01,05,11

Особенности влияния состава и кристаллической структуры на поведение электрофизических свойств сплавов системы Ni_(1-x)W_x при низких температурах

© В.В. Деревянко, М.С. Сунгуров, Т.В. Сухарева, В.А. Финкель[¶], Ю.Н. Шахов

ННЦ "Харьковский физико-технический институт" НАН Украины, Харьков, Украина [¶] E-mail: finkel@kipt.kharkov.ua

(Поступила в Редакцию 2 апреля 2018 г.)

Рассмотрена проблема установления корреляции между химическим и фазовым составом сплавов Ni_(1-x)W_x ($0 \le x \le 0.5$) с одной стороны и характером температурных зависимостей удельного электрического сопротивления с другой стороны. На основе полученных в эксперименте кривых $\rho(T)$ восстановлены концентрационные зависимости удельного электрического сопротивления $\rho(x)$ в широком диапазоне температур ($50 \le T \le 273$ K). На кривых $\rho(x)$ обнаружены особенности связанные с изменением характера кристаллической структуры объектов исследования (концентрационный фазовый переход ГЦК–ОЦК), их магнитной структуры и протеканием перколяционных процессов в двухфазной среде ГЦК + ОЦК.

DOI: 10.21883/FTT.2018.10.46513.088

1. Введение

Сплавы системы никель—вольфрам представляют существенный интерес, так как сочетают в себе уникальную комбинацию электрических, магнитных, механических и других свойств. Эти сплавы находят широкое примение в различных областях современной техники [1–4], в том числе и в качестве составной части "архитектуры" высокотемпературных сверхпроводников второго поколения (2G HTS) [5–9].

Фазовая диаграмма [10] сплавов Ni_(1-x)W_x имеет следующие особенности: при температуре $T > 1450^{\circ}$ C сплав находится в жидком состоянии. Согласно результатам последних исследований [11] при затвердевании жидкости при относительно низком содержании вольфрама ($x \le -0.2$) реализуется однофазная область твердого раствора Ni-W с ГЦК (гранецентрированная кубическая решетка) кристаллической структурой. При дальнейшем повышении содержания вольфрама образуется эвтектическая смесь кристаллитов сплавов Ni-W с ГЦК- и ОЦК- (объемноцентрированная кубическая решетка) кристаллической решеткой различного состава. Своеобразный характер фазовой диаграммы, безусловно, должен отразиться на характере концентрационных зависимостей электрофизических, магнитных и др. свойств, а также на особенностях механизмов переноса электрического заряда в сплавах Ni_(1-x)W_x.

Напомним, что исследование электрофизических свойств сплавов системы Ni–W было начато еще в конце XIX-го века [12].

В связи с вышеизложенным, целью настоящей работы является установление природы и механизмов влияния химического и фазового состава сплавов $Ni_{(1-x)}W_x$ на поведение их кристаллической структуры и электрофизические свойства в широком диапазоне температур.

Для достижения цели работы была реализована следующая программа исследований:

— Синтез сплавов $Ni_{(1-x)}W_x$ в широком диапазоне концентраций x = 0-0.5.

 Исследование кристаллической структуры полученных образцов сплавов методами рентгеноструктурного анализа.

— Изучение температурных зависимостей удельного электрического сопротивления сплавов Ni_(1-x)W_x.

— Восстановление и анализ концентрационных зависимостей удельного электрического сопротивления сплавов в широком диапазоне температур T = 50 - 270 K.

2. Методика эксперимента

Исходными материалами для синтеза сплавов Ni–W являлись порошки Ni и W чистотой 99.98–99.99% по металлическим примесям. Для очистки от газовых примесей, которые, как правило, присутствуют в порошках промышленного производства применялись следующие методы [13]:

— отжиг порошков никеля в вакууме $(p \sim 10^{-5} \text{ Torr})$ при $T \sim 1120 \text{ K};$

— высокотемпературный отжиг порошков вольфрама при $T \sim 1370 \, \text{K}$ в газовой восстановительной среде $Ar + 4\% H_2$.

Далее порошки тщательно перемешивали в необходимых пропорциях с помощью мельницы-ступки *Pulve-rizette* и прессовали на лабораторном прессе в виде параллелепипедов. Сплавы получали методом порошковой металлургии. Заключительной операцией являлся отжиг в высоком вакууме ($p \sim 10^{-5} - 10^{-6}$ Torr) при $T \sim 1450$ К в течение t = 4 h.

Была получена серия образцов сплавов $Ni_{(1-x)}W_x$ в широком диапазоне концентраций вольфрама: x = 0; 0.025; 0.05; 0.075; 0.085; 0.095; 0.11; 0.13; 0.15; 0.2; 0.25; 0.3; 0.4; 0.5. Характерные размеры образцов для проведения структурных и электрофизических исследований составляли $15 \times 2 \times 2$ mm.

Методами рентгеноструктурного анализа исследовались фазовый состав сплавов, интенсивность дифракционных линий и концентрационные зависимости параметров кристаллических решеток ГЦК- и ОЦК-фаз системы $Ni_{(1-x)}W_x$ на дифрактометре DRON UM-1, используя CuK_{α} -излучение.

Электрофизические измерения образцов сплавов указанных концентраций выполнялись с помощью программно-измерительного комплекса на базе криогенератора Leybold RGD-210. Для установления температурных зависимостей удельного электросопротивления $\rho(T)$, измерения проводились в условиях повышения температуры T = 50-270 K с шагом $\Delta T = 0.1$ K при плотности тока j = 500 mA/cm². Параметры измерительного процесса были строго стандартизированы [14].

3. Результаты исследования

3.1. Особенности кристаллической структуры объектов исследования

Имеет место следующая динамика изменения дифракционной картины в системе Ni_(1-x)W_x. На рентгенограммах объектов исследования при составах сплавов соответствующих концентрациям вольфрама $0 \le x < 0.15$ присутствуют дифракционные линии, принадлежащие исключительно ГЦК-фазе твердого раствора Ni(W). При концентрациях $\sim 0.15 < x \le 0.5$ наблюдается две системы дифракционных линий твердого раствора Ni(W) с кристаллической ГЦК структурой и твердого раствора W(Ni) с ОЦК-структурой.

На рис. 1 приведены концентрационные зависимости интенсивностей наиболее сильных дифракционных линий ГЦК- (1) и ОЦК-фаз (2) сплавов Ni_(1-x)W_x. Как видно, при концентрациях $0 \le x < 0.15$ величина $I_{111}(x)$ ГЦК-фазы монотонно возрастает достигая максимума при x = 0.15. Далее, в диапазоне концентраций $\sim 0.15 < x \le 0.5$ величина интенсивности дифракционной линий I_{111} уменьшается с ростом x. Как отмечалось выше при номинальном составе сплава, соответствующему концентрации $x \approx 0.15-0.20$ появляются дифракционные линий ОЦК фазы твердого раствора. При $\sim 0.15 < x \le 0.5$ интенсивность дифракционной линии I_{110} ОЦК-фазы монотонно возрастает.

На рис. 2 приведены концентрационные зависимости параметров кристалличесих решеток твердых растворов Ni_(1-x)W_x с ГЦК-структурой (кривые с индексом 1) и ОЦК-структурой (кривые с индексом 2). При концентрациях $0 \le x < \sim 0.15$ зависимость $a_{fcc}(x)$ носит практически линейный характер. При переходе в двухфазную область в узком диапазоне концентраций

Рис. 1. Концентрационные зависимости интенсивностей наиболее сильных дифракционных линий (111) ГЦК- (I) и (110) ОЦК-фаз (2) сплавов Ni_(1-x)W_x. На рисунке показаны экспериментальные точки, размеры которых соответствуют погрешности измерений.

Рис. 2. Концентрационные зависимости параметров решетки сплавов $Ni_{(1-x)}W_x$ с различной кристаллической структурой: $I - \Gamma \amalg K$; $2 - O \amalg K$. Измерения проводились при комнатной температуре.

 $x \approx 0.15-0.2$ имеет место тенденция к существенному уменьшению наклона кривой $a_{fcc}(x)$. При x > 0.2 ход кривой $a_{fcc}(x)$ практически не зависит от содержания вольфрама в сплаве. Необходимо отметить, что зависимость параметра кристаллической решетки ОЦК-фазы $a_{bcc}(x)$ монотонно возрастает на всем диапазоне концентраций существования двухфазной области ГЦК + ОЦК (~ 0.15 < $x \le 0.5$).

3.2. Температурные зависимости удельного электрического сопротивления $\rho(T)$ сплавов $Ni_{(1-x)}W_x$

На рис. З приведен набор температурных зависимостей удельного электрического сопротивления $\rho(T)$

Рис. 3. Температурные зависимости удельного электрического сопротивления $\rho(T)$: a — однофазных ГЦК-сплавов Ni_(1-x)W_x: 1) x = 0; 2) x = 0.025; 3) x = 0.05; 4) x = 0.085; 5) x = 0.095; 6) x = 0.11; 7) x = 0.13. b — двухфазных сплавов Ni_(1-x)W_x с ГЦК + ОЦК структурой: 1') x = 0.15; 2') x = 0.2; 3') x = 0.25; 4') x = 0.3; 5') x = 0.4; 6') x = 0.5.

для всех исследуемых сплавов. В ходе зависимостей наблюдаются следующие тенденции:

1. Во всем диапазоне температур наблюдается устойчивый рост $\rho(T)$ при повышении температуры.

2. В области существования однофазного ГЦК твердого раствора $Ni_{(1-x)}W_x$ (рис. 3, *a*) имеет место увеличение общего уровня электрического сопротивления $\Sigma = \int_{50}^{270} \rho(T)dT$ по мере роста концентрации (0 < *x* < ~ 0.15) атомов вольфрама в сплаве.

3. При $x > \sim 0.15$ в области сосуществования твердых растворов Ni_(1-x)W_x с ГЦК- и ОЦК-кристаллическими решетками (рис. 3, *b*) величина Σ снижается с ростом вольфрама.

4. Обсуждение результатов

4.1. Природа и механизмы процессов изменения характера кристаллической структуры сплавов Ni_(1-x)W_x

Как следует из рис. 1 и 2 в зависимости от содержания вольфрама в сплаве изменяется фазовый состав — имеет место концентрационный фазовый переход ГЦК-ОЦК — и меняется соотношение между количеством ГЦК- и ОЦК-фаз в сплавах $Ni_{(1-x)}W_x$. Как известно [15], интенсивность дифракционных линий для однофазного твердого раствора имеет следующий вид:

$$I_{hkl} \sim PLG \cdot H \cdot R_{hkl}^2$$

где PLG — произведение геометрических множителей, зависящих от угла дифракции 2θ ; H — множитель повторяемости (число эквивалентных кристаллографических плоскостей (hkl));

$$F_{hkl} = \sum_{j=1}^{l} f_j \cdot \exp\left[-2\pi(hx_i + ky_i + lz_i)\right]$$

— структурная амплитуда; $f_j\left(\frac{\sin \vartheta_{hkl}}{\lambda}\right)$ — фактор атомного рассеяния; λ — длина волны рентгеновских лучей; x_i, y_i, z_i — координаты атомов в кристаллической решетке.

Рост интенсивности наиболее сильной дифракционной линии ГЦК в однофазной ГЦК-области сплава в диапазоне концентраций 0 < x < 0.15 обусловлен исключительно увеличением количества доли более тяжелых атомов вольфрама в сплаве Ni_(1-x)W_x. С подобным ходом концентрационной зависимости $I_{111}(x)$ естественно согласуется поведение параметра кристаллической решетки ГЦК-фазы (рис. 2, *a*).

В двухфазной области (~ $0.15 < x \le 0.5$) изменение характера зависимости $I_{111}(x)$ сопровождается появлением и ростом интенсивности дифракционных линий ОЦК-фазы твердого раствора (рис. 2, b). Следует полагать, что характер изменения интенсивностей наиболее сильных дифракционных линий ГЦК- и ОЦК-фазы обусловлен совместным действием двух различных механизмов влияния содержания вольфрама в сплавах на их фазовый состав: увеличение суммарного количества ОЦК-фазы в эвтектической смеси (рис. 1) и рост содержания вольфрама в ОЦК-фазе (рис. 2).

В совокупности с приведенными выше данными о структурных исследованиях, обсуждение результатов электрофизических измерений, по нашему мнению позволит расширить представление о природе и механизмах процессов, протекающих в сплавах $Ni_{(1-x)}W_x$ в зависимости от их состава и температуры (см. 4.2 и 4.3).

4.2. Природа и механизмы влияния химического и фазового состава на процессы переноса электрического заряда в сплавах системы Ni_(1-x)W_x

Данные прямых измерений $\rho(T)$ (рис. 3) позволяют установить в частности вклад магнитного состояния сплавов на характер поведения "остаточного электросопротивления" $RRR = \rho(270 \text{ K})/\rho(50 \text{ K})$ в зависимости от содержания вольфрама. На рис. 4 приведена концентрационная зависимость RRR(x) сплавов $Ni_{(1-x)}W_x$. В ходе кривой обнаружено наличие трёх различных типов поведения RRR(x):

1. В диапазоне концентраций $0 < x \le 0.1$ имеет место сильное падение *RRR*, обусловленное понижением ферромагнитной точки Кюри ($T_c = 631$ K для чистого Ni

Рис. 4. Концентрационная зависимость "остаточного электросопротивления" RRR(x) сплавов $Ni_{(1-x)}W_x$.

падает до $T_c = 0$ при $x \sim 0.1$) и, как следствие, общего уровня намагниченности M в диапазоне температур T = 50-270 К.

2. В диапазоне концентраций $0.1 < x < \sim 0.15$, то есть в области существования парамагнитной ГЦК-фазы *RRR* практически не зависит от содержания вольфрама в сплаве.

3. При $x > \sim 0.15$ в области сосуществования двух твердых растворов с ГЦК- и ОЦК-кристаллическими решетками имеет место заметный рост RRR(x), обусловленный усилением вклада ОЦК-фазы (менее плотной по сравнению с ГЦК (напр. рис. 2)) на процессы рассеяния электронов на колебаниях кристаллической решетки Ni_(1-x)W_x.

4.3. Природа и механизмы влияния температуры на процессы переноса электрического заряда в сплавах Ni_(1-x)W_x различного состава

Очевидно, что для дальнейшего развития представлений о природе и механизмах влияния различных факторов на процессы протекания электрического тока в сплавах системы $Ni_{(1-x)}W_x$ необходимо перейти от рассмотрения полученных в эксперименте температурных зависимостей электросопротивления $\rho(T)$ к изучению концентрационных зависимостей электросопротивления $\rho(x)$ при различных температурах.

В этой связи в настоящей работе была реализована следующая процедура преобразования экспериментальных данных: данные $\rho(T)$, представленные на рис. 3 были подвергнуты интерполяции в области температур T = 50-270 K с шагом $\Delta T = 1 \text{ K}$, далее полученная матрица { $\rho(T)_x = \text{const}$ } была трансформирована в матрицу { $\rho(x)_T = \text{const}$ }.

Результаты подобного преобразования представлены на рис. 5. Концентрационные зависимости удельного

электрического сопротивления $\rho(x)$, полученные при различных температурах носят сложный, немонотонный характер. Как видно, при понижении T в ходе зависимостей $\rho(x)$ происходят качественные изменения. Условно диапазон температур можно разделить на три области: 1) $210 \le T \le 270$ K; 2) $180 \le T < 210$ K; 3) $50 \le T < 180$ K.

Установлено, что при относительно высоких температурах в диапазоне $210 \le T \le 270$ K, на зависимостях $\rho(x)$ наблюдается три явно выраженных участка:

А. На участке $0 < x \le 0.13$ имеет место существенный рост зависимости $\rho(x)$, очевидно обусловленный замещением части атомов Ni более тяжелыми атомами W в ГЦК решетке. Аналогичный характер хода концентрационной зависимости $\rho(x)$ проявляется во всем диапазоне температур (T = 50-270 K) в области существования однофазного ГЦК твердого раствора Ni_(1-x)W_x.

В. На участке $\sim 0.15 < x < \sim 0.3$ в двухфазной области, незначительное снижение удельного электрического сопротивления, очевидно, обусловлено тем, что в этом диапазоне концентраций *x* распространение электрического заряда происходит преимущественно по зернам ГЦК-фазы с более высоким удельным электросопротивлением и частично по маршрутам типа "ГЦК-зерно Ni–W–OЦК-зерно Ni–W^{**}.

С. Падение резистивности более чем в 2 раза на участке $\sim 0.3 < x \le 0.5$ соответствует началу процесса перколяции электрического заряда по непрерывной цепи "ОЦК-зерно Ni–W–ОЦК-зерно Ni–W", образованной кристаллитами с ОЦК-структурой. Концентрация $x = \sim 0.3$ очевидно соответствует содержанию ОЦК-фазы в двухфазной смеси равной $\sim 17\%$, что соответствует порогу протекания [16] (установить более точ-

Рис. 5. Концентрационные зависимости удельного электрического сопротивления $\rho(x)$ сплавов Ni_(1-x)W_x, полученные при различных температурах T = 50-270 K.

ное значение порога протекания при ограниченном наборе сплавов $Ni_{(1-x)}W_x$ не представляется возможным).

При понижении температуры $(180 \le T < 210 \text{ K})$ перколяционный характер концентрационной зависимости удельного электрического сопротивления $\rho(x)$ в двухфазной области сохраняется, однако, за счет усиления вклада транспорта электрического тока по маршрутам "ГЦК-зерно Ni–W–OЦК-зерно Ni–W–ГЦК-зерно Ni–W", границы участка на котором реализуется механизм протекания, заметно размываются.

В диапазоне температур $50 \le T < 180$ К перколяционные процессы перестают играть доминирующую роль в двухфазной области сплавов $Ni_{(1-x)}W_x$. Перенос электрического заряда происходит преимущественно по цепочкам типа "ГЦК-зерно Ni–W–ОЦК-зерно Ni–W–ГЦК-зерно Ni–W", при этом существенно возрастает вклад ОЦК фазы в электросопротивление.

Таким образом, в настоящей работе удалось обнаружить существенное влияние температуры на кинетику процессов переноса электрического заряда в двухфазных сплавах системы $Ni_{(1-x)}W_x$.

5. Выводы

На основании исследований кристаллической структуры и характера температурных и концентрационных зависимостей удельного электрического сопротивления для 14 сплавов системы $Ni_{(1-x)}W_x$ ($0 < x \le 0.5$) различного состава в широком диапазоне температур можно сделать следующие выводы:

1. Развиты представления о наличии двух механизмов влияния содержания вольфрама на фазовый состав эвтектической смеси двух твердых растворов $Ni_{(1-x)}W_x$ с различной кристаллической структурой.

2. Установлено, что характер температурных зависимостей удельного электрического сопротивления сплавов $Ni_{(1-x)}W_x$ определяется их химическим и фазовым составом, а также магнитным состоянием сплавов.

3. Установлены основные механизмы протекания электрического тока в эвтектической смеси кристаллитов с ГЦК- и ОЦК-кристаллической структурой:

3.1. При относительно высоких температурах при концентрациях вольфрама ниже значения, соответствующего порогу перколяции, электрический ток протекает исключительно по зернам ГЦК-фазы с повышенным удельным электросопротивлением.

3.2. В окрестности порога протекания перенос электрического заряда происходит главным образом по перколяционным каналам образованным зернами ОЦК-фазы $Ni_{(1-x)}W_x$.

4. Впервые установлена роль температуры в реализации перколяционного механизма переноса электрического заряда в двухфазных эвтектических системах — при понижении температуры вклад перколяционного механизма в электропроводность сплавов $Ni_{(1-)}W_x$ заметно ослабевает.

Список литературы

- M.H. Allahyarzadeh, M. Aliofkhazraei, A.R. Rezvanian, V. Torabinejad, A.R.S. Rouhaghdam. Surf. Coatings Technol. 307, 978 (2016).
- [2] O. Younes, E. Gileadi. Electrochem. Solid State 3, 543 (2000).
- [3] S. Yao, S. Zhao, H. Guo, M. Kowaka. Corrosion 52, 183 (1996).
- [4] O. Younes, L. Zhu, Y. Rosenberg, Y. Shacham-Diamand, E. Gileadi. Langmuir 17, 8270 (2001).
- [5] Y.X. Zhou, S. Bhuiyan, S. Scruggs, H. Fang, K. Salama. Supercond. Sci. Technol. 16, 1077 (2003).
- [6] Y.X. Zhou, R. Naguib, H. Fang, K. Salama. Supercond. Sci. Technol. 17, 947 (2004).
- [7] Goyal, D.P. Norton, J.D. Budai, M. Paranthaman, E.D. Specht. Appl. Phys. Lett. 69, 1795 (1996).
- [8] Y. Iijima, N. Tanabe, O. Kohno, Y. Ikeno. Appl. Phys. Lett. 60, 769 (1992).
- [9] Y.X. Zhou, T. Rizwan, K. Salama. IEEE Trans. Appl. Supercond. 13, 2703 (2003).
- [10] Gabriel, C.H. Allibert, I. Ansara, H.L. Lukas. Z. Metallkunde 76, 9, 589 (1985).
- [11] Genc, M.L. Ovecoglu, M. Baydogan, S. Turan. Mater. Design 42, 495 (2012).
- [12] J. Trowbridge, S. Sheldon. Proc. Am. Acad. Arts Sci. 24, 181 (1889).
- [13] V.A. Finkel, A.M. Bovda, V.V. Derevyanko, S.A. Leonov, M.S. Sungurov, T.V. Sukhareva. Funct. Mater. 19, 1, 109 (2012).
- [14] V.V. Derevyanko, M.S. Sungurov, T.V. Sukhareva, V.A. Finkel, Yu.N. Shakhov. Phys. Solid State 59, 2, 229 (2017).
- [15] Я.С. Уманский, Ю.А. Скаков, А.Н. Иванов, Л.Н. Расторгуев. Кристаллография, рентгенография и электронная микроскопия. Металлургия, М. (1982). 632 с.
- [16] K.S. Vinod Shante, S. Kirkpatrick. Adv. Phys. 20, 85 (1971).

Редактор К.В. Емцев