# <sup>13,03</sup> Атомная и электронная структура поверхности 3C-SiC(111) $-(2\sqrt{3} \times 2\sqrt{3})$ - $R30^{\circ}$

© В.Л. Бекенев, С.М. Зубкова

Институт проблем материаловедения им. И.Н. Францевича НАН Украины, Киев, Украина

E-mail: bekenev@ipms.kiev.ua

### (Поступила в Редакцию 19 марта 2018 г.)

Впервые проведено теоретическое исследование и *ab initio* расчеты атомной и электронной структуры 4-х вариантов поверхности 3C-SiC(111) $-(2\sqrt{3} \times 2\sqrt{3})$ - $R30^{\circ}$ , заканчивающейся Si: исходной, релаксированной, реконструированной и релаксированной после реконструкции. В приближении слоистой сверхрешетки поверхность моделировалась системой тонких пленок (слэбов) толщиной 12 атомных слоев, и разделенных вакуумными промежутками  $\sim 16$  Å. Для замыкания оборванных связей углерода на противоположной стороне пленки добавлялись 12 атомов водорода. *Ab initio* расчеты проводились с использованием программы QUANTUM ESPRESSO, основанной на теории функционала плотности. Показано, что реконструкция приводит к расщеплению атомных слоев. Предыдущие работы авторов и экспериментальные данные показали, что подобные расщепления присущи реконструкциям поверхности (111) в кристаллах со структурой сфалерита. Рассчитаны и проанализированы зонные структуры 4-х вариантов слоба. Что реальная поверхность имеет металлическую проводимость.

Все расчеты были выполнены на вычислительном кластере Института проблем материаловедения НАН Украины.

DOI: 10.21883/FTT.2018.10.46536.073

#### 1. Введение

Как показали многочисленные исследования, проводившиеся с 30-х годов в России, США, Германии, Японии, монокристаллический карбид кремния является одним из многообещающих и ценнейших материалов для создания электронных приборов, предназначенных для работы в экстремальных условиях.

Высокая механическая твердость, малые коэффициенты диффузии примесей и дефектов обусловливают минимальную деградацию параметров приборов. Изделия на основе SiC удовлетворяют самым жестким требованиям к эксплуатационным характеристикам: работа при температурах выше 800 К, повышенное быстродействие и энергосбережение, большая мощность, стойкость к потокам нейтронов на 1.5–2 порядка выше по сравнению с приборами на основе Si, GaAs, GaP; работа в агрессивных средах, в сильных магнитных полях.

Высокая электро- и фотолюминесцентная активность материала позволяют создавать на основе различных политипов карбида кремния (в настоящее время известно около 250 политипов) широкий класс элементов оптоэлектроники — например, фотодетекторы, эталоны излучения, генераторы нано- и субнаносекундных импульсов, инжекционные и пробойные разноцветные светодиоды, излучение которых перекрывает весь видимый спектр. На протяжении более чем полстолетия интерес к карбиду кремния то затухал, то возрождался. Это связано с технологическими трудностями выращивания кристаллов необходимой степени чистоты и размеров с

воспроизводимыми свойствами в объеме и на поверхности. С 90-х годов начался настоящий бум в исследованиях по карбиду кремния. Этим занимаются около двух десятков крупнейших кампаний в США, Японии, Германии, ряд организаций под Москвой, в Петербурге, Киеве и других научных центрах России и Украины. Последние два десятилетия особое место в SiC-исследованиях занимает теоретическое и экспериментальное изучение поверхностных свойств, в т.ч. разработка методов воспроизводимого приготовления поверхности с заранее заданной реконструкцией. Кристаллы SiC отличаются большим многообразием поверхностных реконструкций, зависящих в первую очередь от условий роста кристалла и его ориентации. В [1] сообщается, что на эпитаксиально выращенной поверхности 3C-SiC(111) возможны структуры ( $\sqrt{3} \times \sqrt{3}$ ), ( $3\sqrt{6} \times 3\sqrt{6}$ ), ( $3 \times 3$ ), ( $6 \times 6$ ) и  $(9 \times 9)$  в зависимости от температуры отжига.

С другой стороны, атомные структуры, наблюдаемые на островковых поверхностях 3*C*-SiC(111), образующиеся в результате реакции молекул фуллеренов с кремниевой подложкой, весьма отличны от структур на 3*C*-SiC(111), полученных химическим осаждением из паровой фазы. В [1] методом сканирующей туннельной микроскопии (STM) наблюдались (2 × 2), (2 × 3), (3 × 3) и ( $2\sqrt{3} \times 2\sqrt{3}$ )-*R*30° структуры. При этом структура ( $2\sqrt{3} \times 2\sqrt{3}$ )-*R*30° получалась только этим методом. Еще одна уникальная ее особенность заключается в том, что эта структура меняется с изменением напряжения смещения при STM [1–3], причем эти изменения обратимы и воспроизводимы. На основе результатов STM Yang и др. [1] предложили так называемую "demisemi vacancy" (DV) модель атомной структуры (рис. 1),<sup>1</sup> которая в основном имела качественный характер. В [2] эта модель поверхностной реконструкции 3*C*-SiC(111) $-(2\sqrt{3} \times 2\sqrt{3})$ -*R*30° подверглась детальному изучению в целях оценки ее достоверности. *Ab initio* расчеты ее атомной и электронной структуры дискретным вариационным методом в рамках формализма локальной плотности показали, что энергетически выгодным является наличие трех вакансий атомов Si на верхнем поверхностном слое. Расчет выявил ряд особенностей в зонной щели реконструированной поверхности *3C*-SiC(111) $-(2\sqrt{3} \times 2\sqrt{3})$ -*R*30°.

Анализ парциальных плотностей состояний поверхностных атомов Si и C и расположение энергетических уровней состояний оборванных связей этих атомов позволили авторам [2] объяснить зависимость исследуемой реконструкции от величины и знака напряжения смещения в процессе проведения STM. С тех пор прошло 15 лет. К настоящему времени авторам настоящей статьи неизвестны работы об этой интересной реконструкции 3C-SiC(111).

Настоящая работа посвящена дальнейшему детальному изучению свойств этой реконструкции. Проведено теоретическое исследование атомной и электронной структуры 4-х вариантов поверхности 3C-SiC(111) –  $(2\sqrt{3} \times 2\sqrt{3})$ - $R30^{\circ}$ , заканчивающейся кремнием: исходной, релаксированной, реконструированной и реконструированной с последующей релаксацией. Такой подход позволил проследить за влиянием релаксации/реконструкции на атомную и электронную структуру в каждом конкретном случае.

### 2. Метод расчета

Расчеты проводились *ab initio* методом псевдопотенциала с обменно-корреляционным функционалом в приближении локальной плотности (LDA) с использованием программного пакета QUANTUM ESPRESSO [4], основанного на теории функционала плотности (DFT). При этом использовалось приближение слоистой сверхрешетки.

В расчете применена также модель слэба, предложенная К. Shiraishi [5] специально для полярных поверхностей.<sup>2</sup>

Слэб, моделирующий поверхность, состоял из 12 заполненных слоев и вакуумного промежутка, равного ~ 16 Å. Нереконструированная суперячейка  $(2\sqrt{3} \times 2\sqrt{3}) - R30^{\circ}$  состоит из 12-ти слоев и содержит



**Рис. 1.** DV-модель реконструкции поверхности 3C-SiC(111)– $(2\sqrt{3} \times 2\sqrt{3})$ -R30°, оканчивающейся кремнием. Ромб представляет элементарную ячейку. Темные кружки — атомы Si в положении *A*, кружки с крестиком — атомы Si в положении *B*, белые кружки — атомы Si в положении *C*, косые крестики — вакансии. Во втором слое затемненные сверху кружки — атомы C в положении *D*1, затемненные снизу — атомы C в положении *D*2, черные кружки — атомы C в положении *E*.

144 атома (по 12 атомов в каждом слое). Число валентных электронов равно 576. В случае реконструкции в верхнем 12-ом слое кремния имеются три вакансии. Такая элементарная ячейка содержит 141 атом. В этом случае число валентных электронов равно 564. Для замыкания оборванных связей углерода добавляются 12 атомов водорода. Таким образом, имеется 588 валентных зон в отсутствие реконструкции и 576 валентных зон при реконструкции.

Самосогласованные расчеты проводились с использованием сетки **k**-точек  $4 \times 4 \times 1$ . После ряда тестовых расчетов энергия обрезания была взята равной 544 eV, что соответствует разложению волновой функции по  $\sim 85\,000$  плоских волн.

### 3. Атомная структура поверхности. Релаксация. Реконструкция

Оптимизация атомной структуры проводилась только для четырех верхних слоев в элементарной ячейке нереконструированной и реконструированной поверхностей. Атомы в остальных слоях занимали свои объемные позиции.

Равновесный параметр решетки для объемного SiC был определен из расчета зависимости полной энергии от параметра решетки. Он оказался равным a = 4.3292 Å, что хорошо согласуется с экспериментальными данными a = 4.3596 Å [6], и соответствует отклонению 0.7%.

Для поверхности без релаксации каждый атом верхнего слоя кремния Si12 имеет трех ближайших соседей из слоя C11, расположенных на расстоянии 1.87460 Å (см. рис. 1). Атомы углерода слоя C11 имеют четырех ближайших соседей на том же расстоянии, причем один

<sup>&</sup>lt;sup>1</sup> Идея рис. 1 взята из работы [1]. Авторы внесли изменения в рисунок для согласования с изложенным далее материалом.

<sup>&</sup>lt;sup>2</sup> Атомы кремния и углерода имеют по 4 валентных электрона, 8 электронов образуют 4 валентных связи, в каждую из которых оба атома отдают по одному электрону. Чтобы замкнуть оборванные связи ионов углерода на поверхности 3C-SiC(111)B, оканчивающейся углеродом, надо присоединить к ней 12 атома водорода с зарядом электрона, равным 1.



**Рис. 2.** Смещения атомов в верхних четырех слоях исходного слэба вдоль координатных осей и силы, действующие на эти атомы: черные кружки — до релаксации, белые кружки — после релаксации.



**Рис. 3.** Смещения атомов в верхних четырех слоях реконструированного слэба вдоль координатных осей и силы, действующие на эти атомы: черные кружки — до релаксации, белые кружки — после релаксации.

H

| Тип атома в слое S112/число томов | Ближайшие соседи (А)                                                                                                                                            |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A/1                               | $1.83498 - 3 \cdot C11$                                                                                                                                         |
| <i>B</i> /2                       | $1.83494 - 3 \cdot C11$                                                                                                                                         |
| <i>C</i> /6                       | $\begin{array}{c} 1.83490 - 2 \cdot \text{C11} \\ 1.83491 - 1 \cdot \text{C11} \end{array}$                                                                     |
| X/3                               | $1.83492 - 3 \cdot C11$                                                                                                                                         |
| Тип атома в слое С11/число атомов | Ближайшие соседи (Å)                                                                                                                                            |
| D1/4                              | $\begin{array}{l} 1.83490 - 2 \cdot \text{Si12} \\ 1.83492 - 1 \cdot \text{Si12} \\ 1.90962 - 1 \cdot \text{Si10} \end{array}$                                  |
| D2/4                              | $\begin{array}{c} 1.83491 - 1 \cdot \text{Si12} \\ 1.83492 - 1 \cdot \text{Si12} \\ 1.83494 - 1 \cdot \text{Si12} \\ 1.90961 - 1 \cdot \text{Si10} \end{array}$ |
| <i>E</i> /4                       | $\begin{array}{c} 1.83490 - 2 \cdot \text{Si12} \\ 1.83498 - 1 \cdot \text{Si12} \\ 1.90961 - 1 \cdot \text{Si10} \end{array}$                                  |

Таблица 1. Релаксированная поверхность без реконструкции

a:4.0 /

-

( 8 )

Таблица 2. Реконструированная поверхность с последующей релаксацией

| Тип атома в слое Si12/число атомов | Ближайшие соседи (Å)                                                                                                           |  |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|
| A/1                                | $1.79740 - 3 \cdot C11$                                                                                                        |  |
| <i>B</i> /2                        | $1.76412 - 3 \cdot C11$                                                                                                        |  |
| <i>C</i> /6                        | $\begin{array}{c} 1.73035 - 1 \cdot C11 \\ 1.73128 - 1 \cdot C11 \\ 1.83241 - 1 \cdot C11 \end{array}$                         |  |
| Тип атома в слое С11/число атомов  | Ближайшие соседи (Å)                                                                                                           |  |
| D1/6                               | $\begin{array}{l} 1.73128 - 2 \cdot \mathrm{Si12} \\ 1.84948 - 1 \cdot \mathrm{Si10} \end{array}$                              |  |
| D2/3                               | $\begin{array}{l} 1.73035 - 1 \cdot Si12 \\ 1.76412 - 1 \cdot Si12 \\ 1.82930 - 1 \cdot Si10 \end{array}$                      |  |
| E/3                                | $\begin{array}{c} 1.79740 - 1 \cdot \text{Si12} \\ 1.83241 - 2 \cdot \text{Si12} \\ 2.08311 - 1 \cdot \text{Si10} \end{array}$ |  |

из них принадлежит слою Si10, а три других — слою Si12. После релаксации картина несколько меняется, что отражено в табл. 1, 2. В них "X" обозначает атомы кремния, удаляемые при реконструкции, а запись вида " $3 \cdot C11$ " означает наличие трех соседей из слоя C11.

В табл. 3 приведены величины смещений атомов из их объемных позиций для нереконструированной и реконструированной поверхностей. Поскольку смещения вдоль осей *x* и *y* в отсутствие реконструкции практически равны нулю, в табл. 3 включены только смещения вдоль оси z. Положения атомов в релаксируемых слоях считались полностью оптимизированными, когда силы, действующие на атомы, становились меньше 0.02 eV/Å. В табл. 4 приведены силы, действующие на атомы верхних 4-х слоев.

Отметим, что в исходной суперячейке минимальная и максимальная силы, действующие на атомы, равны соответственно 0.2217 и 1.1002 eV/Å, а после релаксации, как видно из табл. 4, они составляют 0.0007 и 0.0062 eV/Å. Таким образом, после релаксации исходного слэба минимальная и максимальная силы уменьшились более чем в 310 и в 170 раз, соответственно. В случае реконструкции минимальная и максимальная силы, действующие на атомы, равны 0.1321 и 2.8786 eV/Å, а после релаксации они уменьшились до 0.0013 и 0.0184 eV/Å соответственно в 100 и 156 раз. Заметим, что во всех четырех вариантах наибольшие силы имеют место в подповерхностном слое C11 (подобная ситуация наблюдалась авторами в [7] при изучении весьма сложной реконструкции CdTe(111) $B - (2\sqrt{3} \times 4)$  орт).

На рис. 2 приведены наглядные и удобные для понимания графики величин смещений атомов вдоль осей x, y, z в исходной пленке после релаксации в верхних четырех слоях C9, Si10, C11 и Si12.

Из рис. 2 видно, что при релаксации смещения атомов вдоль осей x и y очень незначительные, вдоль оси zсмещения в пределах каждого слоя практически равны для всех атомов, при этом расстояние между слоями увеличивается, т.к. 9-й и 11-й слои смещаются вверх по оси z, а 10-й и 12-й слои — вниз. На рис. 2 также показаны силы, действующие на атомы до и после релаксации. Как видно, после релаксации силы резко уменьшаются и становятся практически равными по величине во всех четырех слоях, доходя до тысячных и десятитысячных долей eV/Å.

На рис. 3 приведены графики величин смещений атомов в реконструированной пленке до и после релаксации для каждого из 45 атомов верхних четырех слоев и силы, действующие на эти атомы. Графики построены по тому же принципу, что и на предыдущем рисунке. Для каждого из графиков на рис. 3 в плоскости xyсмещения имеют свои наглядно видимые особенности. Вдоль оси z все 4 верхних слоя, подвергнутые релаксации, расщепились. Так, каждый из слоев С9, Si10 и C11 расщепились на три слоя, содержащих 6, 3 и 3 атома. Видно, что расстояние между расщепившимися слоями увеличивается с приближением к поверхностному слою. Поверхностный слой Si12 сместился на 0.3 Å вниз от исходного положения и расщепился на 3 слоя, содержащих 6, 2 и 1 атом.

Каждому слою 9, 10 и 11 соответствуют 3 группы межатомных сил по 6, 3 и 3 значения в каждой группе. Поверхностному слою Si12, в котором недостает трех атомов, соответствуют 3 группы межатомных сил по 6, 2 и 1 значению в каждой группе. Величины сил, действующих на атомы после проведения релаксации

| Атом<br>(№ слоя) | Исходная поверхность, смещения по оси $z$ (Å) | Реконструированная поверхность, смещения по осям $x, y, z$ (Å) |              |              |
|------------------|-----------------------------------------------|----------------------------------------------------------------|--------------|--------------|
|                  | dz = z2 - z1                                  | dx = x2 - x1                                                   | dy = y2 - y1 | dz = z2 - z1 |
| С9               | 0.01014                                       | 0.00000                                                        | 00016        | 0.00934      |
| C9               | 0.01015                                       | 0.01499                                                        | 0.01499      | 0.01934      |
| C9               | 0.01014                                       | 0.00016                                                        | 0.00000      | 0.00934      |
| C9               | 0.01015                                       | 0.00000                                                        | 01499        | 0.01934      |
| C9               | 0.01015                                       | 0.01483                                                        | 0.01784      | 00939        |
| C9               | 0.01015                                       | 0.01784                                                        | 0.00301      | 0.00939      |
| C9               | 0.01015                                       | 0.00301                                                        | 0.01784      | 0.00939      |
| C9               | 0.01015                                       | 0.01784                                                        | 0.01483      | 0.00939      |
| C9               | 0.01015                                       | 0.01499                                                        | 0.00000      | 0.01934      |
| C9               | 0.01015                                       | 0.00301                                                        | 0.01483      | 0.00939      |
| C9               | 0.01014                                       | 0.00016                                                        | 0.00016      | 0.00934      |
| C9               | 0.01015                                       | 0.01483                                                        | 0.00301      | 0.00939      |
| Si10             | -0.00495                                      | 0.00000                                                        | 0.00578      | 0.05571      |
| Si10             | -0.00495                                      | 0.00578                                                        | 0.00000      | 0.05571      |
| Si10             | -0.00497                                      | 0.00000                                                        | 0.06591      | 0.04297      |
| Si10             | -0.00495                                      | 0.02513                                                        | 0.01601      | 0.03020      |
| Si10             | -0.00497                                      | 0.06591                                                        | 0.06591      | 0.04297      |
| Si10             | -0.00495                                      | 0.01601                                                        | 0.02513      | 0.03020      |
| Si10             | -0.00497                                      | 0.06591                                                        | 0.00000      | 0.04297      |
| Si10             | -0.00495                                      | 0.04114                                                        | 0.02513      | 0.03020      |
| Si10             | -0.00495                                      | 0.01601                                                        | 0.04114      | 0.03020      |
| Si10             | -0.00495                                      | 0.04114                                                        | 0.01601      | 0.03020      |
| Si10             | -0.00495                                      | 0.02513                                                        | 0.04114      | 0.03020      |
| Si10             | -0.00495                                      | 0.00578                                                        | 0.00578      | 0.05571      |
| C11              | 0.03006                                       | 0.00000                                                        | 0.02178      | 0.15274      |
| C11              | 0.03006                                       | 0.02178                                                        | 0.00000      | 0.15274      |
| C11              | 0.03005                                       | 0.00000                                                        | 0.08521      | 0.01167      |
| C11              | 0.03006                                       | 0.05066                                                        | 0.00141      | 0.01712      |
| C11              | 0.03005                                       | 08521                                                          | 08521        | 0.01167      |
| C11              | 0.03006                                       | 0.00141                                                        | 0.05066      | 0.01712      |
| C11              | 0.03005                                       | 0.08521                                                        | 0.00000      | 0.01167      |
| C11              | 0.03006                                       | 0.05207                                                        | 0.05066      | 0.01712      |
| C11              | 0.03006                                       | 0.00141                                                        | 0.05207      | 0.01712      |
| C11              | 0.03006                                       | 0.05207                                                        | 0.00141      | 0.01712      |
| C11              | 0.03006                                       | 0.05066                                                        | 0.05207      | 0.01712      |
| C11              | 0.03006                                       | 0.02178                                                        | 0.02178      | 0.15274      |
| Si12             | -0.10138                                      | 0.00000                                                        | 0.00000      | 0.30036      |
| Si12             | -0.10158                                      | 0.06309                                                        | 0.07418      | 0.30919      |
| Si12             | -0.10164                                      | Х                                                              | Х            | Х            |
| Si12             | -0.10164                                      | 0.07418                                                        | 0.06309      | 0.30919      |
| Si12             | -0.10158                                      | 0.01109                                                        | 06309        | 0.30919      |
| Si12             | -0.10164                                      | X                                                              | X            | X            |
| Si12             | -0.10149                                      | 0.00000                                                        | 0.00000      | 0.37203      |
| Si12             | -0.10158                                      | 0.00000                                                        | 0.00000      | 0.37203      |
| Si12             | -0.10149                                      | X                                                              | X            | X            |
| Si12             | -0.10164                                      | 0.06309                                                        | 0.01109      | 0.30919      |
| Si12             | -0.10164                                      | 07418                                                          | 0.01109      | 0.30919      |
| Si12             | -0.10164                                      | 01109                                                          | 0.07418      | 0.30919      |

Таблица 3. Смещения атомов 4-х верхних слоев

Таблица 4. Силы, действующие на атомы верхних 4-х слоев (1 — без реконструкции до релаксации; 2 — без реконструкции после релаксации; 3 — реконструкция без релаксации; 4 — реконструкция и релаксация. Крестиком отмечены три удаленных при реконструкции атома из слоя Si12)

| Атом     | Силы (eV/Å) |        |        |        |
|----------|-------------|--------|--------|--------|
| (№ слоя) | 1           | 2      | 3      | 4      |
| С9       | 0.2218      | 0.0042 | 0.1971 | 0.0024 |
| С9       | 0.2217      | 0.0041 | 0.4199 | 0.0026 |
| С9       | 0.2218      | 0.0042 | 0.1971 | 0.0024 |
| С9       | 0.2217      | 0.0041 | 0.4199 | 0.0026 |
| С9       | 0.2217      | 0.0041 | 0.1321 | 0.0027 |
| С9       | 0.2217      | 0.0041 | 0.1321 | 0.0027 |
| C9       | 0.2217      | 0.0041 | 0.1321 | 0.0027 |
| C9       | 0.2217      | 0.0041 | 0.1321 | 0.0027 |
| С9       | 0.2217      | 0.0041 | 0.4199 | 0.0026 |
| С9       | 0.2217      | 0.0041 | 0.1321 | 0.0027 |
| С9       | 0.2218      | 0.0042 | 0.1971 | 0.0024 |
| С9       | 0.2217      | 0.0041 | 0.1321 | 0.0027 |
| Si10     | 0.2225      | 0.0007 | 0.6585 | 0.0086 |
| Si10     | 0.2225      | 0.0007 | 0.6585 | 0.0086 |
| Si10     | 0.2224      | 0.0010 | 1.1966 | 0.0016 |
| Si10     | 0.2225      | 0.0007 | 1.1076 | 0.0013 |
| Si10     | 0.2224      | 0.0010 | 1.1966 | 0.0016 |
| Si10     | 0.2225      | 0.0007 | 1.1076 | 0.0013 |
| Si10     | 0.2224      | 0.0010 | 1.1966 | 0.0016 |
| Si10     | 0.2225      | 0.0007 | 1.1076 | 0.0013 |
| Si10     | 0.2225      | 0.0007 | 1.1076 | 0.0013 |
| Si10     | 0.2225      | 0.0007 | 1.1076 | 0.0013 |
| Si10     | 0.2225      | 0.0007 | 1.1076 | 0.0013 |
| Si10     | 0.2225      | 0.0007 | 0.6585 | 0.0086 |
| C11      | 1.1001      | 0.0060 | 1.8592 | 0.0022 |
| C11      | 1.1001      | 0.0060 | 1.8592 | 0.0022 |
| C11      | 1.1002      | 0.0062 | 1.9835 | 0.0045 |
| C11      | 1.1002      | 0.0061 | 1.8910 | 0.0044 |
| C11      | 1.1002      | 0.0062 | 1.9835 | 0.0045 |
| C11      | 1.1002      | 0.0061 | 1.8910 | 0.0044 |
| C11      | 1.1002      | 0.0062 | 1.9835 | 0.0045 |
| C11      | 1.1002      | 0.0061 | 1.8910 | 0.0044 |
| C11      | 1.1002      | 0.0061 | 1.8910 | 0.0044 |
| C11      | 1.1002      | 0.0061 | 1.8910 | 0.0044 |
| C11      | 1.1002      | 0.0061 | 1.8910 | 0.0044 |
| C11      | 1.1001      | 0.0060 | 1.8592 | 0.0022 |
| Si12     | 0.9939      | 0.0030 | 0.2291 | 0.0184 |
| Si12     | 0.9940      | 0.0040 | Х      | Х      |
| Si12     | 0.9940      | 0.0045 | 2.7533 | 0.0049 |
| Si12     | 0.9940      | 0.0045 | 2.7533 | 0.0049 |
| Si12     | 0.9940      | 0.0040 | Х      | Х      |
| Si12     | 0.9940      | 0.0045 | 2.7533 | 0.0049 |
| Si12     | 0.9940      | 0.0037 | 2.8786 | 0.0026 |
| Si12     | 0.9940      | 0.0040 | Х      | Х      |
| Si12     | 0.9940      | 0.0037 | 2.8786 | 0.0026 |
| Si12     | 0.9940      | 0.0045 | 2.7533 | 0.0049 |
| Si12     | 0.9940      | 0.0045 | 2.7533 | 0.0049 |
| Si12     | 0.9940      | 0.0045 | 2.7533 | 0.0049 |

Reconstructed surface before relaxation



Reconstructed surface after relaxation



**Рис. 4.** Вид сбоку четырех верхних слоев реконструированного слэба до и после релаксации.



Рис. 5. Зонная структура исходной поверхности.



Рис. 6. Зонная структура реконструированной поверхности.



**Рис. 7.** Полная, послойная и *s*-, *p*-плотности состояний кремния и углерода исходной поверхности SiC(111) без учета и с учетом релаксации.



Рис. 8. Вклады в плотность состояний атома кремния (слой Si12,) и атома углерода (слой C11) для исходной поверхности.

реконструированного слэба резко уменьшились до ничтожно малых величин. Таким образом, в результате реконструкции/релаксации атомная структура пленки значительно усложнилась. На рис. 4 представлен вид сбоку четырех верхних слоев реконструированной поверхности до и после релаксации.

## 4. Зонная структура

Зонная структура 12-слойной пленки 3*C*-SiC(111) –  $(2\sqrt{3} \times 2\sqrt{3})$ -*R*30° с вакуумным промежутком вычислялась вдоль контура  $\Gamma(0, 0) - M(1/2, 0) - K(1/3, 1/3) - \Gamma(0, 0)$  для 29 точек **k** в двумерной зоне Бриллюэна. Изменение величины вакуумного промежутка не привело к заметным изменениям в зонной структуре и плотности электронных состояний.

Расчет проведен для законов дисперсии  $E(\mathbf{k})$  всех электронов (588 либо 576) и более 50 незанятых состояний в интервале от -8 до 4.35 eV. На рис. 5 и 6 представлены зонные структуры четырех вариантов исследуемой поверхности — исходная, релаксированная, реконструированная и релаксированная после реконструкции в интервале энергий от -2 до 2 eV.

Из рисунков, построенных на основе расчетов в 29 точках поверхностной зоны Бриллюэна в энергетическом промежутке выше уровня Ферми, где находилась фундаментальная щель в объемом кристалле 3C-SiC, практически невозможно выделить  $E(\mathbf{k})$  оборванной связи и запрещенную зону. Представленные в следующем разделе результаты расчетов плотности состояний,

проведенные в большом числе точек поверхностной зоны Бриллюэна, показали наличие запрещенной зоны в исходной и релаксированной поверхностях.

### 5. Плотность состояний

Расчеты плотности состояний проводились на сетке точек  $\mathbf{k}$  8 × 8 × 1, что соответствует 2128 точкам в поверхностной зоне Бриллюэна. Энергетический интервал, в котором построены кривые, включал всю валентную зону, фундаментальную щель, которая сохранилась в исходной и релаксированной поверхностях, и часть незанятых состояний.

На рис. 7 представлены результаты расчетов плотности электронных состояний (DOS) исходного и релаксированного слэбов 3C-SiC(111)– $(2\sqrt{3} \times 2\sqrt{3})$ -R30°.

Для каждого варианта слэба приведено по 8 графиков. На верхнем графике представлена кривая полной DOS слэба, на следующих четырех графиках приведены DOS 4-х верхних атомных слоев C9, Si10, C11 и Si12, которые будут подвергнуты релаксации. Такое расположение позволяет наглядно проследить постепенное изменение DOS по мере приближения к верхнему поверхностному слою. Мы не будем подробно останавливаться на описании происхождения пиков DOS вдоль всей валентной полосы. Ясность вносят графики 6 и 7, на которых приведены вклады *s*- и *p*-состояний валентных электронов в DOS исходного слэба.

На рис. 8 показаны вклады в полную DOS исходного слэба плотности состояний одного атома из слоя Si12



**Рис. 9.** Полная, послойная и *s*-, *p*-плотности состояний атомов кремния и углерода реконструированной поверхности SiC(111) без учета и с учетом релаксации.



**Рис. 10.** Вклады в полную DOS слэба плотности состояний каждого из атомов типа *A*, *B*, *C* из слоя Si12 и каждого из атомов типа *D*1, *D*2 и *E* из слоя C11.

и одного атома из слоя С11. В исходном слэбе и в верхнем поверхностном слое Si12 внутри запрещенной зоны, имеющей ширину 1.46 eV, почти симметрично по отношению к уровню Ферми имеются гигантские пики оборванной связи, равные 104 и 67.3 arb. units соответственно. Такое классическое положение пика оборванной связи внутри фундаментальной щели наблюдалось еще в начале 70-годов прошлого века на поверхности монокристалла кремния (см., например, [8]). В правом столбце на рис. 7 представлены плотности состояний в релаксированном слэбе. Запрещенная зона по-прежнему существует и равна 1.51 eV, основание пика оборванной связи увеличилось, а на высоте, соответствующей 21.1 arb. units, пик разделяется на 2 пика 44.3 и 67.5 arb. units. Подробная информация наглядно видна на остальных графиках второго столбца.

На рис. 9 представлены результаты расчетов DOS реконструированного и релаксированного после реконструкции слэбов 3C-SiC $(111)-(2\sqrt{3} \times 2\sqrt{3})$ -R30°. В случае реконструкции три атома Si "выбрасываются" из поверхностного слоя Si12, а оставшиеся 9 атомов делятся на 3 типа A, B, C (см. табл. 1, 2) в соответствии с их ближайшим окружением атомами углерода слоя C11. В свою очередь, в слое C11, как видно из рис. 1 и табл. 1, 2 также можно выделить 3 типа атомов углерода D1, D2 и E, различающихся расстоянием до ближайших соседей из слоев Si10 и Si12. На рис. 10 приведены вклады в полную DOS слэба плотности состояний каждого из атомов типа A, B, C из слоя Si12 и каждого из атомов типа D1, D2 и E из слоя C11.

Основные "события" происходят в энергетическом интервале вокруг уровня Ферми. На графике полной DOS слэба видна сложная поверхностная структура, состоящая из 5 пиков: 55.6, 50.4, 31.6, 30.4, 11.5 arb. units. Как видно из графиков левого столбца рис. 9, наибольший вклад вносят атомы поверхностного Si12 и подповерхностного С11 слоев, среди которых 3 атома кремния типа А дают самый заметный вклад в виде узкого одиночного пика, почти симметричного относительно уровня Ферми (рис. 10). В правых столбцах рис. 9, 10, где представлены графики плотности состояний реконструированного слэба после релаксации, картина существенно изменилась. Пики DOS в окрестности уровня Ферми изменили форму и весьма уменьшились по величине в среднем на 47%. Укажем также, что в результате структурной перестройки (см. раздел 3), значительно уменьшились все виды вкладов в плотность состояний, что хорошо видно на рис. 7 и 9.

Таким образом, реальная поверхность 3C-SiC(111)- $(2\sqrt{3} \times 2\sqrt{3})$ - $R30^{\circ}$  имеет металлическую проводимость.

### 6. Заключение

Используя данные [1,2], проведено теоретическое исследование и *ab initio* расчеты атомной и электронной структуры 4-х вариантов поверхности 3C-SiC(111) –  $(2\sqrt{3} \times 2\sqrt{3})$ - $R30^{\circ}$ , заканчивающейся кремнием: исходной, релаксированной, реконструированной и релаксированной после реконструкции. В приближении слоистой сверхрешетки поверхность моделировалась системой тонких пленок (слэбов) толщиной 12 атомных слоев, периодически повторяющихся в направлении, перпендикулярном поверхности, и разделенных вакуумными промежутками ~ 16 Å.

Для замыкания оборванных связей углерода на противоположной стороне пленки добавляются 12 атомов водорода с зарядом электрона, равным 1.

*Ab initio* расчеты проводились с использованием программы QUANTUM ESPRESSO, основанной на DFT–LDA. В каждом из вариантов определены равновесные координаты атомов Si и C верхних "отпущенных" четырех слоев. Положения атомов считались полностью релаксированными, если силы, действующие на атомы, не превышали 0.02 eV/Å.

Показано, что реконструкция расщепляет каждый из 3 верхних "отпущенных" слоев C9, Si10 и C11 на 3 слоя, содержащих 6, 3 и 3 атома. Расстояние между расщепившимися слоями весьма мало и увеличивается с приближением к поверхностному слою. Поверхностный слой Si12, в котором недостает трех атомов, тоже расщепился на 3 слоя, содержащих 6, 2 и 1 атом, и сместился вниз от исходного положения на величину, почти на три порядка большую, чем расщепление в слоях 9, 10 и 11. Наши предыдущие результаты и экспериментальные данные показали, что подобные расщепления присущи реконструкциям поверхности (111) в кристаллах со структурой сфалерита.

Рассчитаны зонные структуры 4-х вариантов слэба и проанализировано влияние релаксаций и реконструкции на особенности поведения зон проводимости и валентной и на положение уровня Ферми. Реальная поверхность (реконструкция/релаксация) в силу особенностей реконструкции, о чем авторы писали выше, имеет металлическую проводимость.

Рассчитаны полные и послойные для 4-х верхних слоев 9, 10, 11, 12 плотности состояний валентных электронов. Приведенные рисунки наглядно демонстрируют постепенное изменение величины и расположения поверхностных структур на шкале энергий при переходе от слоя к слою и от одного вида поверхности к другому.

Все расчеты были выполнены на вычислительном грид-кластере Института проблем материаловедения НАН Украины.

### Список литературы

- J. Yang, X. Wang, G. Zhai, N. Cue, X. Wang. Surf. Sci. 476, 1-2, 1 (2001).
- [2] X. Peng, X. Wang, L. Ye. Surf. Sci. 501,1-2, 125 (2002).
- [3] J.I. Pascual, J. Gomez-Herrero, A.M. Baro. Surf. Sci. 397, 1–3, 1267 (1998).

- [4] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch. J. Phys.: Condens. Matter. 21, 39, 395502 (2009).
- [5] K. Shiraishi. J. Phys. Soc. Jpn. 59, 10, 3455 (1990).
- [6] Landolt-Börnstein / Ed. O. Madelung. New Series III. 17 c. Springer, Berlin (1982).
- [7] В.Л. Бекенев, С.М. Зубкова. ФТП 51, 1, 26 (2017).
- [8] M. Schluter, J.R. Chelicowsky, S.G. Louie, M.L. Cohen. Phys. Rev. B, 12, 10, 4200 (1975).

Редактор Ю.Э. Китаев