⁰⁵ Магнитные и магнитодиэлектрические свойства Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄

© И.А. Гудим¹, А.А. Демидов^{2,¶}, Е.В. Еремин^{1,3}, D.K. Shukla⁴

¹ Институт физики им. Л.В. Киренского СО РАН ФИЦ КНЦ СО РАН,

Красноярск, Россия

² Брянский государственный технический университет,

Брянск, Россия

³ Сибирский федеральный университет,

Красноярск, Россия

⁴ UGC-DAE Consortium for Scientific Research Indore, India

[¶] E-mail: demandr@yandex.ru

(Поступила в Редакцию 12 апреля 2018 г.)

Проведено экспериментальное и теоретическое исследование магнитных и магнитодиэлектрических свойств ферробората $Ho_{0.5}Nd_{0.5}Fe_3(BO_3)_4$ с конкурирующими обменными Ho-Fe- и Nd-Fe-взаимодействиями. Обнаружены ступенчатые аномалии на кривых намагничивания при спин-переориентационном переходе, индуцируемом магнитным полем **B** || **c**. Уточнена температура спонтанного спин-переориентационного перехода ($T_{SR} \approx 8 \text{ K}$). Измеренные магнитные свойства и обнаруженые особенности проинтерпретированы в рамках единого теоретического подхода, который базируется на приближении молекулярного поля и расчетах в модели кристаллического поля для редкоземельного иона. При интерпретации экспериментальных данных определены параметры кристаллического поля для ионов Ho^{3+} и Nd^{3+} в $Ho_{0.5}Nd_{0.5}Fe_3(BO_3)_4$ и параметры обменных Ho-Fe- и Nd-Fe-взаимодействий.

Работа выполнена при финансовой поддержке РФФИ № 17-52-45091 ИНД_а.

DOI: 10.21883/FTT.2018.10.46522.103

1. Введение

Редкоземельные бораты $RM_3(BO_3)_4$ (R = Y, La–Lu; M = Al, Sc, Cr, Fe, Ga) демонстрируют большое разнообразие магнитных, магнитоэлектрических, магнитоупругих и других физических свойств [1–5]. Бораты с двумя магнитными подсистемами (ферробораты $RFe_3(BO_3)_4$) являются мультиферроиками [1,3,4]. Недавно было установлено, что известные своими нелинейно-оптическими свойствами алюмобораты $RAl_3(BO_3)_4$, обнаруживают гигантские значения магнитоэлектрической поляризации [5]. Новый всплеск интереса к боратам $RM_3(BO_3)_4$ связан с появившейся возможностью исследовать замещенные составы $R_{1-x}R'_xFe_3(BO_3)_4$, наличие в которых конкурирующих R–Fe- и R'–Fe-обменных взаимодействий, может привести к реализации спонтанных переориентационных переходов [3,6,7].

Подходящими *R*-ионами для синтеза и исследования замещенного ферробората с конкурирующими обменными взаимодействиями являются ионы Ho³⁺ и Nd³⁺. Магнитные моменты железа в HoFe₃(BO₃)₄ антиферромагнитно упорядочиваются при $T_N \approx 38-39$ K и при понижении до температуры $T_{SR} \approx 4.7-5$ K лежат в базисной плоскости *ab*, также как и магнитные моменты ионов Ho³⁺ [3,8,9]. При $T_{SR} \approx 4.7-5$ K происходит спонтанный спин-переориентационный переход, в результате которого магнитные моменты Hoи Fe-подсистем становятся ориентированными вдоль оси с. В NdFe₃(BO₃)₄ при $T < T_N \approx 31$ К все магнитные моменты лежат в базисной плоскости *ab* [10,4]. YFe₃(BO₃)₄ при $T < T_N \approx 37-38$ К также имеет легкоплоскостную (ЛП) магнитную структуру [8,11,4]. Таким образом, в результате конкуренции разных вкладов от Но-, Nd- и Fe-подсистем в магнитную анизотропию Ho_{1-x}Nd_xFe₃(BO₃)₄ возможно возникновение спонтанных и индуцированных магнитным полем спинпереориентационных переходов. Данные переходы в Ho_{1-x}Nd_xFe₃(BO₃)₄ были обнаружены для составов с x = 0.5 [3] и 0.75 [12].

Казалось очевидным, что замещение ионов Но³⁺ на ионы Nd³⁺ (стабилизирующие ЛП-состояние) в $Ho_{1-x}Nd_xFe_3(BO_3)_4$ должно было привести к сдвигу температуры спин-переориентационного перехода из ЛП в легкоосное (ЛО) состояние от обнаруженного в НоFe₃(BO₃)₄ значения ($T_{\rm SR} \approx 4.7 - 5 \, {\rm K}$) в область более низких температур. Однако в Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ температура T_{SR} неожиданно увеличилась до 9 К [3], а в Ho_{0.25}Nd_{0.75}Fe₃(BO₃)₄ значение T_{SR} осталось таким же, как и в HoFe₃(BO₃)₄ [12]. Данный результат ярко показывает, что простое понимание сложения вкладов от ЛО- и ЛП-подсистем в замещенном соединении недостаточно для объяснения происходящих процессов в результирующей магнитной структуре. В [13] показано, что увеличение T_{SR} в Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ (по сравнению с HoFe₃(BO₃)₄) обусловлено расширением температурного диапазона устойчивости начального низкотемпературного состояния магнитной подсистемы вследствие его изменения с легкоосного (как в $HoFe_3(BO_3)_4$) на угловое состояние.

В данной работе продолжено изучение ферробората $Ho_{0.5}Nd_{0.5}Fe_3(BO_3)_4$ и представлены результаты экспериментального и теоретического исследования кривых намагничивания, магнитной восприимчивости, полевой и температурной зависимости диэлектрической проницаемости и теплоемкости. Приведены и обсуждаются новые экспериментальные данные для $Ho_{0.5}Nd_{0.5}Fe_3(BO_3)_4$: полевая и температурная зависимость диэлектрической проницаемости $\varepsilon_a(B_a, T)$, кривые намагниченности $M_{c, \perp c}(B)$, кривые восприимчивости $\chi_{c, \perp c}(T)$ при T = 20-300 К и $\chi_c(T)$ при T = 2-300 К для B = 0.1 Т.

2. Эксперимент

Монокристаллы Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ выращивались из растворов-расплавов на основе тримолибдата висму-Ta 82 wt% [Bi₂Mo₃O₁₂+3B₂O₃+0.25Ho₂O₃+0.25Nd₂O₃] + 18 wt% Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ по технологии, подробно описанной в работах [14,15]. Температура насыщения (T_{sat}) определялась с точностью $\pm 3^{\circ}$ С с помощью пробных кристаллов, предварительно полученных в режиме спонтанного зарождения. Также в режиме спонтанного зарождения при температуре $T = T_{\text{sat}} - 20^{\circ}\text{C}$ выращивались кристаллы размером ~ 1 mm. Эти кристаллы затем использовались как затравки для выращивания кристаллов размером порядка 5 × 7 × 7 mm³. При выращивании кристаллов на затравках стартовая температура задавалась равной $T = T_{sat} - 7^{\circ}C$, что соответствовало примерно середине зоны метастабильности раствора-расплава. Далее температура раствора-расплава понижалась с шагом 0.1°C по программе с нарастающим темпом так, чтобы скорость роста кристаллов не превышала 1 mm в сутки. При этом кристаллодержатель с затравками вращался со скоростью 30-40 грт и реверсом с периодом 1 min. После завершения процесса роста (10-15 суток) кристаллодержатель приподнимался над раствором-расплавом и печь охлаждалась до комнатной температуры с выключенным питанием. Изготовленные образцы имели хорошее оптическое качество и не содержали видимых дефектов.

Магнитные измерения были выполнены на установке Physical Properties Measurement System (Quantum Design) в температурном интервале 2–300 К и магнитных полях до 9 Т. Диэлектрическая проницаемость исследовалась с помощью измерения емкости LCR-метром Agilent E4980A Precision LCR Meter в частотном диапазоне 10 kHz-2 MHz.

3. Методика расчетов

При расчетах использовался теоретический подход, успешно примененный к ферроборатам чистых $RFe_3(BO_3)_4$ (R = Tb [2], Nd [16], Ho [17]) и замещенных $Nd_{1-x}Dy_{r}Fe_{3}(BO_{3})_{4}$ [7], $Sm_{0.7}Ho_{0.3}Fe_{3}(BO_{3})_{4}$ [18] составов. Данный теоретический подход основывается на модели кристаллического поля (КП) для *R*-иона и приближении молекулярного поля. За магнитные свойства $Ho_{1-x}Nd_xFe_3(BO_3)_4$ ответственны обе магнитные подсистемы, редкоземельная (гольмиевая и неодимовая) и железная, взаимодействующие друг с другом. Взаимодействием внутри *R*-подсистемы можно пренебречь. Железная подсистема может рассматриваться как совокупность двух антиферромагнитных подрешеток. Также в виде двух подрешеток может быть представлена и *R*-подсистема, подмагниченная за счет *f*-*d*-взаимодействия. Исходя из магнитной структуры Но_{1-х}Nd_xFe₃(BO₃)₄ и иерархии взаимодействий, в присутствии магнитного поля В эффективные гамильтонианы Fe и R = Ho, Nd ионов *i*-ой (i = 1, 2) подрешетки могут быть записаны:

$$\mathscr{H}_{i}(\mathbf{R}) = \mathscr{H}_{i}^{\mathrm{CF}} + g_{J}^{\mathrm{R}} \mu_{B} \mathbf{J}_{i}^{\mathrm{R}} [\mathbf{B} + \lambda_{fd}^{\mathrm{R}} \mathbf{M}_{i}^{\mathrm{Fe}}], \qquad (1)$$

$$\mathscr{H}_{i}(\mathrm{Fe}) = g_{S}\mu_{B}\mathbf{S}_{i}[\mathbf{B} + \lambda\mathbf{M}_{j}^{\mathrm{Fe}} + (1-x)\lambda_{fd}^{\mathrm{Ho}}\mathbf{m}_{i}^{\mathrm{Ho}} + x\lambda_{fd}^{\mathrm{Nd}}\mathbf{m}_{i}^{\mathrm{Nd}}],$$
$$j = 1, \ 2, \quad j \neq i.$$
(2)

Здесь $\mathscr{H}_i^{\text{CF}}$ — гамильтониан КП, g_J^{R} — фактор Ланде, \mathbf{J}_i^{R} — оператор углового момента *R*-иона, $g_S = 2$ — *g*-фактор, \mathbf{S}_i — оператор спинового момента иона железа, и $\lambda_{fd}^{\text{R}} < 0$ — молекулярные константы *R*-Fe- и Fe-Fe-антиферромагнитных взаимодействий.

Магнитные моменты *i*-й железной \mathbf{M}_i^{Fe} и редкоземельной \mathbf{m}_i^{R} подрешеток в расчете на формульную единицу определяются соотношениями

$$\mathbf{M}_{i}^{\mathrm{Fe}} = -3g_{S}\mu_{B}\langle \mathbf{S}_{i}\rangle, \ \mathbf{m}_{i}^{\mathrm{R}} = -g_{J}^{\mathrm{R}}\mu_{B}\langle \mathbf{J}_{i}^{\mathrm{R}}\rangle.$$
(3)

Выражение для гамильтониана КП в неприводимых тензорных операторах имеет вид

$$\begin{aligned} \mathscr{H}^{\rm CF} &= B_0^2 C_0^2 + B_0^4 C_0^4 + B_3^4 (C_{-3}^4 - C_3^4) + B_0^6 C_0^6 \\ &\quad + B_3^6 (C_{-3}^6 - C_3^6) + B_6^6 (C_{-6}^6 + C_6^6). \end{aligned} \tag{4}$$

Параметры КП B_q^k для ионов Ho³⁺ и Nd³⁺ в Ho_{1-x}Nd_xFe₃(BO₃)₄ не известны. Также нет информации о расщеплении нижних уровней основного мультиплета ионов Ho³⁺ и Nd³⁺ в Ho_{1-x}Nd_xFe₃(BO₃)₄.

Вычисление величин и ориентаций магнитных моментов Fe- и *R*-подсистем при решении самосогласованных задач на основе гамильтонианов (1-2) при условии минимума соответствующего термодинамического потенциала позволяет рассчитать области устойчивости различных магнитных фаз, поля фазовых переходов, кривые намагничивания, восприимчивость и т.д. Термодинамический потенциал для Ho_{1-x}Nd_xFe₃(BO₃)₄ был ранее представлен нами в работе [13].

Энергия анизотропии для i-ой подрешетки Fe-подсистемы Φ^i_{an} имеет вид

$$\Phi_{\rm an}^i = K_2^{\rm Fe} \sin^2 \vartheta_i + K_4^{\rm Fe} \sin^4 \vartheta_i + K_{66}^{\rm Fe} \sin \vartheta_i^6 \cos 6\varphi_i, \quad (5)$$

где константа анизотропии $K_2^{\text{Fe}} < 0$ стабилизирует ЛП состояние, $K_4^{\text{Fe}} > 0$ — ЛО состояние, $K_{66}^{\text{Fe}} < 0$ — константа анизотропии в базисной *ab*-плоскости, ϑ_i и φ_i — полярный и азимутальный углы отклонения вектора магнитного момента железа \mathbf{M}_i^{Fe} от осей *c* и *a* соответственно.

Намагниченность и восприимчивость Но_{1-x}Nd_xFe₃(BO₃)₄ равны

$$\mathbf{M} = \frac{1}{2} \sum_{i}^{2} \left(\mathbf{M}_{i}^{\text{Fe}} + (1 - x) \mathbf{m}_{i}^{\text{Ho}} + x \mathbf{m}_{i}^{\text{Nd}} \right),$$
$$\chi_{k} = \chi_{k}^{\text{Fe}} + (1 - x) \chi_{k}^{\text{Ho}} + x \chi_{k}^{\text{Nd}}, \quad k = a, b, c.$$
(6)

В упорядоченной фазе начальные магнитные восприимчивости соединения можно найти из начальных линейных участков кривых намагничивания, рассчитанных для соответствующих направлений внешнего магнитного поля. В парамагнитной области восприимчивость R-подсистемы рассчитывалась по известной формуле Ван Флека, энергетический спектр и волновые функции для которой вычислялись на основе гамильтониана (4). Восприимчивость Fe-подсистемы может быть описана законом Кюри–Вейсса с соответствующей парамагнитной температурой Нееля Θ.

Вклад R-подсистемы в магнитную часть теплоемкости $Ho_{1-x}Nd_xFe_3(BO_3)_4$ рассчитывался по формуле (на одну формульную единицу)

$$C = (1 - x)C_{\text{Ho}} + xC_{\text{Nd}}, \quad C_{\text{R}} = k_B \, \frac{\langle E^2 \rangle - \langle E \rangle^2}{(k_B T)^2}. \tag{7}$$

Тепловые средние $\langle E^2 \rangle$ и $\langle E \rangle^2$ вычислялись на спектре *R*-иона, формируемом КП и взаимодействиями с Fe-подсистемой и внешним магнитным полем.

4. Результаты и обсуждение

Известно, что в ферроборатах с малым ионным радиусом *R*-иона, в частности в $HoFe_3(BO_3)_4$, имеет место структурный фазовый переход, при котором локальная симметрия *R*-иона понижается от *D*₃ (при $T > T_S$) до C_2 (при $T < T_S$) [4]. При этом в NdFe₃(BO₃)₄ данный переход отсутствует [4]. Учитывая возможность описания основных особенностей низкотемпературных магнитных свойств HoFe₃(BO₃)₄ в высокотемпературной *D*₃-симметрии [17], описание экспериментальных данных для Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ было также проведено в D₃-симметрии [13], для которой гамильтониан КП имеет более простой вид. Недавнее исследование спектров инфракрасного поглощения $Ho_{0.5}Nd_{0.5}Fe_3(BO_3)_4$ в спектральном диапазоне $30-1700 \,\mathrm{cm}^{-1}$ при $T = 6-300 \,\mathrm{K}$ [19] показало, что изменений, связанных со структурными

фазовыми переходами, не происходит. В результате, в виду отсутствия экспериментально установленных фактов наличия структурного перехода в Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄, отсутствия данного перехода в NdFe₃(BO₃)₄, отсутствия данных о расщеплениях нижних уровней основных мультиплетов ионов Но³⁺ и Nd³⁺ в Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ и учитывая возможность описания магнитных свойств HoFe₃(BO₃)₄ [17] и Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ [13] в *D*₃-симметрии, описание полученных нами новых экспериментальных данных для $Ho_{0.5}Nd_{0.5}Fe_3(BO_3)_4$ было также проведено в D_3 -симметрии. Данное приближение позволяет значительно сократить количество используемых в расчете изначально неизвестных параметров КП (с 15 для С2-симметрии, до 6 для D₃-симметрии), однако, в случае обнаружения структурного перехода, полученные результаты расчетов следует признать только как качественные.

Исследование соотношения вкладов от Ho_{0.5}- и Nd_{0.5}-подсистем в результирующие магнитные характеристики Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ показало, что, например, при T = 2 К и $B_{c,\perp c} = 9$ Т вклад Но-подсистемы составляет ~ 84.7% в намагниченность $M_c(B)$ и ~ 82.8% в $M_{\perp c}(B)$. Чувствительность к вариациям параметров КП для ионов Ho³⁺ также больше, чем для ионов Nd³⁺. Расчеты показали, что существенного улучшения описания кривых намагничивания $M_{c,\perp c}(B)$, восприимчивости $\chi_{c,\perp c}(T)$ и теплоемкости $C_p/T(T)$ Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ при расчете с разными и с одинаковыми наборами параметров КП для Но- и Nd-подсистем нет. Поэтому при расчетах использовался единый набор параметров КП для Ho- и Nd-подсистем.

Для определения параметров КП использовались полученные нами экспериментальные данные о кривых намагничивания $M_{c,\perp c}(B)$ в полях до 9 T, температурных зависимостях начальной магнитной восприимчивости $\chi_{c,\perp c}(T)$, а также теплоемкость $C_p/T(T)$ из работы [3]. В качестве начальных значений параметров КП, с которых стартовала процедура минимизации соответствующей целевой функции, были взяты ранее найденные параметры для HoFe₃(BO₃)₄ [17] и NdFe₃(BO₃)₄ [16]. Также в качестве начального рассматривался ранее найденный нами при описании только кривых восприимчивости и теплоемкости предварительный набор параметров КП для Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ [13]. Уставлено, что наилучшее описание всего набора экспериментальных характеристик достигается с параметрами (в cm^{-1})

$$B_0^2 = 410, \ B_0^4 = -1250, \ B_3^4 = 870, \ B_0^6 = 350,$$

 $B_3^6 = 110, \ B_6^6 = 150.$ (8)

Набору параметров КП (8) соответствуют приведенные в табл. 1 значения энергий восьми нижних штарковских уровней основных мультиплетов ионов Ho^{3+} и Nd^{3+} в $\text{Ho}_{0.5}\text{Nd}_{0.5}\text{Fe}_3(\text{BO}_3)_4$ для B = 0: при $T > T_N$ и с учетом f - d-взаимодействия при

Таблица 1. Значения энергий восьми нижних уровней основных мультиплетов ионов Ho^{3+} и Nd^{3+} в $Ho_{0.5}Nd_{0.5}Fe_3(BO_3)_4$, расщепленных кристаллическим полем и с учетом f-d-взаимодействия при B = 0 в парамагнитной и упорядоченной областях температур.

R	Т	$\Delta = E_i - E_1, \mathrm{cm}^{-1} (i = 1 - 8)$				
Но	$T > T_N$ 10 K > T _{SR} 2 K < T _{SR}	0, 0, 12.5, 12.5, 16.9, 38, 152.6, 178.7 0, 2.2, 17.9, 19.8, 29.3, 46.4, 156.6,182.8 0, 10.9, 19.3, 25.9, 30.8, 51.4, 160.7, 179.4				
Nd	$T > T_N$ 10 > T_{SR} 2 K < T_{SR}	0, 0, 39.7, 39.7, 48.6, 48.6, 202.6, 202.6 0, 7.5, 44.2, 44.2, 50.5, 56, 207, 207 0, 7.3, 39.1, 48, 50.1, 57.5, 202, 212				

 $T = 10 \text{ K} > T_{\text{SR}}$ (ЛП-состояние) и $T = 2 \text{ K} < T_{\text{SR}}$ (начальное угловое состояние). Видно, что при $T < T_N$ учет f - d-взаимодействия приводит к снятию вырождения энергетических уровней. При T_{SR} энергетические уровни сдвигаются друг относительно друга и происходит изменение величины их расщепления: в случае Но (стабилизирующего ЛО-состояние) расщепление нижних уровней увеличивается от $\Delta_{fd} \approx 2.2$ до 10.9 cm^{-1} , а в слу-

чае Nd (стабилизирующего ЛП-состояние) происходит небольшое сужение уровней от $\Delta_{fd} \approx 7.5$ до 7.3 сm⁻¹.

Представленные далее на рисунках магнитные характеристики рассчитаны для параметров из табл. 2, в которой также приведены для сравнения параметры HoFe₃(BO₃)₄ и NdFe₃(BO₃)₄. Кроме того, в расчетах участвовали одноосные константы анизотропии Fe-подсистемы ($K_2^{\text{Fe}} = -2.85 \text{ T} \cdot \mu_B$ и $K_4^{\text{Fe}} = 0.55 \text{ T} \cdot \mu_B$ при T = 4.2 K) и константа анизотропии железа в базисной плоскости ($K_{66}^{\text{Fe}} = -1.35 \cdot 10^{-2} \text{ T}\mu_B$ [16]). Значения K_2^{Fe} и K_4^{Fe} согласуются с определенными при описании углового состояния в $\Pr_x Y_{1-x} \text{Fe}_3(\text{BO}_3)_4$ соответствующими одноосными константами [22] и результатами исследования антиферромагнитного резонанса в YFe₃(BO₃)₄ [23], согласно которым при обменном поле для Fe-подсистемы $H_E = 55 \text{ T}$ эффективное поле анизотропии получится равным $H_A^{\text{Fe}} = -2.75 \text{ T} \cdot \mu_B$.

Для расчета магнитных характеристик $Ho_{0.5}Nd_{0.5}Fe_3(BO_3)_4$ при направлении внешнего магнитного поля вдоль и перпендикулярно тригональной оси с использовались изображенные на рис. 1 схемы ориентаций магнитных моментов железа \mathbf{M}_i^{Fe} и редкой земли $\mathbf{m}_i = \mathbf{m}_i^{Nd_{0.5}} + \mathbf{m}_i^{Dy_{0.5}}$.

Таблица 2. Параметры Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ и для сравнения HoFe₃(BO₃)₄ [20] и NdFe₃(BO₃)₄ [16]: B_{dd1} (внутрицепочечное Fe–Fe), B_{dd2} (межцепочечное Fe–Fe) и B_{fd} — низкотемпературные значения обменных полей, соответствующих молекулярным константам λ_1 , λ_2 и λ_{fd} ; $M_0 = |M_i(T = 0, B = 0)| = 15 \mu_B$ — магнитный момент железа в расчете на одну формульную единицу; Δ_{fd} — низкотемпературное расщепление основного состояния R-иона вследствие f-d-взаимодействия (в угловой (УГ), ЛО- и ЛП-состояниях); T_{SR} — температура спин-переориентационного перехода; θ_1 — угол отклонения \mathbf{M}_1^{Fe} от оси c; T_N — температура Нееля; Θ — парамагнитная температура Нееля для Fe-подсистемы.

Соединение	HoFe ₃ (BO ₃) ₄	Ho _{0.5} Nd _{0.5} Fe ₃ (BO ₃) ₄		NdFe ₃ (BO ₃) ₄
$B_{ m dd1} = \lambda_1 M_0, { m T} \ \lambda_1, { m T}/\mu_B$	68 -4.53	55 -3.67		58 -3.87
$B_{ m dd2} = \lambda_2 M_0, { m T} \ \lambda_2, { m T}/\mu_B$	26 -1.73	28 -1.87		27 -1.8
$B_{fd} = \lambda_{fd} M_0, \mathrm{T}$	3.49	3.7 (Ho) 7.3 (Nd)		7.1
$\lambda_{fd},\mathrm{T}/\mu_B$	-0.23	-0.25 (Ho) -0.49 (Nd)		-0.47
$\Delta_{fd} = \mu_B g \lambda_{fd} M_0, \mathrm{cm}^{-1}$	~ 10.6 (ЛО) ~ 9.7 (ЛП)	Но	$\sim 10.9 (\mathrm{Y}\mathrm{\Gamma})$ $\sim 2.2 (\mathrm{J}\mathrm{I}\mathrm{I})$	8.8 (ЛП)
		Nd	\sim 7.5 (91) \sim 7.5 (ЛП)	
T _{SR} , K	~ 4.7–5 [8,3,21]	~ 8 ~ 9 [3]		
$ heta_1,^\circ(B=0)$	$\begin{array}{l} 0\left(T < T_{\rm SR}\right)\\ 90(T > T_{\rm SR}) \end{array}$	$\sim 46.8 (T = 2 \text{ K} < T_{\text{SR}})$ 90 (T > T_{\text{SR}})		90
<i>T_N</i> , K	~ 37.4–39 [8,3,21]	~ 32 ~ 32 [3]		~ 31 [4]
Θ, Κ	-210	-120		-130

Экспериментальные кривые намагничивания $M_{c,\perp c}(B)$ $Ho_{0.5}Nd_{0.5}Fe_3(BO_3)_4$ при $T = 2-40 \, K$ приведены на рис. 2 для направления магнитного поля вдоль тригональной оси $\mathbf{B} \parallel \mathbf{c}$ (*a*) и в базисной плоскости $\mathbf{B} \perp \mathbf{c}$ (*b*). При T < 10 К скачки намагниченности хорошо видны на $M_c(B)$ и различимы на $M \perp c(B)$. Для $T \ge 10 \,\mathrm{K}$ кривые $M_{c,\perp c}(B)$ не демонстрируют аномалий. Таким образом, температура $T = 10 \, \text{K}$, близкая к температуре спин-переориентационного перехода $T_{\rm SR} \approx 9 \, {\rm K}$ [3], разбивает исследованный температурный диапазон на две области — с обнаруженными на $M_{c,\perp c}(B)$ аномалиями (при *T* < 10 K) и без аномалий (при *T* ≥ 10 K). Данный факт подтверждают и полевые зависимости магнитодиэлектрический поляризации $\varepsilon_a(Ba)$ при T = 5 и 10 K, показанные на следующем рис. 3, а. Видно существенное отличие в характере поведения $\varepsilon_a(Ba)$ при изменении температуры.

Наибольший интерес вызывает кривая $M_c(B)$ при T = 2 K, на которой обнаружены три скачка намагниченности вблизи $B \approx 1$, 1.3 и 2.9 T (отмечены стрелками на рис. 2, *a*). Три скачка обнаружены и при вводе, и при выводе магнитного поля и хорошо видны на кривых дифференциальной магнитной восприимчивости (см. вставку на рис. 4). С возрастанием температуры третий скачок вблизи 2.9 T становится практически невидимым уже при T = 5 K, а второй скачок различим до T = 7 K (вблизи 0.9 T, см. рис. 2, *a*). Для поля в базисной плоскости на $M_{\perp c}(B)$ видна только одна аномалия при T < 10 K.

Согласно результатам [13] начальным низкотемпературным состоянием магнитной подсистемы $Ho_{0.5}Nd_{0.5}Fe_3(BO_3)_4$ при B = 0 является угловое состояние, с отклоненными от оси с магнитными моментами железа (см. схему а на рис. 1). Таким образом, наблюдаемые при *T* < 10 К аномалии на $M_{c,\perp c}(B)$ (рис. 2) обусловлены спиновой переориентацией в Fe-подсистеме от начальной угловой фазы (схема а на рис. 1) во флоп-фазу (схема а для **В** \parallel **с** и аналогичная схема для **В** \perp **с**).

Проведенные обширные расчеты магнитных фаз, которые могут быть реализованы в Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ при разных ориентациях магнитных моментов Ho-, Ndи Fe-подсистем, позволили сделать предположение, что наблюдаемый на $M_c(B)$ при $T = 2 \,\mathrm{K}$ трехступенчатый вид скачка намагниченности обусловлен наличием промежуточных состояний между начальной угловой фазой (схема a) и флоп фазой (схема d). Первый, более яркий, скачок на $M_c(B)$ при B_{SR1} связан с реализацией в полях $B_{\rm SR1} < B < B_{\rm SR2}$ промежуточной угловой фазы с существенно большим, чем в начальной фазе ($\theta \approx 46.8^{\circ}$), углом отклонения магнитных моментов Fe от оси *с* $\theta_{\rm SR1} \approx 71^{\circ}$ (при $B_{\rm SR1}$, см. схему c). Второй, менее выраженный, скачок при B_{SR2} обусловлен переориентацией магнитных моментов Fe из промежуточного состояния с $\theta_{\rm SR1} \approx 71^{\circ}$ С в состояние с $\theta_{\rm SR2} \approx 72.5^{\circ}$ (при $B_{\rm SR2}$, схема с). Третий скачок обусловлен спиновой переориентацией из промежуточного состояния с $\theta_{\text{SR2}} \approx 72.5^{\circ}$

1951

Рис. 1. Схемы ориентаций магнитных моментов железа \mathbf{M}_i^{Fe} и редкой земли $\mathbf{m}_i = \mathbf{m}_i^{\text{Ne}_{0.5}} + \mathbf{m}_i^{\text{Dy}_{0.5}}$, использованные при расчете магнитных характеристик $\text{Ho}_{0.5}\text{Nd}_{0.5}\text{Fe}_3(\text{BO}_3)_4$. Схема a — при B = 0 угловое состояние (конус осей легкого намагничивания). Схемы b, c и d — при $\mathbf{B} \parallel \mathbf{c}$ (плоскость ab перпендикулярна плоскости рисунка). Схема $e - \mathbf{B} \perp \mathbf{c}$ (ось c перпендикулярна плоскости рисунка) показаны проекции магнитных моментов на плоскость ab в доменах с осями антиферромагнетизма под углами к оси $a \varphi_i = 0(L_0)$ и $\varphi_i = \pm 60^{\circ}(L_{60})$.

во флоп-фазу ($\theta_{SR3} \rightarrow 90^{\circ}$, схема c) и сопровождается переориентацией вдоль направления поля **B** || **c** магнитных моментов обеих подрешеток ионов Ho³⁺ и Nd³⁺ (схема d). Таким образом, процесс трансформации магнитной подсистемы Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ при T = 2 K c ростом поля **B** || **c** проходит следующие последовательные стадии (по изменению угла отклонения магнитных моментов Fe от оси **c**, см. схему c): θ (при B = 0) $\rightarrow \theta_{SR1}$ (при B_{SR1}) $\rightarrow \theta_{SR2}$ (при B_{SR2}) $\rightarrow \theta_{SR3}$ (при B_{SR3} , флоп фаза).

Причиной реализации возможных индуцированных магнитным полем промежуточных состояний с некол-

линеарной антиферромагнитной структурой является конкуренция вкладов от Но-, Nd- и Fe-подсистем в полную магнитную анизотропию Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ и энергии Зеемана. Магнитная анизотропия Nd- и Fe-подсистем стабилизирует ЛП-магнитную структуру. Гольмиевая подсистема стабилизирует ЛО-магнитную структуру. В результате при определенных значениях температуры и поля магнитные моменты железа могут быть ориентированы под углом θ к оси с. С ростом магнитного поля достигнутый в слабых полях баланс вкладов нарушается, в результате при $T < T_{
m SR}$ в диапазонах полей $B_{
m SR1} < B < B_{
m SR2}$ и $B_{\rm SR2} < B < B_{\rm SR3}$ стабилизируются промежуточные состояния с магнитными моментами Fe, ориентированными относительно оси с под большим углом θ , чем в предыдущем состоянии. Ранее в работе [24] и затем в [25] при исследовании также проявляющего спин-переориентационный переход ферробората GdFe₃(BO₃)₄ был сделан вывод об отклонении магнитных моментов Fe от оси *с* на большие величи-

Рис. 2. Экспериментальные кривые намагничивания $M_{c, \perp c}(B)$ Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ для **B** || **c** (*a*) и **B** \perp **c** (*b*) при *T* = 2 (0), 5 (-1.5), 7 (-2.5), 10 (-3.5), 20 (-4.5), 40 (-5.5) K (в скобках приведены коэффициенты сдвига по вертикальной оси).

Рис. 3. Зависимость диэлектрической проницаемости ε_a вдоль оси *a* кристалла Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ (на частоте 10 kHz) от магнитного поля **B** || **a** (при $T = 2 \text{ K} < T_{\text{SR}}$ и $T = 10 \text{ K} > T_{\text{SR}}$) (*a*) и от температуры при **B** || **a** (*b*). T_{M} — температура при которой происходит трансформация доменной структуры Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ в ЛП-состоянии при **B** || **a** и $B < B_{\text{SR}}$.

ны углов, меняющихся при разных температурах и значениях магнитного поля. Возможность реализации начального углового состояния недавно подтвердилась экспериментально в ферроборате $\Pr_x Y_{1-x} \operatorname{Fe}_3(\operatorname{BO}_3)_4$ [26]. Отметим также, что расчет по аналогичному механизму трансформации магнитной подсистемы позволил объяснить ступенчатые аномалии в ферроборатах $\operatorname{Nd}_{1-x} \operatorname{Dy}_x \operatorname{Fe}_3(\operatorname{BO}_3)_4$ [7] и $\Pr_x Y_{1-x} \operatorname{Fe}_3(\operatorname{BO}_3)_4$ [22]. Результирующая намагниченность вдоль оси *с* в диапазоне

Рис. 4. Экспериментальные (значки) и рассчитанные (линии) кривые намагничивания $Ho_{0.5}Nd_{0.5}Fe_3(BO_3)_4$ для **В** || **с** и **В** \perp **с** при T = 2 К. На вставке — кривые дифференциальной магнитной восприимчивости dM/dB при вводе (темные значки) и при выводе (светлые значки) магнитного поля.

температур *T* < 10 К рассчитывалась по следующим формулам:

I. В начальной угловой фазе при $0 \le B < B_{\text{SR1}}$ (схема *b* на рис. 1, $\theta_1 = 46.8^{\circ}$ при B = 0):

$$M_{c} = \frac{1}{2} \Big(M_{1}^{\text{Fe}} \cos(\theta_{1}) + M_{2}^{\text{Fe}} \cos(\theta_{2}) \\ + 0.5 \big(m_{2c}^{\text{Ho}} - m_{1c}^{\text{Ho}} \big) + 0.5 \big(m_{2c}^{\text{Nd}} - m_{1c}^{\text{Nd}} \big) \Big).$$
(9)

II. В промежуточной фазе при $B_{\rm SR1} < B < B_{\rm SR2}$ по формуле (9), в которой $\theta_1 = \theta_{\rm SR1} \approx 71^\circ$ при $B_{\rm SR1}$ (схема c).

III. В промежуточной фазе при $B_{\text{SR2}} < B < B_{\text{SR3}}$ по формуле (9), в которой $\theta_1 = \theta_{\text{SR2}} \approx 72.5^\circ$ при B_{SR1} (схема c).

IV. Во флоп-фазе при $B > B_{SR3}$ и $\theta_1 = \theta_2 = \theta_{SR3}$ (схема d):

$$M_{flop} = \frac{1}{2} \Big(M_{1,2c}^{\text{Fe}} + 0.5m_{1,2c}^{\text{Ho}} + 0.5m_{1,2c}^{\text{Nd}} \Big).$$
(10)

Из рис. 4 видно, что расчет намагниченности по формулам (9) и (10) позволил достигнуть хорошего описания ступенчатых аномалий на $M_c(B)$ при T = 2 K.

Рост температуры приводит к сглаживанию скачков намагничивания и к отсутствию различимого на экспериментальных кривых при T = 5 и 7 K в поле B_{SR3} промежуточного состояния, вследствие реализации в полях $B_{SR1} < B < B_{SR2}$ угловой фазы с близкими к плоскости *ab* углами отклонения железа. В результате при T = 5 и 7 K реализуется только одно промежуточное

состояние с θ_{SR1} и затем в поле B_{SR2} происходит переход во флоп-фазу (схема *d*). Отметим, что учитывая установленную корреляцию магнитных, магнитоэлектрических и магнитоупругих свойств ферроборатов [4], обнаруженные множественные особенности на кривых $M_c(B)$ при T = 2, 5 K проясняют природу обнаруженных скачков и перегибов на полевой зависимости поляризации $P_a(H_c)$ $Ho_{0.5}Nd_{0.5}Fe_3(BO_3)_4$ при T = 5 K из работы [3] (см. рис. 15, *b* в [3]).

Для $T > T_{SR}$ кривые $M_c(B)$ не обнаруживают видимых аномалий (рис. 2), магнитные моменты Ho-, Nd- и Fe-подсистем лежат в плоскости *ab*, и расчет проводился по формуле (10). Пример описания экспериментальной кривой $M_c(B)$ из данного диапазона (при T = 10 K) показан на рис. 5.

При намагничивании тригонального кристалла Но_{0.5}Nd_{0.5}Fe₃(BO₃)₄ в базисной плоскости *ab* в малых полях вклад в намагниченность дают все три возможных домена с осями антиферромагнетизма под углом 120° друг к другу (см. схему е на рис. 1). Расчет кривых $M_{\perp c}(B)$ для $B < B_{\mathrm{SR}} \approx 2.3 \,\mathrm{T}$ (при $T = 2 \,\mathrm{K}$) проведен в соответствии с подходом, примененном при исследовании процессов намагничивания с учетом возможного существования трех типов доменов в ЛП ферроборате NdFe₃(BO₃)₄ [16] и в ферроборате с угловым начальным состоянием $Sm_{0.7}Ho_{0.3}Fe_3(BO_3)_4$ [18]. Аномалия на $M_{\perp c}(B)$ при $T < T_{\rm SR}$ (рис. 1,4) обусловлена спинпереориентационным переходом из начальной угловой

Рис. 5. Экспериментальные (значки) и рассчитанные (линии) кривые намагничивания $Ho_{0.5}Nd_{0.5}Fe_3(BO_3)_4$ для **В** || **с** и **В** \perp **с** при T = 10 К. На вставке — фазовая диаграмма, построенная на основании полученных данных и известных из работы [3]. Выделенные разной штриховкой области — фазовая диаграмма из работы [3].

фазы (схема *a* при B = 0 и схема *e* — в проекции на плоскость *ab* при **B** || **a**) во флоп фазу. Видно, что рассчитанная намагниченность при температуре до ($T = 2 \text{ K} < T_{\text{SR}}$, рис. 4) и после ($T = 10 \text{ K} > T_{\text{SR}}$, рис. 5) спин-переориентационного перехода достаточно хорошо описывает эксперимент.

На вставке рис. 5 приведена фазовая диаграмма, построенная на основании полученных нами экспериментальных данных и данных из литературы. Выделенные разной штриховкой области на данном рисунке — фазовая диаграмма Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ из работы [3]. Видно, что для **B** || **c** и *T* < *T*_{SR} по данным [3] граница индуцированного полем фазового перехода располагается между областями устойчивости промежуточных фаз при *B*_{SR1} и *B*_{SR2} (сплошные и открытые квадраты). Для поля в базисной плоскости при *T* < *T*_{SR} по данным [3], полученным для **B** || **a**, граница фазового перехода практически совпадает с обнаруженными нами на $M_{\perp c}(B)$ полями переходов (треугольники). Также на фазовой диаграмме приведены данные о *T*_{SR}, полученные из кривых $\chi_{c,\perp c}(T)$, $C_p/T(T)$ [3] и кривых поляризации $P_a(T, B)$ [3].

Из рис. 1 и из фазовой диаграммы (вставка на рис. 5) хорошо видно, что значение поля спин-переориентационного перехода B_{SR} падает с ростом температуры, т.е. с ростом температуры исходная угловая фаза оказывается менее устойчивой, несмотря на возрастающую параллельную восприимчивость Fe-подсистемы. Данная зависимость $B_{SR}(T)$ отличается от имеющихся в $RFe_3(BO_3)_4$ с R = Pr, Nd, Tb, Dy, в которых поле $B_{\rm SR}$ росло с ростом температуры, как это чаще всего и бывает для одноосных антиферромагнетиков. Подобное поведение зависимости $B_{SR}(T)$ было обнаружено для НоFe₃(BO₃)₄ [21] и обусловлено возрастающей близостью температур, при которых измерены кривые $M_c(B)$, к температуре спин-переориентационного перехода $T_{\rm SR}$. При увеличении температуры происходит уменьшение суммарной эффективной константы анизотропии соединения от R- и Fe-подсистем.

На следующем рис. 6 изображены экспериментальные и теоретические температурные зависимости восприимчивости $\chi_{c,\perp c}(T)$. На экспериментальных зависимостях $\chi_{c,\perp c}(T)$, измеренных при B = 0.1 Т, вблизи 8 К наблюдается резкое уменьшение с понижением температуры восприимчивости $\chi_c(T)$ и небольшое скачкообразное увеличение $\chi_{\perp c}(T)$. Аналогичное поведение $\chi_a(T)$ вблизи 8 К (при B = 0.1 Т) и $\chi_c(T)$ вблизи 9 К (при B = 0.02 Т) было обнаружено в работе [3].

Установлено, что угловая фаза с $\theta \approx 46.8^{\circ}$ (при T = 2 K) позволяет объяснить и количественно описать наблюдаемые на экспериментальных $\chi_{c, \perp c}(T)$ близи 8 K аномалии. Резкое уменьшение $\chi_c(T)$ и более слабовыраженный скачок на $\chi_{\perp c}(T)$ при $T \approx 8 \text{ K}$ обусловлены сменой при понижении температуры ЛП-состояния на угловое состояние. Данный спин-переориентационный переход обусловлен различными температурными зависимостями конкурирующих вкладов редкоземельных

Рис. 6. Экспериментальные (значки) и рассчитанные (линии) температурные зависимости магнитной восприимчивости Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ вдоль (χ_c) и перпендикулярно ($\chi_{\perp c}$) тригональной оси при B = 0.1 Т (на вставке — низкотемпературный диапазон кривых $\chi_{c,\perp c}(T)$).

(Но и Nd) и Fe-подсистем в полную магнитную анизотропию Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄. Видно, что расчет намагниченности в поле B = 0.1 т в начальной угловой фазе ($T < T_{SR}$, схема b для $\chi_c(T)$ и схема e для $\chi_{\perp c}(T)$) и в ЛП-состоянии ($T > T_{SR}$, схема d для $\chi_c(T)$ и аналогичная схема для $\chi_{\perp c}(T)$) хорошо описывает экспериментальные кривые (рис. 6).

Отметим, что поведение экспериментальных кривых $\chi_{c,\perp c}(T)$ в ранее неисследованном диапазоне температур T = 20-300 K, подтверждает сделанный ранее на основании расчетов [13] вывод о слабоанизотропном поведении восприимчивости $\chi_{c,\perp c}(T)$ при T > 20 K.

На рис. 3, в приведены температурные зависимости действительной части диэлектрической проницаемости ε_a вдоль оси *а* кристалла на частоте 10 kHz. Видно, что практически не изменяясь в парамагнитной области, диэлектрическая проницаемость начинает сильно возрастать ниже температуры Нееля. При этом, определенная из кривых теплоемкости [3] и восприимчивости температура $T_{\rm SR} \approx 8$ K, находится примерно в середине диапазона, соответствующего наибольшему уменьшению $\varepsilon_a(T)$ при B = 0, а также проявляется в виде излома (при B = 0.5 T) и пика (при B = 0.8, 1 Т) на $\varepsilon_a(T)$. Приложение магнитного поля в базисной плоскости приводит с понижением температуры от T_N в малом поле $B = 0.2 \,\mathrm{T}$ к небольшому увеличению ε_a , а затем с ростом поля к ее монотонному существенному уменьшению. В целом зависимости $\varepsilon_a(T)$ демонстрируют либо две (при $B < B_{SR}$), либо одну (при $B > B_{SR}$) аномалии — при температуре T_M и затем с понижением температуры вблизи $T_{\rm SR} \approx 8 \, {\rm K}$. Измерения $\varepsilon_a(B_a, T)$

в частотном диапазоне 10 kHz-2 MHz показали, что частотная зависимость диэлектрической проницаемости отсутствует в диапазоне 10 kHz-200 kHz. Представленные на рис. 3, b зависимости $\varepsilon_a(T)$ Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ согласуются с кривыми $\varepsilon_a(T)$ для HoFe₃(BO₃)₄ [3], на которых также зафиксированы две аномалии — широкий пик вблизи 10 К (при T_M) и резкое уменьшение при $T_{\rm SR} \approx 5$ К. Поскольку аномалия на $\varepsilon_a(T)$ при $T_{\rm M}$ видна в диапазоне полей $B = 0 - 0.5 \,\mathrm{T}$ и при $T > T_{\mathrm{SR}}$, а затем пропадает при $B \ge 0.8 \, \mathrm{T}$, то причиной данной аномалии является трансформация доменной структуры Но_{0.5}Nd_{0.5}Fe₃(BO₃)₄ в ЛП состоянии при В || а. Как показано в работах [16,18] для направления поля В || а в ЛП ферроборатах в базисной плоскости происходит спин-флоп-переход в одном из трех доменов, являющихся следствием тригональной симметрии. Обнаруженное увеличение значения $\varepsilon_a(T)$ вблизи температуры $T_{\rm M}$ в слабом поле $\mathbf{B} \parallel \mathbf{a}$ (см. кривую при $B_a = 0.2 \,\mathrm{T}$ на рис. 3, b), а затем существенное уменьшение $\varepsilon_a(T)$ при дальнейшем вырастании поля Ва соответствуют обнаруженной немонотонной зависимости от поля $\varepsilon_a(B_a)$ при $T = 10 \,\mathrm{K}$ (рис. 3, b), на которой видно возрастание $\varepsilon_a(B_a)$ в малых полях, а затем ее уменьшение с ростом поля.

Установлено, что рассчитанный с параметрами КП (8) вклад R-подсистемы в теплоемкость и составляющие данного вклада от Ho- и Nd-подсистем демонстрируют хорошее согласие с экспериментальной кривой $C_p/T(T)$ Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ при B = 0 [3], на которой хорошо виден обусловленный спин-переориентационным переходом резкий пик вблизи 8 К. Рассчитанный вклад R-подсистемы и степень его согласия с экспериментом аналогичны показанному ранее в работе [13].

5. Заключение

Проведено экспериментальное и теоретическое исследование магнитных и магнитодиэлектрических свойств Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ с конкурирующими обменными Ho–Fe- и Nd–Fe-взаимодействиями и получено согласие теории и эксперимента для всей совокупности измеренных характеристик. Единый теоретический подход позволил определить актуальные параметры при сравнении результатов расчета с экспериментальными данными.

Предложенный возможный вариант процессов намагничивания в магнитных полях до 9 T с реализацией угловой магнитной структуры позволил в деталях проанализировать поведение магнитных моментов Но-, Ndи Fe-подсистем и описать аномалии на низкотемпературных кривых намагничивания $M_{c,\perp c}(B)$ при фазовых переходах от начальной фазы в промежуточную (одну или две, в зависимости от температуры) и затем во флоп-фазу. Описан спонтанный спин-переориентационный переход, проявляющийся яркой аномалией на кривой восприимчивости $\chi_c(T)$ и менее выраженной на $\chi_{\perp c}(T)$. Рассчитанный вклад редкоземельной подсистемы в теплоемкость Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ воспроизводит результаты эксперимента и дает возможность понять степень ответственности составляющих редкоземельного вклада за наблюдаемые аномалии Шоттки и результирующий вид теплоемкости.

Список литературы

- А.К. Звездин, С.С. Кротов, А.М. Кадомцева, Г.П. Воробьев, Ю.Ф. Попов, А.П. Пятаков, Л.Н. Безматерных, Е.А. Попова. Письма в ЖЭТФ 81,335 (2005).
- [2] E.A. Popova, D.V. Volkov, A.N. Vasiliev, A.A. Demidov, N.P. Kolmakova, I.A. Gudim, L.N. Bezmaternykh, N. Tristan, Yu. Skourski, B. Buechner, C. Hess, R. Klingeler. Phys. Rev. B 75, 224413 (2007).
- [3] R.P. Chaudhury, F. Yen, B. Lorenz, Y.Y. Sun, L.N. Bezmaternykh, V.L. Temerov, C.W. Chu. Phys. Rev. B 80, 104424 (2009).
- [4] А.М. Кадомцева, Ю.Ф. Попов, Г.П. Воробьев, А.П. Пятаков, С.С. Кротов, К.И. Камилов, В.Ю. Иванов, А.А. Мухин, А.К. Звездин, А.М. Кузьменко, Л.Н. Безматерных, И.А. Гудим, В.Л. Темеров. ФНТ **36**, 640 (2010).
- [5] K.-C. Liang, R.P. Chaudhury, B. Lorenz, Y.Y. Sun, L.N. Bezmaternykh, V.L. Temerov, C.W. Chu. Phys. Rev. B 83, 180417(R) (2011).
- [6] Ю.Ф. Попов, А.М. Кадомцева, Г.П. Воробьев, А.А. Мухин, В.Ю. Иванов, А.М. Кузьменко, А.С. Прохоров, Л.Н. Безматерных, В.Л. Темеров. Письма в ЖЭТФ 89, 405 (2009).
- [7] А.А. Демидов, И.А. Гудим, Е.В. Еремин. ЖЭТФ 141, 294 (2012).
- [8] C. Ritter, A. Vorotynov, A. Pankrats, G. Petrakovskii, V. Temerov, I. Gudim, R. Szymczak. J. Phys.: Condens. Matter 20, 365209 (2008).
- [9] D.K. Shukla, S. Francoual, A. Skaugen, M. Zimmermann, H.C. Walker, L.N. Bezmaternykh, I.A. Gudim, V.L. Temerov, J. Strempfer. Phys. Rev. B 86, 224421 (2012).
- [10] А.К. Звездин, Г.П. Воробьев, А.М. Кадомцева, Ю.Ф. Попов, А.П. Пятаков, Л.Н. Безматерных, А.В. Кувардин, Е.А. Попова. Письма в ЖЭТФ 83, 600 (2006).
- [11] E.A. Popova, A.N. Vasiliev, V.L. Temerov, L.N. Bezmaternykh, N. Tristan, R. Klingeler, B. Buchner. J. Phys.: Condens. Matter 22, 116006 (2010).
- [12] R.P. Chaudhury, B. Lorenz, Y.Y. Sun, L.N. Bezmaternykh, V.L. Temerov, C.W. Chu. J. App. Phys. 107, 09D913 (2010).
- [13] A.A. Demidov. Physica B **440**, 73 (2014).
- [14] L.N. Bezmaternykh, V.L. Temerov, I.A. Gudim, N.A. Stolbovaya. Crystallogr. Rep. 50, S97 (2005).
- [15] I.A. Gudim, E.V. Eremin, V.L. Temerov. J. Cryst. Growth 312, 2427 (2010).
- [16] Д.В. Волков, А.А. Демидов, Н.П. Колмакова. ЖЭТФ 131, 1030 (2007).
- [17] А.А. Демидов, Д.В. Волков. ФТТ 53, 926 (2011).
- [18] А.А. Демидов, И.А. Гудим, Е.В. Еремин. ЖЭТФ 142, 928 (2012).
- [19] Ю.В. Герасимова, С.Н. Софронова, И.А. Гудим, А.С. Орешонков, А.Н. Втюрин, А.А. Иваненко. ФТТ 58, 149 (2016).

- [20] А.А. Демидов. Автореф. док. дис. МГУ, М. (2016). 42 с.
- [21] A. Pankrats, G. Petrakovskii, A. Kartashev, E. Eremin, V. Temerov. J. Phys.: Condens. Matter. 21, 436001 (2009).
- [22] A.I. Pankrats, A.A. Demidov, C. Ritter, D.A. Velikanov, S.V. Semenov, V.I. Tugarinov, V.L. Temerov, I.A. Gudim. J. Phys.: Condens. Matter. 28, 396001 (2016).
- [23] А.И. Панкрац, Г.А. Петраковский, Л.Н. Безматерных, В.Л. Темеров. ФТТ **50**, 77 (2008).
- [24] S.A. Kharlamova, S.G. Ovchinnikov, A.D. Balaev, M.F. Thomas, L.S. Lyubutin, A.G. Gavriliuk. XHTP 128, 1252 (2005).
- [25] K.V. Frolov, I.S. Lyubutin, E.S. Smirnova, O.A. Alekseeva, I.A. Verin, V.V. Artemov, S.A. Kharlamova, L.N. Bezmaternykh, I.A. Gudim. J. Alloys Comp. 671, 545 (2016).
- [26] C. Ritter, A.I. Pankrats, A.A. Demidov, D.A. Velikanov, V.L. Temerov, I.A. Gudim. Phys. Rev. B **91**, 134416 (2015).

Редактор Т.Н. Василевская