11

Экспериментальное исследование многолучевого распространения хаотических радиоимпульсов в беспроводном канале

© Л.В. Кузьмин¹, А.В. Гриневич², М.Д. Ушаков²

¹ Институт радиотехники и электроники им. В.А. Котельникова РАН, Москва, Россия ² Московский государственный технический университет им. Н.Э. Баумана, Москва, Россия E-mail: lvkuzmin@gmail.com

Поступило в Редакцию 17 мая 2018 г.

Описывается эксперимент по исследованию многолучевого распространения сверхширокополосных хаотических радиоимпульсов сверхвысокочастотного диапазона через беспроводный канал. В результате проведенных измерений установлены условия приема хаотических радиоимпульсов после прохождения многолучевого канала при различных временах задержки в распространении сигнала.

DOI: 10.21883/PJTF.2018.16.46476.17392

Исследование беспроводных сверхширокополосных (СШП) каналов ведется параллельно с разработкой новых способов беспроводной СШП-передачи информации [1] и методов приема СШП-сигналов [2,3]. Начало этих исследований было положено в ходе разработки моделей СШП-каналов [4–7] для беспроводных систем связи малого радиуса действия. Однако эти модели не охватывают весь круг возможных приложений СШП-сигналов, который постоянно расширяется, и поэтому возникает необходимость выйти за их рамки. Например, в [8] изучались условия распространения СШП-сигналов на пересеченной местности, в [9] — на территории топливной заправки. В [10] исследовался СШП-канал связи между оператором и беспилотным летательным аппаратом. В указанных работах основным типом СШП-сигнала служили ультракороткие импульсы (УКИ).

48

Рис. 1. Реализация V(t) хаотического радиоимпульса (a), автокорреляционная функция c(t) хаотического сигнала (b) и схема проведения измерений и расположения аппаратуры (c). R_X — приемник, T_X — излучатель, Osc — осциллограф, d = 38 m, величина r меняется в диапазоне от 0.5 до 32 m.

Помимо УКИ имеются другие типы СШП-носителей информации, например хаотические СШП-радиоимпульсы [11], входящие в стандарты [4–6] беспроводной связи.

В отличие от УКИ ширина полосы частот и длительность хаотических радиоимпульсов могут независимо меняться относительно друг друга. Благодаря этому длина такого импульса может быть выбрана равной длительности отклика многолучевого канала, что помогает предотвратить деградацию импульса из-за мелкомасштабных замираний (интерференции), вызываемых наложением многочисленных лучей в точке приема. Поэтому многолучевое распространение в принципе не представляет серьезной проблемы для приема хаотических радиоимпульсов [12] в условиях многолучевого распространения, описываемых моделями [4–7].

Вместе с тем необходимость увеличения мощности излучаемого СШП-сигнала, которое является одним из способов повышения помехоустойчивости передачи данных через СШП-канал, снова поднимает вопрос об условиях, которые создаются многолучевой средой в точке приема. Например, при увеличении мощности излучаемых импульсов в *K* раз картину многолучевого распространения в точке приема при той же чувствительности приемника будут, в том числе, формировать лучи, имеющие набег в \sqrt{K} раз больше исходного. Анализ этой проблемы представляет практический интерес, например, для разработки мультимедийных СШП-сенсорных сетей [13].

Для накопления фактического материала, на основе которого можно было бы в дальнейшем делать заключения о характере распространения хаотических радиоимпульсов различной мощности в среде, где задержки в их распространении больше, чем в моделях [4–7], в настоящей работе был проведен эксперимент по исследованию распространения хаотических СШП-радиоимпульсов. В эксперименте при помощи хаотических СШП-радиоимпульсов мощностью 1 и 100 mW, генерируемых источником СШП-хаоса [14], исследовалась многолучевая картина, складывающаяся в точке приема при различных расстояниях между излучателем и приемником. Для импульсов мощностью 100 mW по отношению к импульсам мощностью 1 mW приемник при прочих равных условиях должен обнаруживать лучи с длиной набега, в 10 раз большей. Сравнение результатов распространения импульсов мощностью 1 и 100 mW поможет определить характер влияния многолучевого канала на форму огибающей радиоимпульсов в точке приема и на основе

этого предпринять шаги по предотвращению негативного влияния многолучевого распространения на прием СШП-сигнала.

В эксперименте источник хаотических колебаний генерирует хаотические радиоимпульсы (рис. 1, a), которые проходят через беспроводный канал и поступают на вход приемника, реализованного на базе СШП-логарифмического детектора. На входе приемника лучи суммируются по мощности ввиду малого времени когерентности хаотического СШП-сигнала (рис. 1, b), имеющего шумоподобный вид. На выходе приемника формируется сигнал-огибающая хаотических радиоимпульсов. Мгновенное значение амплитуды огибающей пропорционально логарифму входной мощности, так что форма огибающей является функцией мгновенной мощности, действующей на входе приемника.

В измерениях применялся источник хаотических колебаний, входящий в приемопередатчик ППС-57 [14], который формировал последовательность хаотических радиоимпульсов длительностью $T_P = 83$ ns (рис. 1, *a*). Приемник включает логарифмический детектор [15] и малошумящий усилитель с коэффициентом усиления 10^2 и обеспечивает чувствительность на уровне $3 \cdot 10^{-9}$ mW. Приемник в линейной зоне работы преобразует входную мощность в выходное напряжение по закону

$$V(r,t) = 10\alpha \log(P(r,t)/P_0), \qquad (1)$$

где P_0 — референтное значение мощности ($P_0 = 1 \text{ mW}$), $\alpha = 0.021 \text{ V/dB}$ — крутизна характеристики логарифмического детектора, P(r, t) — мощность сигнала, поступающая в приемник от излучателя, находящегося на расстоянии r от него. Величина $10 \log(P(r, t)/P_0)$ есть отношение P(r, t) к P_0 , выраженное в децибелах. При изменении мощности входного сигнала в диапазоне от $3 \cdot 10^{-9}$ до $\sim 1 \text{ mW}$ амплитуда выходного сигнала меняется в пределах от 0.5 до 2 V пропорционально логарифму входной мощности P(r, t) в соответствии с (1).

Для искусственного создания условий, в которых набег лучей между излучателем и приемником изменяется, излучатель перемещался, приемник был неподвижен. Эксперименты проводились в коридоре Института радиотехники и электроники им. В.А. Котельникова РАН. Излучатель и приемник находились в условиях прямой видимости на высоте 1 m от поверхности пола. Схема размещения аппаратуры приведена на рис. 1, *с.* Размеры коридора следующие: высота ~ 4.5 m, длина ~ 46 m, ширина ~ 3 m. На высоте около 3 m вдоль одной из стен

коридора протянуты металлоконструкции с поперечными размерами $\sim 1 \times 1$ m. В коридоре расположено несколько металлических дверей, одна из которых находится в торце коридора (на стороне, противоположной месту расположения приемника).

Для каждого значения расстояния r_i между излучателем и приемником при помощи запоминающего осциллографа с частотой выборки 2.5 GHz (осциллограф Tektronix DPO 4054) осуществлялась запись N_i реализаций огибающей одиночных импульсов $V_j(r_i, t), j = 1, ..., N_i$ Для дальнейшего анализа вычислялась усредненная форма импульсов как

$$\langle V(r_i,t)\rangle = (1/N_i)\sum_{j=1}^{N_i} V_j(r_i,t)$$

Такое усреднение аналогично формированию среднего энергетичес-кого профиля многолучевого канала [4–6].

На рис. 2 изображены усредненные формы $\langle V(r_i, t) \rangle$ для импульсов мощностью 1 mW при расстояниях от 0.5 до 16 m (рис. 2, *a*) и для импульсов мощностью 100 mW при расстояниях от 1 до 32 m (рис. 2, *b*). Верхняя кривая на каждом рисунке соответствует минимальному расстоянию между излучателем и приемником, нижняя — максимальному. Усредненные огибающие $\langle V(r_i, t) \rangle$ позволяют оценить амплитуды импульсов $A_V(r_i)$, указанные на рис. 2.

Передний фронт всех огибающих нарастает за $\sim 5\,\mathrm{ns.}$ Амплитуда огибающей, предшествующая фронту, соответствует отсутствию сигнала на входе приемника.

Форма заднего фронта огибающей зависит от конкретных условий распространения. Многолучевой отклик длится до 70 ns для импульса мощностью 1 mW и до 350 ns для импульса мощностью 100 mW. Это эквивалентно приему лучей с набегами ~ 21 и ~ 105 m соответственно.

На начальном участке огибающей импульсов мощностью 100 mW (рис. 2, b) располагается огибающая импульсов, приходящих напрямую от излучателя. Далее выделяется огибающая меньшей амплитуды, что соответствует приходу отраженного импульса с некоторой задержкой. Задержка меняется в зависимости от расстояния между излучателем и приемником. Отражателем является металлическая дверь, расположенная в торце коридора (рис. 1, c). Сравнение величины набега задержанного луча, полученной на основе геометрии распространения лучей в коридоре (рис. 1, c), и набега на основе измерения

Рис. 2. Усредненные формы огибающей импульсов $\langle V(r_i, t) \rangle$, на которых отмечены их амплитуды $A_V(r_i)$ в приемнике на расстоянии r_i (в m) от излучателя. a — для импульсов мощностью 1 mW: $A_V(r_1 = 0.5) = 1.27$ V, $A_V(r_2 = 1) = 1.23$ V, $A_V(r_3 = 2) = 1.13$ V, $A_V(r_4 = 4) = 0.99$ V, $A_V(r_5 = 8) = 0.88$ V, $A_V(r_6 = 16) = 0.84$ V; b — для импульсов мощностью 100 mW: $A_V(r_1 = 1) = 1.7$ V, $A_V(r_2 = 2) = 1.57$ V, $A_V(r_3 = 4) = 1.46$ V, $A_V(r_4 = 8) = 1.36$ V, $A_V(r_5 = 16) = 1.25$ V, $A_V(r_6 = 32) = 1.22$ V с моментами времени $t_F^{(i)}$ прихода задних фронтов огибающей: $t_F^{(1)} = 333$ ns, $t_F^{(2)} = 325$ ns, $t_F^{(3)} = 312$ ns, $t_F^{(4)} = 283$ ns, $t_F^{(5)} = 231$ ns, $t_F^{(6)} = 126$ ns.

задержки по огибающей подтверждает это. Разность между моментами времени $t_F^{(i)}$, обозначающими задний фронт отраженных импульсов, и длительностью импульса $T_P = 83$ пs равна времени, которое требуется для прохождения удвоенной разности расстояний r_i и d: от приемника до излучателя и от приемника до конца коридора, т.е. $2(d - r_i)/c$, где c — скорость света. Эта измеренная разность составляет $\Delta t^{(i)} = t_F^{(i)} - 83 = \{250, 242, 229, 200, 148, 43\}$ пs. Разность между геометрическим набегом $2(d - r_i)$ и измеренным значением $\Delta t^{(i)}c$ составляет $|\Delta t^{(i)}c - 2(d - r_i)| = \{0.75, 0.35, 0.47, 0.1, 0.25, 0.85\}$ m.

По результатам эксперимента также был определен показатель затухания мощности сигнала с расстоянием, который для прямого луча рассчитан в соответствии с (1) через разность между амплитудой импульса A_V для расстояния r_1 и для расстояния r_i

$$A_V(r_1) - A_V(r_i) = 10\alpha \log(P(r_1)/P(r_i)).$$
(2)

Для среды с многолучевым распространением можно ожидать [4–6], что мощность P(r) в точке приема пропорциональна P_T/r^n , где P_T мощность излучаемого сигнала. Тогда отношение мощности $P(r_1)$ на расстоянии r_1 от излучателя к мощности $P(r_i)$ на расстоянии r_i составит $P(r_1)/P(r_i) = (r_i/r_1)^n$ или с учетом (2)

$$(A_V(r_1) - A_V(r_i))/\alpha = 10n \lg(r_1/r_i).$$
(3)

Здесь $(A_V(r_1) - A_V(r_i))/\alpha$ — измеренное отношение $P(r_1)/P(r_i)$, представленное на рис. З для импульсов 1 и 100 mW. По этим данным был найден показатель затухания *n* путем определения наклона линейной зависимости (3), при помощи которой аппроксимировались экспериментальные данные. Показатель затухания оказался равен n = 1.5. Он меньше двух, что демонстрирует эффект многолучевого усиления [11], т.е. накопления мощности полезного сигнала в пределах позиции импульса.

Сравнение формы огибающей импульсов мощностью 1 и 100 mW показывает две качественно различные картины многолучевого распространения. Огибающая в приемнике импульсов мощностью 1 mW претерпевает незначительное расширение, так как задержки в приходе лучей, обнаруживаемых приемником, незначительно превосходят длительность импульса. Благодаря многолучевому усилению отношение

Рис. 3. Отношение мощностей $P(r_1)/P(r_i)$ в зависимости от отношения расстояний $lg(r_i/r_1)$. Штриховая линия — аппроксимация измеренной в приемнике мощности для импульсов с излучаемой мощностью 1 mW (ромбы), сплошная — для импульсов мощностью 100 mW (крестики).

сигнал/шум в точке приема для таких импульсов в многолучевом канале выше, чем в канале с одним лучом при прочих равных условиях [9].

Для импульсов мощностью 100 mW доля лучей, мощность которых превышает порог чувствительности приемника, увеличивается, причем лучи приходят с существенно большими задержками. После огибающей импульса, приходящего по прямому лучу, возможно обнаружение отраженного импульса с сигналом/огибающей, являющегося помехой для последующих информационных импульсов. Складывается ситуация, в которой попытка повышения отношения сигнал/помеха в точке приема за счет увеличения мощности излучаемого сигнала приводит не к повышению, как это было бы для канала с одним лучом (канала с шумом), а к снижению этого отношения. На практике это может дать непредсказуемую зависимость отношения сигнал/многолучевая помеха от конкретных условий распространения СШП-сигнала. В силу линейности канала улучшение чувствительности приемника также приведет к аналогичному результату: число лучей, обнаруживаемых приемником, будет расти, а многолучевая картина усложняться. Полученный результат позволяет корректно ставить задачу компенсации многолучевого распространения при практической разработке беспроводных СШП-приемопередающих систем.

Работа выполнена при частичной поддержке РНФ (проект № 16-19-00084).

Список литературы

- [1] Molisch A.F. // Proc. IEEE. 2009. V. 97. N 2. P. 353-371.
- [2] Josephine S., Chouhan S., Mahanta A. // 2016 8th Int. Conf. on communication systems and networks (COMSNETS). Bangalore, 2016. P. 1–6.
- [3] Mesloub A., Boukhelifa A., Merad O., Saddoudi S., Younsi A., Djeddou M. // IEEE Commun. Lett. 2017. V. 21. N 10. P. 2166–2169.
- [4] Channel modeling sub-committee report final. IEEE P802.15. Working group for wireless personal area networks (WPANs). 2002; http://grouper.ieee.org/groups/802/15/pub/2002/Nov02/02490r0P802-15_SG3a-Channel-Modeling-Subcommittee-Report-Final.zip
- [5] Channel modeling sub-committee report final / IEEE P802.15.4a. Working group for WPANs. 2004; http://grouper.ieee.org/groups/802/15/pub/04/15-04-0662-02-004a-channel-model-final-report-r1.pdf
- [6] Channel model for body area network (BAN). IEEE P802.15. Wireless personal area networks. Working group for WPANs. 2009; https://mentor.ieee.org/ 802.15/ dcn/08/15-08-0780-12-0006-tg6-channel-model.pdf
- [7] Kunisch J., Pamp J. // http://www.ieee802.org/15/pub/04/15-04-0196-00-004a-802-15-4a-channel-sounding-overview.pdf
- [8] Renzo M., Graziosi F., Minutolo R., Montanari M., Santucci F. // Mobile Networks Appl. 2006. V. 11. N 4. P. 451–467.
- [9] Santos T., Karedal J., Almers P., Tufvesson F., Molisch A.F. // IEEE Trans. Wireless Commun. 2010. V. 9. N 1. P. 282–290.
- [10] Khawaja W., Guvenc I., Matolak D. // 2016 IEEE Global Communications Conf. (GLOBECOM). Washington, 2016. P. 1–7.
- [11] Andreyev Yu.V., Dmitriev A.S., Efremova E.V., Khilinsky A.D., Kuzmin L.V. // Int. J. Bifurcation Chaos. 2005. V. 15. N 11. P. 3639–3651.
- [12] Кузьмин Л.В. // Радиотехника и электроника. 2011. Т. 56. № 4. С. 399-416.
- [13] Дмитриев А.С., Ефремова Е.В., Герасимов М.Ю. // Радиотехника и электроника. 2015. Т. 60. № 4. С. 1–9.
- [14] Кузьмин Л.В., Рыжов А.И., Андреев Ю.В., Попов М.Г. // Физические основы приборостроения. 2018. Т. 7. № 1(27). С. 91–102.
- [15] Analog devices. Data sheet 1 MHz to 4 GHz, 80 dB. Logarithmic detector/controller; http://www.analog.com/media/en/technical-documentation/datasheets/ADL5513.pdf