр уширялся с учетом распределения Лоренца с параметром полуширины $\gamma = 60$ meV. Электронные переходы были проанализированы в рамках занятых и виртуальных молекулярных орбиталей, которые участвуют в переходе между основным и возбужденным состояниями (табл. 2). На рис. 3 приведены спектры поглощения нейтральных и катионных МК в УФ и видимой областях спектра. Рассчитанные энергии перехода и силы осциллятора хорошо согласуются с известными экспериментальными данными для МК серебра в матрицах инертных газов [8] и результатами теоретических расчетов для нейтральных МК [22,24].

Спектр Ag₂ характеризуется двумя основными пиками поглощения, за которые отвечают переходы с

Рис. 3. Электронные спектры поглощения нейтральных и заряженных МК Ад_л, рассчитанные методом САМ-B3LYP/QZ4P.

энергией 3.09, 5.21 eV и силами осцилляторов 0.39 0.6 соответственно (рис. 3). По своей приро-И данные полосы поглощения описываются преле имущественно вкладами электронных конфигураций HOMO $(10\sigma_{q}^{+}) \rightarrow \text{LUMO}(10\sigma_{u}^{+})$ (96%) и $HOMO \rightarrow$ \rightarrow LUMO-1 (6 π_{μ}) (87%) соответственно (табл. 2). Для других рассматриваемых МК в наиболее интенсивных переходах также принимают участие пограничные молекулярные орбитали. На рис. 4 показано положение энергий и силы осцилляторов переходов с максимальной интенсивностью в зависимости от количества атомов в МК. Наиболее интенсивный переход для Ag⁺ смещен в коротковолновую область по сравнению с переходами для Ag₂. Сила осциллятора наиболее интенсивного перехода для нейтральных МК, за исключением Ад₃, больше, чем для заряженных. С увеличением размера МК положение наиболее интенсивного перехода смещается на 0.15-0.7 eV в область меньших энергий. Для МК с нечетным количеством атомов сила осциллятора перехода с максимальной интенсивностью незначительно изменяется после удаления электрона. Данные результаты могут дать объяснение экспериментально полученным фактам, а именно увеличению интенсивности люминесценции в видимой области спектра и длинноволновому смещению спектров возбуждения при трансформации заряженных МК серебра в нейтральные. В настоящей работе подразумевалось, что интенсивность люминесценции пропорциональна силе осциллятора поглощения.

Представляет практический интерес на основании полученных результатов провести анализ, каков вклад в люминесценцию вносят различные МК для фиксированных длин волн возбуждения. Одним из перспективных применений люминесцентных стекол с МК серебра является спектральная даун-конверсия коротковолнового излучения в видимую область спектра в светодиодах белого свечения. Источниками УФ излучения в данном случае предполагается использовать излучающие полупроводниковые диоды с длинами волн излучения 365 nm

Рис. 4. Положение энергий и сил осцилляторов переходов с максимальной интенсивностью. Темные маркеры соответствуют нейтральным МК, светлые — заряженным.

 $(E = 3.39 \,\mathrm{eV})$ и 405 nm $(E = 3.06 \,\mathrm{eV})$. Такие диоды в настоящее время имеют мощность до нескольких ватт, они доступны и относительно дешевы. Вклад люминесценции ионов и атомов серебра, также присутствующих в стеклах, в данном случае не рассматривается, так как они имеют полосы возбуждения люминесценции в спектральном интервале 250-330 nm. Из рис. 3,4 и табл. 2 следует, что для $\lambda = 365 \, \mathrm{nm}$ основной вклад в люминесценцию вносят МК Ag₃ (f = 0.363 и 0386), Ag₄ (f = 0.847) и Ag⁺₅ (f = 0.697). Незначительный вклад могут вносить заряженные МК Ag_2^+ (f = 0.145). Для длины волны 405 nm основной вклад в люминесценцию будут вносить МК Ag₂ (f = 0.385), Ag₄ (f = 0.847), Ag_4^+ (f = 0.558) и Ag_5 (f = 0.947). Отсюда следует, что для эффективной даун-конверсии излучения в светодиодах белого свечения при синтезе люминесцентных стекол с МК серебра и дальнейшей их обработке необходимо создавать условия, при которых в стекле будет формироваться максимальное количество МК серебра, отмеченных выше.

Кластер	Состояние	E, eV	λ , nm	f	Конфигурация перехода, %
Ag ₂	$\frac{1 {}^{1}\boldsymbol{\Sigma}_{u}^{+}}{1 {}^{1}\boldsymbol{\Pi}_{u}}{2 {}^{1}\boldsymbol{\Pi}_{u}}$	3.09 4.29 4.62	401 289 268	0.385 0.599 0.108	$egin{array}{lll} 10\sigma_{g}^{+} & ightarrow 10\sigma_{u}^{+},96\%\ 10\sigma_{g}^{+} & ightarrow 6\pi u,87\%\ 5\pi_{g} & ightarrow 10\sigma_{u}^{+},86\% \end{array}$
Ag_2^+	$1^{2}\Sigma_{u}^{+}$ $2^{2}\Pi_{u}$ $2^{2}\Sigma_{u}$	2.82 3.42 4.99	440 362 248	0.077 0.145 0.390	$egin{aligned} &10lpha\sigma_{g}^{+} ightarrow 10lpha\sigma_{u}^{+},56\%\ &9eta\sigma_{u}^{+} ightarrow 10eta\sigma_{g}^{+},42\%\ &9eta\sigma_{u}^{+} ightarrow 10eta\sigma_{g}^{+},54\%\ &10lpha\sigma_{g}^{+} ightarrow 10lpha\sigma_{u}^{+},42\%\ &10lpha\sigma_{g}^{+} ightarrow 6lpha\pi_{u},95\% \end{aligned}$
Ag ₃	$\begin{array}{c} 2B_2 \\ 4\mathbf{B_2} \end{array}$	2.41 3.34	514 371	0.144 0.363	$egin{array}{llllllllllllllllllllllllllllllllllll$
Ag_3^+	1 E' 2A''	3.85 5.53	322 224	0.568 0.353	$12a'_1 ightarrow 17e'_1, 94\% \ 12a'_1 ightarrow 6a''_2, 88\%$
Ag ₄	$ \begin{array}{c} 1 \mathbf{B}_{1\mathbf{u}} \\ 2 B_{2u} \\ 4 B_{3u} \end{array} $	3.10 4.37 5.68	400 284 218	0.847 0.269 0.199	$egin{array}{cccccccccccccccccccccccccccccccccccc$
Ag_4^+	2 B _{1u} 4 <i>B</i> _{2u}	3.22 5.31	385 279	0.558 0.284	$egin{aligned} & 17lpha b_{1u} o 24lpha a_g, 62\% \ & 10eta b_{3g} o 17eta b_{1u}, 25\% \ & 23lpha a_g o 17lpha b_{2u}, 22\% \ & 23eta a_g o 17eta b_{2u}, 22\% \end{aligned}$
Ag ₅	$ \begin{array}{c} 4 \mathbf{B}_{2} \\ 5A_{1} \\ 6B_{1} \end{array} $	3.17 3.55 4.79	391 349 259	0.947 0.589 0.300	$egin{array}{c} 38lpha b_2 ightarrow 46 lpha a_1, 42\% \ 44 eta a_1 ightarrow 45 eta a_1, 23\% \ 38 lpha b_2 ightarrow 39 lpha b_2, 22\% \ 38 eta b_2 ightarrow 39 lpha b_2, 20\% \ 38 eta b_2 ightarrow 17 eta a_2, 49\% \end{array}$
Ag_5^+	1 B ₂ 14 <i>E</i>	3.34 4.58	371 271	0.697 0.484	$22b_2 \rightarrow 24a_1, 93\%$ $7b_1 \rightarrow 29e, 38\%$ $22b_2 \rightarrow 30e, 37\%$

Таблица 2. Энергии *E*, длины волн λ и силы осцилляторов *f* наиболее интенсивных переходов, рассчитанные методом CAM-B3LYP/QZ4P, с указанием конфигураций в рамках молекулярных орбиталей

Примечание. Переходы с наибольшей интенсивностью выделены жирным шрифтом.

Выводы

В рамках теории функционала плотности проведено сравнение структурных, энергетических и оптических свойств заряженных и нейтральных молекулярных кластеров серебра Ag_n^q (n = 2-5, q = 0, +1). Электронные переходы нейтральных МК смещены в сторону меныших энергий по сравнению с катионными. Силы осцилляторов нейтральных МК превышают силы осцилляторов заряженных МК. Сопоставление результатов моделирования с полученными ранее экспериментальными результатами для стекол с МК серебра позволило объяснить эффекты, наблюдаемые в эксперименте, и выработать рекомендации для создания люминесцентных стекол с МК серебра для практических применений.

Работа выполнена при государственной финансовой поддержке Российского научного фонда (Соглашение № 14-23-00136).

Список литературы

- [1] Lu Y., Chen W. // Chem. Soc. Rev. 2012. V. 41. P. 3594. doi 10.1039/c2cs15325d
- [2] Zhang L., Wang E. // Nano Today. 2014. V. 9. P. 132. doi 10.1016/j.nantod.2014.02.010
- [3] *Diez I., Ras R.H.A.* // Nanoscale. 2011. V. 3. P. 1963. doi 10.1039/c1nr00006c
- [4] Chen L.-Y., Wang C.-W., Yuan Z., Chang H.-T. // Anal. Chem. 2015. V. 87. P. 216. doi 10.1021/ac503636j
- [5] Kuznetsov A.S., Tikhomirov V.K., Shestakov M.V., Moshchalkov V.V. // Nanoscale. 2013. V. 5. P. 10065. doi 10.1039/c3nr02798h
- [6] Ho J, Ervin K.M., Lineberger W.C. // J. Chem. Phys. 1990.
 V. 93. P. 6987. doi 10.1063/1.459475
- [7] Kellerman R. // J. Chem. Phys. 1979. V. 70. P. 1562. doi 10.1063/1.437550
- [8] Lecoultre S., Rydlo A., Buttet J., Felix C., Gilb S., Harbich W. // J. Chem. Phys. 2011. V. 134. P. 184504. doi 10.1063/1.3589357

- [9] Ozin D.A., Hubert H. // Inorg. Chem. 1978. V. 17. P. 155. doi 10.1021/ic50188a031
- [10] Wang Y, Gong X.G. // Eur. Phys. J. D. 2005. V. 34. P. 19. doi 10.1140/epjd/e2005-00103-0
- [11] Gamboa G.U., Reber A.C., Khanna S.N. // New J. Chem. 2013.
 V. 37. P. 3928. doi 10.1039/c3nj01075a
- [12] Fournier R. // J. Chem. Phys. 2001. V. 115. P. 2165. doi 10.1063/1.1383288
- [13] Yabana K., Bertsch G.F. // Phys. Rev. A. 1999. V. 60. P. 3809. doi 10.1103/physreva.60.3809
- [14] Zhao G.F., Lei Y., Zeng Z. // Chem. Phys. 2006. V. 327. P. 261. doi 10.1016/j.chemphys.2006.04.014
- Bonačić -Koutecký V., Pittner J., Boiron M., Fantucci P. // J. Chem. Phys. 1999. V. 110. P. 3876. doi 10.1007/978-3-642-88188-6_36
- [16] Игнатьев А.И., Никоноров Н.В., Сидоров А.И., Шахвердов Т.А. // Опт. и спектр. 2013. Т. 114. С. 838; Ignatév A.I., Nikonorov N.V., Sidorov A.I., Shakhverdov T.A. // Opt. Spectrosc. 2013. V. 114. P. 769. doi 10.1134/s0030400x13030132
- [17] Dubrovin V.D., Ignatiev A.I., Nikonorov N.V., Sidorov A.I., Shakhverdov T.A., Agafonova D.S. // Opt. Mater. 2014. V. 36.
 P. 753. doi 10.1016/j.optmat.2013.11.018
- [18] ADF2014, Vrije Universiteit, Amsterdam, Netherlands. 2014. http://www.scm.com.
- [19] Perdew P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996.
 V. 77. P. 3865. doi 10.1103/physrevlett.77.3865
- [20] Gross E.K.U., Dobson J.F., Petersilka M. in Topics in Current Chemistry. Springer, 1996. V. 181. P. 81. doi 10.1007/bfb0016643
- [21] Rabilloud F. // J. Phys. Chem. A. 2013. V. 117. P. 4267. doi 10.1021/jp3124154
- [22] Yanai T., Tew D.P., Handy N.C. // Chem. Phys. Lett. 2004.
 V. 393. P. 51. doi 10.1016/j.cplett.2004.06.011
- [23] Simard B., Hackett P.A., James A.M., Langridge-Smith P.R.R. // Chem. Phys. Lett. 1991. V. 186. P. 415. doi 10.1016/0009-2614(91)90201-j
- [24] Boo D.W., Ozaki Y., Andersen L.H., Lineberger W.C. // J. Phys. Chem. A. 1997. V. 101. P. 6688. doi 10.1021/jp9711353
- [25] Kittel C. Introduction to Solid State Physics. Wiley, 2004. 704 p.