Теоретическое построение и расчетно-экспериментальное подтверждение условия выбора материала антидиффузионного слоя терможаростойкого биметаллического провода

© И.В. Витковский,¹ С.Н. Ромашин,² В.С. Федеряева,^{1,¶} В.С. Шоркин²

¹ Акционерное общество "НИИЭФА им. Д.В. Ефремова",

196641 Санкт-Петербург, Россия

² Орловский Государственный Университет им. И.С. Тургенева,

302026 Орел, Россия

[¶] e-mail: federyaeva_v.s@sintez.niiefa.spb.su, vshorkin@yandex.ru

(Поступило в Редакцию 5 апреля 2017 г.)

Приведено теоретическое обоснование и экспериментальное подтверждение условия выбора материала антидиффузионных слоев терможаростойкого биметаллического обмоточного провода электромагнитных насосов и электродвигателей. Теоретическое обоснование сформулировано на основании представления об отсутствии адгезии между элементами конструкции провода, а следовательно, и взаимной диффузии материалов его составляющих. Для построения количественного условия выбора материала антидиффузионного слоя биметаллического провода принята модель сплошного упругого твердого тела.

DOI: 10.21883/JTF.2018.10.46497.2287

Введение

На современном этапе развития атомной промышленности и машиностроения предъявляются все более высокие эксплуатационные требования к конструкционным и электротехническим материалам магнитогидродинамических машин и электродвигателей. Особое значение приобретает возможность их эксплуатации при температурах, достигающих 400–700°С [1].

Терможаростойкий обмоточный провод, предназначенный для эксплуатации в условиях воздействия высоких температур, представляет собой многослойную систему, внутренний слой которой выполнен из меди или хромниобиевой бронзы, заключенной в оболочку из коррозионно-стойкой стали аустенитного класса, покрытой изоляцией — армированными стеклонитью фосфатами.

Отметим, что качество терможаростойких проводов обеспечивается высокой технологической проработкой и глубоким пониманием процессов адгезии и диффузии. В свою очередь, технология изготовления должна базироваться только на высококачественных исходных материалах. При формировании такого провода необходимо обеспечить отсутствие взаимодиффузии материалов токопроводящей жилы (проводника), обечайки, изоляции, поскольку взаимное проникновение контактирующих материалов с течением времени приводит к существенному изменению физико-химических и электрических характеристик токопроводящей жилы и изоляции.

Кроме того, с ростом температуры ускоряются процессы как окисления изоляции и защитной оболочки, так и взаимодиффузии продуктов окисления и материалов токопроводящей жилы. Перечисленные выше процессы оказывают влияние на срок службы таких обмоточных проводов, а следовательно, и электрических машин. При этом нетрудно заметить, что движущей силой процессов нарушения исходной физико-химической структуры провода является диффузия. Значит, ее ослабление или полная ликвидация должны способствовать увеличению срока службы обмоточного провода. Существенно ослабить процесс взаимной диффузии контактирующих материалов можно путем исключения их адгезии [2].

Действительно, материал реального твердого тела $B_{(1)}$ всегда имеет дефекты структуры, например, в виде вакансий. При этом энергия случайных колебаний отдельных частиц может превысить значение энергии активации Q_a [2,3] и они, становясь делокализованными [3], совершают элементарный акт самодиффузии — скачок из одного положения в другое. В каждый момент времени материал содержит определенное число N_d делокализованных частиц, некоторая часть которых достигает граничной поверхности (например, поверхности $A_{(1)}$ медной жилы $B_{(1)}$ или $A_{(2)}$ стальной оболочки).

Для совершения акта сублимации частицам с поверхности $A_{(n)}$ (n = 1, 2) необходимо обладать энергией, превышающей энергию сублимации Q_s . Поскольку $Q_s > Q_a$ (например [4,5], при температуре T = 293 К у меди (токопроводящая жила): $Q_s = 337$ kJ/mol, $Q_s > Q_a$, у железа (стальная защитная оболочка): $Q_s = 391$ kJ/mol, $Q_a = 270$ kJ/mol) преодолеть барьер Q_s может лишь часть N_d сублимировавших N_s частиц. При наличии адгезии для совершения элементарного акта диффузии частица должна обладать энергией активации, характерной для межрешеточной переходной фазы, появляющейся из-за возникновения связей между атомами решеток [2,6,7]. Эта энергия должна быть соизмеримой

с энергиями активации самодиффузии (или меньшей их) и меньшей энергии сублимации.

Для минимизации числа сублимировавших частиц, достигших поверхности $A_{(p)}$ защищаемого тела $B_{(p)}$, необходимо затруднить их переход из $B_{(n)}$, в $B_{(p)}$. Для этого зазор между граничными поверхностями $A_{(n)}$ и $A_{(p)}$ тел $B_{(n)}$ и $B_{(p)}$ предлагается заполнить антиадгезионным материалом $B_{(3)}$. Таким образом, слой материала между телами $B_{(1)}$ и $B_{(2)}$, защищающий от взаимной диффузии их материалов (защитный, антидиффузионный слой), является одновременно и антиадгезионным.

Цель работы состоит в теоретическом построении условий, которым должны удовлетворять свойства материала защитного слоя по отношению к свойствам материалов защищаемых тел $B_{(1)}$ и $B_{(2)}$ и которые могут служить основанием выбора соответствующего материала.

Основные теоретические положения и допущения

Адгезионное взаимодействие связано с проявлением сил Кулона и Ван-дер-Ваальса при межчастичных взаимодействиях [8–11]. Учитывая межчастичный характер взаимодействия твердых тел, его потенциальную энергию можно представить в виде суммы потенциальных энергий взаимодействий всех пар, троек и т.д. частиц, составляющих эти тела [12-14]. Если тройные взаимодействия имеют флуктуационную природу [11,15,16], то их можно описать, используя групповые разложения, с помощью функций Майера для парных взаимодействий [17]. Допустима ситуация [11,18], когда силы действия одного тела на другое, порожденные парными и тройными взаимодействиями, имеют разнонаправленный характер и преобладают силы отталкивания контактирующих тел. На основании сказанного полагаем, что материал защитного слоя должен отталкиваться токопроводящей жилой и ее защитной оболочкой.

Для построения количественного условия выбора материала антидиффузионного слоя для биметаллического провода принята модель сплошного упругого твердого тела, основанная на следующих допущениях:

1. Материалы взаимодействующих тел $B_{(n)}$ (n = 1, 2, 3 - их номера) считаются сплошными. В качестве отсчетного для них принимается термодинамическое состояние материалов вдали от свободных границ или поверхностей контакта. Их плотности $\rho_{(n)}$ и температуры $T_{(n)}$ распределены равномерно и с течением времени не меняются. При этом $T_{(1)} = T_{(2)} = T_{(3)}$.

2. Контактирующие между собой пары тел: $(B_{(1)}, B_{(3)}, B_{(2)}, B_{(3)})$, $(B_{(1)}, B_{(2)})$ или $(B_{(1)}, B_{(2)})$ взаимодействуют между собой с помощью потенциальных сил, моделирующих силы Ван-дер-Ваальса [19–21]. Разделенные промежуточным слоем $B_{(3)}$ тела $B_{(1)}$ и $B_{(2)}$ не взаимодействуют.

3. Рассматриваемые тела считаются состоящими из упорядоченных пар $(dB_{1(n)}, dB_{2(p)})$ и троек $(dB_{1(n)}, dB_{2(p)})$ $dB_{2(p)}, dB_{3(q)})$ (n, p, q — номера тел, которым принадлежат частицы; при совпадении номеров в скобках частицы из одного тела) взаимодействующих между собой частиц. Положение любой частицы $dB_{2(p)}$ относительно частицы $dB_{1(n)} \equiv dB_{(n)}$ при деформировании материала меняется и в текущем состоянии определяется радиусом-вектором $\mathbf{L}_{1(n)2(p)} = \mathbf{R}_2(p) - \mathbf{R}_1(n)$ с длиной $L_{1(n)2(p)} = |\mathbf{L}_{1(n)2(p)}|$. Здесь $\mathbf{R}_{i(j)}$, $\mathbf{r}_{i(j)}$ — радиусы-векторы положения частицы $dB_{i(j)}$ соответственно в текущем и отсчетном состоянии материала; ${f u}_{i(j)}$ — перемещение частицы $dB_{i(j)}$ из положения $\mathbf{r}_{i(j)}$ в положение $\mathbf{R}_{i(j)}$, $i = 2, 3; j = p, q; \Delta \mathbf{u}_{1(n)2(p)} =$ $= \mathbf{u}_{2(p)} - \mathbf{u}_{1(n)}$ — относительное смещение частиц при переходе из отсчетного состояния в текущее. В отсчетном состоянии $L_{1(n)2(p)} = I_{1(n)2(p)}$, в текущем состоянии: $\mathbf{L}_{1(n)2(p)} = \mathbf{I}_{1(n)2(p)} + \delta \mathbf{u}_{1(n)2(p)}.$

Смещение $\delta \mathbf{u}_{1(n)2(p)}$ представлено в виде ряда по внешним степеням $\mathbf{I}_{1(n)2(p)}^m$ вектора $\mathbf{I}_{1(n)2(p)}$, $m = 0, 1, ..., \infty$. Его коэффициентами являются тензоры $((-1)^m/m!)\nabla^m \mathbf{u}$. Здесь $\nabla = d(...)/d\mathbf{r}_{1(n)}$ — дифференциальный оператор Гамильтона, для него справедливо: $d(...)/d\mathbf{r}_{1(n)} = -d(...)/d\mathbf{I}_{1(n)i(j)}$; $\mathbf{u} \equiv \mathbf{u}_{1(n)}$. В расчетах используются первые два члена ряда. Тоже самое можно сказать о положении частиц $dB_{3(q)}$ относительно $dB_{2(p)}$ определяется вектором $\mathbf{L}_{2(p)3(q)} = \mathbf{L}_{1(n)3(q)} = \mathbf{L}_{1(n)2(q)}$.

4. По аналогии с [12-14] допускается, что полная потенциальная энергия каждого из рассматриваемых тел и любой их пары равна сумме потенциальных энергий $dU_{1(n)2(p)}^{(2)} = \Phi_{1(n)2(p)}^{(2)} dV_{1(n)} dV_{2(p)}, dU_{1(n)2(p)}^{(3)} = \Phi_{1(n)2(p)3(q)}^{(3)} dV_{1(n)} dV_{2(p)} dV_{3(q)}$ взаимодействия частиц с объемами $dV_{1(n)}, dV_{2(p)}$ и $dV_{3(q)}$, входящих соответственно в пары $(dB_{1(n)}, dB_{2(p)})$ и тройки $(dB_{1(n)}, dB_{2(p)})$, $dB_{3(q)}$). Коэффициенты $\Phi_{1(n)2(p)}^{(2)}$ и $\Phi_{1(k)2(p)3(q)}^{(3)}$ — это потенциалы, которые для однородного изотропного материала зависят только от расстояний между частицами (здесь и далее верхний индекс в скобках означает число взаимодействующих частиц).

$$\Phi_{1(n)2(p)}^{(2)} = \Phi_{0(np)}^{(2)} \Psi_{1(n)2(p)}, \tag{1}$$

$$\Phi_{1(n)2(p)3(q)}^{(3)} = \Phi_{0(npq)}^{(3)} \Psi_{1(n)2(p)} \Psi_{2(p)3(q)} \Psi_{3(q)1(n)}.$$
 (2)

В выражениях (1) и (2) $\Psi_{i(j)g(s)} = \Psi_{i(j)g(s)}(\eta_{i(j)g(s)})$ безразмерные функции безразмерного аргумента $\eta_{i(j)g(s)} = \beta_{js}L_{i(j)g(s)}$, описывающие зависимость парного потенциала взаимодействия от расстояния между взаимодействующими частицами. В отсчетном состоянии взаимодействующих материалов, когда $L_{i(j)g(s)} =$ $= l_{i(j)g(s)}$, вид зависимости $\Psi_{i(j)g(s)}(\eta_{i(j)g(s)})$ сохраняется. Эта возрастающая зависимость, $\Psi_{i(j)g(s)}(0) = -1$, при $\eta_{i(j)g(s)} \to \infty$: $\Psi_{i(j)g(s)} \to 0$. Параметры β_{js} , $\Phi_{0(np)}^{(2)}$ и $\Phi_{0(npq)}^{(3)}$ характеризуют свойства взаимодействующих материалов и нуждаются в теоретическом или экспериментальном определении. В работе принято:

$$\Phi_{i(j)g(s)} = \exp(-2\eta_{i(j)g(s)}) - 2\exp(-\eta_{i(j)g(s)})$$

5. Энергия $dW_{(n)}(\mathbf{R}_{(\mathbf{n})}) = w_{(n)}(\mathbf{R}_{(n)})dV_{(n)}$ бесконечно малой частицы $dB_{(n)}$ тела $B_{(n)}$, взаимодействующего с телом $B_{(p)}$ ($p \neq n$), представлена в виде

$$\begin{split} w_{(n)}dV_{(n)} &= (w_{(nn)} + w_{(np)})dV_{(n)} \\ &= \left[\int\limits_{V(n)} \Phi_{(nn)}^{(2)} dV_{(n)} + \frac{1}{2!} \int\limits_{V(n)} \int\limits_{V(n)} \Phi_{(nnn)}^{(3)} dV_{(n)} dV_{(n)} \right] dV_{(n)} \\ &+ \left[\int\limits_{V(p)} \Phi_{(np)}^{(2)} dV_{(p)} + \frac{1}{2!} \sum\limits_{\alpha = n, p_{V(p)}} \int\limits_{V(n)} \Phi_{(np\alpha)}^{(3)} dV_{(\alpha)} \right] dV_{(n)}. \end{split}$$

$$(3)$$

Здесь w_{nn} — объемная плотность потенциальной энергии, возникшей при взаимодействии частиц тела $B_{(n)}$ между собой; w_{np} — добавка, возникшая из-за взаимодействия тела $B_{(n)}$ с телом $B_{(p)}$.

Сила $d\mathbf{F}_{(n)} = \mathbf{f}_{(n)} dV_{(n)}$, действующая на частицу $dB_{(n)}$, имеет объемную плотность: $\mathbf{f}_{(n)} = \mathbf{f}_{(nn)} + \mathbf{f}_{(pn)}$. Здесь $\mathbf{f}_{(n)} = -\nabla x_{(nn)}$ — объемная плотность силы, действующей на каждую частицу $dB_{(n)}$ со стороны ее окружения в теле $B_{(n)}$, т.е. силы когезии [20]; $\mathbf{f}_{(pn)} = -\nabla w_{(np)}$ объемная плотность силы, действующей на частицу $dB_{(n)}$ со стороны частиц $dB_{(p)}$, т.е. силы адгезии [2,9,20].

6. Из всех возможных двух- и трехчастичных взаимодействий реализуются только те, которые можно описать на основании теории Ван-дер-ваальсовых сил и их флуктуаций [11,16]. Тогда в соответствии с результатами статистической механики твердого тела [17,22] и с учетом групповых разложений Майера для малых объемов $dV_{i(n)} \approx \Delta V_{(n)} = 1/\beta_{(nn)}^3$ и малых значений отношений $\Delta U_{nn}^{(2)}/kT$ и $\Delta U_{nnn}^{(3)}/kT$ справедливо равенство

$$\frac{\Delta U_{i(n)j(n)g(n)}^{(3)}}{kT} = \frac{\Delta U_{i(n)j(n)}^{(2)}}{kT} \frac{\Delta U_{j(n)g(n)}^{(2)}}{kT} \frac{\Delta U_{i(n)g(n)}^{(3)}}{kT}.$$
 (4)

Здесь $\Delta U_{i(n)j(n)}^{(2)} = \Phi_{i(n)j(n)}^{(2)} (\Delta V_{(n)})^2$, $\Delta U_{i(n)j(n)g(n)}^{(3)} = \Phi_{i(n)2(j)3(g)}^{(3)} (\Delta V_{(n)})^3$.

7. Взаимодействие частиц, принадлежащих двум телам из разных материалов, идентично взаимодействию тех же частиц в случае, когда они образуют частицу $\langle dB \rangle$ двухкомпонентного твердого раствора этих материалов [23] с объемными концентрациями компонент и соответственно. Модули Юнга $\langle E \rangle$ и сдвига $\langle G \rangle$, твердого раствора выражаются через модули его составляющих в соответствии с моделью Рейса — равенства нормальных и касательных напряжений в частицах $dB_{(n)}$ и $dB_{(p)}$, составляющих частицу $\langle dB \rangle$.

$$\frac{1}{\langle E \rangle} = \frac{1-c}{E_{(n)}} + \frac{c}{E_{(p)}}, \quad \frac{1}{\langle G \rangle} = \frac{1-c}{G_{(n)}} + \frac{c}{G_{(p)}}.$$
 (5)

Журнал технической физики, 2018, том 88, вып. 10

(Можно воспользоваться более строгими методами [24].)

8. Эффективная толщина поверхностного слоя любого из тел $B_{(n)}$, в котором концентрируется энергия его адгезии или поверхностная энергия при отсутствии адгезии ($h \approx 10^{-9}$ m [25,26]), много меньше характерных размеров сечения элементов биметаллического провода ($\approx 10^{-3}$ m), а также предлагаемой толщины промежуточного слоя ($\approx 10^{-6}$ m). Поэтому допускается, что взаимодействующие тела $B_{(n)}$ и $B_{(p)}$ полубесконечны, а поверхность их контакта $A_{(np)}$ — плоскость. Приходящаяся на единицу площади плоскости $A_{(np)}$ величина силы действия $F_{(np)}$ такого тела $B_{(n)}$ на полубесконечное тело $B_{(p)}$ определяется выражением

$$F_{(np)} = \lim_{V_{(n)}, h(p) \to \infty} \int_{0}^{h(p)} dh_{(p)} \int_{V_{(n)}} f_{(np)} dV_{(n)}$$
$$\approx \left[\lim_{V_{(k)} \to \infty} \int_{V_{(2)}} f_{(kp)} dV_{(2)} \right]_{h(p)=0}.$$
 (6)

В (6) принято (по аналогии с [27]), что объемная плотность силы $F_{(np)}$ распределена вблизи $A_{(np)}$ равномерно в слое конечной толщины h. Это допущение позволяет с учетом результатов работ [20,28] получить для вычисления $F_{(np)}$ аналитическое выражение

$$\frac{F_{(np)}}{h} = \frac{105\pi^2}{4} \left(\frac{\Phi_{0(ppn)}^{(3)}}{\beta_{(pp)}^2 \beta_{(np)}^2} \right) \left(\frac{1}{\beta_{(np)}} - \frac{1}{\beta_{(pp)}} \right) + 105\pi^2 \left(\frac{\Phi_{0(pnn)}^{(3)}}{\beta_{(np)}^5} \right) - \left(\frac{7\pi}{2} \right) \left(\frac{\Phi_{0(np)}^{(2)}}{\beta_{(pn)}^2} \right).$$
(7)

Параметры $\beta_{(pp)}$, $\beta_{(np)}$, $\Phi_{0(np)}^{(2)}$, $\Phi_{0(ppn)}^{(3)}$, $\Phi_{0(pnn)}^{(3)}$, входящие в равенство (7), вычисляются с помощью следующих выражений, являющихся следствиями допущений 1–7.

$$0.92 \cdot 10^3 \left(\Phi_{0(pp)}^{(2)} / \beta_{(pp)}^3 \right) = 4\mu_{(p)} + 45\lambda_{(p)}, \qquad (8)$$

$$6.63 \left(\Phi_{0(ppp)}^{(3)} / \beta_{(pp)}^6 \right) = \lambda_{(p)} - \mu_{(p)}, \tag{9}$$

где $\lambda_{(p)}$ и $\mu_{(p)}$ — параметры Ламе материала с номером (p).

$$\beta_{(pp)} = \left[\frac{|\Phi_{0(pp)}^{(2)} / \beta_{(pp)}^3|^3}{(kT)^2 |\Phi_{0(ppp)}^{(3)} / \beta_{(pp)}^6|} \right]^{1/6},$$
(10)

где k — постоянная Больцмана, T — абсолютная температура. Формула (10) получена на основании равенства (4) для случая, когда расстоянием между частицами можно пренебречь. На основании допущений (4) и (7), учтенных при анализе потенциалов парных и тройных взаимодействий частиц твердого раствора, получены равенства

$$\begin{split} \langle \Phi_{0}^{(2)} \rangle &= (1-c)^{2} \Phi_{0(11)}^{(2)} + 2c(1-c) \Phi_{0(12)}^{(2)} + c^{2} \Phi_{0(22)}^{(2)}, \\ (11) \\ \langle \Phi_{0}^{(3)} \rangle &= (1-c)^{3} \Phi_{0(111)}^{(3)} + 3c(1-c)^{2} \Phi_{0(112)}^{(3)} \\ &\quad + 3c^{2}(1-c) \Phi_{0(122)}^{(3)} + c^{3} \Phi_{0(222)}^{(3)}, \end{split}$$

$$\frac{4\langle\mu\rangle + 45\langle\lambda\rangle}{0.92 \cdot 10^3} = \frac{\langle E \rangle}{0.92 \cdot 10^3} \frac{2 + \langle v \rangle}{(1 + \langle v \rangle)(1 - 2\langle v \rangle)} \\
= \left(\frac{\langle \Phi_0^{(2)} \rangle}{\langle\beta\rangle^3}\right) = (1 - c)^2 \left(\frac{\Phi_{0(11)}^{(2)}}{\beta_{(11)}^3}\right) \\
+ 2c(1 - c) \left(\frac{\Phi_{0(12)}^{(2)}}{\beta_{(12)}^3}\right) + c^2 \left(\frac{\Phi_{0(22)}^{(2)}}{\beta_{(22)}^3}\right),$$
(13)

$$\frac{\langle\langle\lambda\rangle - \langle\mu\rangle\rangle}{6.63} = \frac{\langle E\rangle}{13.26} \frac{4\langle\upsilon\rangle - 1}{(1 + \langle\upsilon\rangle)(1 - 2\langle\upsilon\rangle)} = \left(\frac{\langle\Phi_0^{(3)}\rangle}{\langle\beta\rangle^6}\right) \\
= (1 - c)^3 \left(\frac{\Phi_{0(111)}^{(3)}}{\beta_{(11)}^6}\right) + 3c(1 - c)^2 \left(\frac{\Phi_{0(112)}^{(3)}}{\beta_{(11)}^3\beta_{(12)}^3}\right) \\
+ 3c^2(1 - c) \left(\frac{\Phi_{0(122)}^{(3)}}{\beta_{(12)}^3\beta_{(22)}^3}\right) + c^3 \left(\frac{\Phi_{0(222)}^{(3)}}{\beta_{(22)}^6}\right).$$
(14)

Здесь $\langle v \rangle$ — коэффициент Пуассона твердого раствора. Параметр $\langle \beta \rangle$ определяется по формуле, структурно совпадающей с (10).

Допущения 1–8 и выражения (1)–(14) дают возможность вычислить значения параметров $\beta_{(pp)}$, $\beta_{(np)}$, $\Phi_{0(np)}^{(2)}$, $\Phi_{0(ppn)}^{(3)}$, $\Phi_{0(ppn)}^{(3)}$, характеризующих межчастичные потенциальные взаимодействия защитного материала слоя с материалом токопроводящей жилы и независимо от этого с материалом ее защитной оболочки и в конечном счете силу их взаимодействия $F_{(np)}$.

Если при этом окажется, что для жилы (или оболочки) $F_{(np)} < 0$, то предполагаемый материал защитного слоя притягивается к жиле (или оболочке). В этом случае кандидатный материал надо заменить и повторить расчет для нового материала. Процесс необходимо повторять до тех пор, пока не будет выполнено неравенство $F_{(np)} > 0$. Оно означает отталкивание проверяемого материала защитного слоя материалом жилы (или оболочки). В этом случае для окончательного решения о выборе теоретически проверенного материала его защитные свойства необходимо проверить экспериментально. Очевидно, что конкретное значение эффективной толщины *h* в этом случае не существенно. Необходимо отметить, что указанным свойством должны обладать лишь те материальные волокна антиадгезионного слоя, которые ориентированы вдоль нормали к плоскости $A_{(np)}$. В работах [29,30] представлены результаты, позволяющие определить модули Юнга и сдвига материальных волокон слоистых материалов различной ориентации.

Расчетное и экспериментальное подтверждения условия выбора материала антидиффузионного слоя

Теоретическая и экспериментальная проверка представленного условия выбора материала защитного слоя, расположенного между медной токопроводящей жилой и стальной защитной оболочкой биметаллического провода, проведена для кандидатного материала талька, обладающего в направлении, перпендикулярном его слоям, близким к нулю значением коэффициента Пуассона.

В качестве исходных приняты следующие значения характеристик упругого состояния контактирующих материалов: материал $B_{(3)}$ — тальк [31,32]: $E_{(3)} = 0.16 \cdot 10^{11} \text{ N/m}^2$, $v_{(3)} = 0$; материал $B_{(1)}$ — медь [5]: $E_{(1)} = 1.10 \cdot 10^{11} \text{ N/m}^2$, $v_{(1)} = 0.31$. Расчет модулей Юнга $\langle E \rangle$ и сдвига $\langle G \rangle$ проведен для концентрации c = 0.5.

В результате оказывается, что $F_{(13)}/h = 27.0 \cdot 10^{19} \,\text{N/m}^3 > 0$. Значит, медная жила отталкивает защитный слой, адгезии между ними нет.

Аналогичный расчет проведен для случая, когда $B_{(2)}$ — сталь с характеристиками $E_{(2)} = 2.12 \cdot 10^{11} \text{ N/m}^2$, $v_{(2)} = 0.26$ [5]. При этом $F_{(23)}/h = 174.4 \cdot 10^{19} \text{ N/m}^3 > 0$. Значит, стальная оболочка, как и медная жила, также отталкивает защитный слой из талька, и адгезии между ними нет.

Расчет, проведенный для оценки взаимодействия стали и меди в отсутствие антидиффузионного слоя, показал, что при их непосредственном контакте $F_{(12)}/h = -25.5 \cdot 10^{19} \text{ N/m}^3 > 0$. Значит, в отсутствие антидиффузионного слоя между медью и сталью возникает адгезия.

Таким образом, проведенный расчет подтвердил обоснованность теоретических положений, формирующих условие выбора материала антидиффузионного слоя.

В целях обеспечения экспериментального подтверждения теоретических положений по выбору материала антидиффузионного слоя была использована экспериментальная партия терможаростойкого биметаллического провода (рис. 1, *a*, *b*), содержащего антидиффузионный слой, выполненный из талька, изготовленная совместно с ведущими российскими предприятиями. Образцы биметаллического провода подвергались термостарению в муфельной печи при температуре 550°C в течение 2500 h.

Рис. 1. Электронно-микроскопические снимки поперечного сечения терможаростойкого биметаллического провода до термостарения (*a*, *b*) и после термостарения при 550°C в течение 2500 h (*c*, *d*): *a*, *c* — общий вид в спектре вторичных электронов, *b*, *d* — I — участок в спектре отраженных электронов. *I* — основа, *2* — нержавеющая оболочка, *3* — изоляция.

Рис. 2. Концентрационные профили меди (1) и железа (2) в образцах терможаростойкого биметаллического провода до (*a*) и после термостарения (*b*).

После термостарения методом электронной микроскопии выявлено, что взаимодиффузии материалов основы (1) и защитной оболочки (2) не произошло, так как границы контактных зон на изображениях электронной микроскопии четкие (рис. 1, *c*, *d*).

Отсутствие размытой границы на снимках и в результатах профилирования (рис. 2, *a*, *b*), полученных методом рентгеноструктурного микроанализа, свидетельствует о слабой интенсивности диффузионных процессов или их полном отсутствии. Наблюдаемые при этом переходные зоны не превышают 5 μ m, что находится в пределах ошибки, связанной с локальным разрешением метода профилирования.

Таким образом, в условиях, интенсифицирующих процессы диффузии, экспериментально показано, что материал, обладающий антиадгезионными свойствами по отношению к паре материалов, между которыми возможна адгезия, препятствует и их взаимной диффузии. Проведенные исследования использованы при подготовке патента на изобретение [33].

Заключение

Представленное в работе теоретическое построение условия выбора материала антидиффузионного слоя между составляющими терможаростойкого биметаллического обмоточного провода, защищающего их от взаимной диффузии, его расчетное и экспериментальное подтверждение, дает основание полагать, что это условие может быть использовано в качестве критерия теоретической оценки защитных возможностей кандидатных антидиффузионных материалов по отношению не только к традиционно используемым в электротехнической промышленности токопроводящим материалам, но и новым материалам специального назначения.

Разработанная методика выбора материала антидиффузионного слоя, выполненная на основе теоретического построения, с проработанной базой данных позволит существенно сократить временные и материальные ресурсы при создании многослойных систем заданного назначения.

Работа выполнялась в порядке личной инициативы и в рамках базовой части государственного задания шифр 1.5265.2017/БЧ на 2017–2019 гг.

Список литературы

- Vitkovsky I.V., Golovanov M.M., Kirillov I.R. et al. // Russian Conference on Magnetohydrodynamics. June 22–25, 2015. Perm. P. 111.
- [2] Физический энциклопедический словарь / Гл. ред. Б.А. Введенский. М.: Сов. энциклопедия, 1960. Т. 1. С. 19.
- [3] Магомедов М.Н. Изучение межатомного взаимодействия, образования вакансий и самодиффузии в кристаллах. М.: Физматлит, 2010. 540 с.

- [4] Драпкин Б.М., Руденко В.А. // ЖТФ. 1992. Т. 62. Вып. 9. С. 125–130.
- [5] Андреев Т.В. и др. Свойства элементов / Под ред. Г.В. Самсонова. Ч. 1. Физические свойства. 2-е изд., перераб. и доп. М.: Металлургия, 1976. 599 с.
- [6] Горелик С.С., Дашевский М.Я. Материаловедение полупроводников и диэлектриков. М.: МИСИС, 2003. 480 с.
- [7] Дехтяр И.Я. // УФН. 1957. Т. LXII. Вып. 2. С. 99-128.
- [8] Партенский М.Б. // УФН. 1979. Т. 128. Вып. 1. С. 69–106.
- [9] *Лифшиц Е.М.* / Труды Е.М. Лифшица / Под ред. Л.П. Питаевского, Ю.Г. Рудого. М.: Физматлит, 2004. 646 с.
- [10] Дерягин Б.В., Кротова Н.А. // УФН. 1948. Т. XXXVI. Вып. З. С. 387–406.
- [11] Бараш Ю.С. Силы Ван-дер-Ваальса. М.: Наука, 1988. 344 с.
- [12] Tersoff J. // Phys. Rev. B. 1988. Vol. 37. N 12. P. 6991-7000.
- [13] Huang H., Ghniem N.M., Wong J.K., Baskes M.I. // Modeling Simul. Mater. Sci. Eng. 1995. N 3. P. 615–627.
- [14] Ruelle D. Statistical mechanics: Rigorous results. N.Y., Amsterdam: V.A. Benjamin, Inc., 1969. 219 p.
- [15] Литинский Г.Б. // Вісник Харківского національного університету. Хімія. 2010. Вып. 18(4). № 895. С. 26–30.
- [16] Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Квантовая механика (нерелятивистская теория). М.: Наука, 1989. Т. 3. 768 с.
- [17] Майер Дж., Гепперт-Майер М. Статистическая механика. М.: Мир, 1980. 544 с.
- [18] Векилов Ю.Х., Вернгер В.Д., Самсонова М.Б. // УФН. 1987. Т. 151. Вып. 2. С. 341–376.
- [19] Шоркин В.С. // Известия РАН МТТ. 2011. № 6. С. 104–121.
- [20] Шоркин В.С., Фроленкова Л.Ю., Азаров А.С. // Материаловедение. 2011. № 2. С. 2-7.
- [21] Romashin S.N., Presnetsova V.Yu., Frolenkova L.Yu., Shorkin V.S. // Advanced Structured Materials. 2016. Vol. 1. N 42. P. 363–376.
- [22] Жирифалько Л. Статистическая физика твердого тела. М.: Мир, 1975. 384 с.
- [23] Dolgov N.A., Romashin S.N., Frolenkova L.Yu., Shorkin V.S. // Nanomechanics and Technology: An International J. 2015. Vol. 6. N 2. P. 117–133.
- [24] Горбачев В.И., Емельянов А.Н. // Известия РАН МТТ. 2014. № 1. С. 95–107.
- [25] Лейбфрид Г. Микроскопическая теория механических и тепловых свойств кристаллов. М., Л.: Физматгиз, 1963. 312 с.
- [26] Киселев В.Ф., Козлов С.Н., Зотеев А.В. Основы физики поверхности твердого тела. М.: МГУ, 1999. 384 с.
- [27] Горячева И.Г., Маховская Ю.Ю. // ПММ. 2001. Т. 65. Вып. 2. С. 279–289.
- [28] *Фроленкова Л.Ю., Шоркин В.С.* // Вестник Пермского национального исследовательского политехнического ун-та. Механика. 2013. № 1. С. 235–259.
- [29] Гольдитейн Р.В., Городцов В.А., Лисовенко Д.С. // Физическая мезомеханика. 2014. Т. 17. № 5. С. 5–14.
- [30] Гольдштейн Р.В., Городцов В.А., Лисовенко Д.С. // ДАН. Механика. 2009. Т. 429. № 5. С. 614-616.
- [31] Вахромеев Г.С., Ерофеев Л.Я., Канайкин В.С., Номоконова Г.Г. Петрофизика: учебник для вузов. Томск: Изд-во Том. ун-та, 1997. 462 с.
- [32] Ерофеев Л.Я., Вахромеев С.С., Зинченко В.С., Номоконова Г.Г. Физика горных пород: учебник для вузов. Томск: Изд-во Том. ун-та, 2006. 520 с.
- [33] Патент РФ № 2611054. 27.08.2015. Белослудцев К.Н., Витковский И.В. Провод обмоточный терможаростойкий. Бюл. № 6. Опубл. 21.02.2017.