Изучение влияния временны́х характеристик модулированной DC-плазмы с $(SiH_4 - Ar - O_2)$ -газовой фазой на рост ncl-Si в матрице a-SiO_x:H (C_{O2} = 15.5 мол%)

© Ю.К. Ундалов¹, Е.И. Теруков^{1,2}, И.Н. Трапезникова¹

¹ Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

² Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина), 197376 Санкт-Петербург, Россия

E-mail: undalov@mail.ioffe.ru

(Получена 7 февраля 2018 г. Принята к печати 26 марта 2018 г.)

Проведено изучение влияния различных режимов работы модулированной по времени DC-плазмы на формирование аморфной матрицы a-SiO_x:Н и нанокластеров кремния с помощью ИК-спектров и спектров фотолюминесценции. Модуляция DC-плазмы заключалась в многократном (n = 180) выключении и включении катушки магнита магнетрона с различным сочетанием времени $t_{off} = 1, 2, 5, 10, 15$ с и $t_{on} = 5, 10, 15$ с соответственно, при неизменной концентрации кислорода ($C_{O_2} = 15.5 \text{ мол%}$) в (SiH₄ + Ar + O₂)-газовой смеси. Подтверждено положительное влияние эффекта самоиндукции на формирование как аморфной матрицы, так и нанокластеров кремния. Наибольшие значения x в a-SiO_x:Н и интенсивности фотолюминесценции наблюдались при сочетании длительного пребывания плазмы в рабочем состоянии ($t_{on} = 10-15$ с) и наибольшего значения напряженности магнитного поля. Замечено также влияние величины t_{off} на процессы формирования как матрицы a-SiO_x:H, так и нанакластеров кремния.

DOI: 10.21883/FTP.2018.10.46453.8838

1. Введение

Известно, что свойства нанокластеров существенно отличаются от свойств объемных материалов того же состава. Это обусловлено возрастанием роли энергии поверхностных атомов начиная с размера $d \approx 10$ нм [1,2]. Так, нанокластеры кремния (ncl-Si) с d < 5 нм оказываются более эффективными при излучении света находясь в широкозонных аморфных матрицах a-SiO_x (0 < $x \le 2$) [3].

Наиболее распространенным способом получения аморфных ncl-Si в матрице *a*-SiO_x является их химическое осаждение из газовой фазы (SiH₄ + H₂), $(SiH_4 + Ar)$ или $(SiH_4 + Ar + O_2)$, стимулированное RFили DC-плазмами [4-11]. Причиной этому служит то, что в газовом разряде энергия электронов (вторичных) в среднем значительно превышает порог диссоциации SiH₄. Продуктами такого процесса в разряде, содержащем SiH₄, являются радикалы SiH_n (n < 3), которые склонны к полимеризации [5,12]. Прилипание электронов к наночастицам усиливает поток последних в плазменном пространстве. При этом использовались как немодулированные [4-9], так и модулированные по времени [10,11,13–16] разряды. Во время выключенного разряда происходят процессы рекомбинации частиц как в плазме, так и на стенках реактора.

Как известно, концентрация различных наночастиц в плазме газового разряда низкого давления в общем определяется конкуренцией процессов их образования, увеличением их концентрации и размеров, процессов присоединения к наночастицам электронов, ионов, нейтральных молекул и, наконец, процессов их гибели. Так, в работе [17] считается, что время жизни химически активных частиц составляет $\sim (1-10)$ мкс, что сопоставимо со временем образования зародышевых центров [18,19].

Отличие в механизме роста пленки *a*-Si:H в DC-разряде по сравнению с RF-разрядом заключается в большем участии в этом процессе нейтральных частиц, чем ионов [7]. Так, в DC-разряде с (SiH₄+Ar)-газовой смесью отношение количества нейтральных частиц к числу ионов в ~ 30 раз больше, чем в RF-разряде, за счет более интенсивного столкновения энергичных ионов, нейтральных атомов и молекул с силаном [7]. Замечено также, что, согласно работам [11,20,21], в DC-разряде магнетрона в режиме неработающей плазмы в первые $t_{off} \approx 60$ с после выключения заряженные частицы еще живы.

В работах [10,11,13-15] изучалась кинетика роста наночастиц кремния в многократно (n = 8 - 188) выключаемом RF-разряде (газ-SiH₄) в первые моменты процесса роста пленки [14]. Так, в работах [13-15] выявлены три фазы роста наночастиц в разряде: первая фаза — это появление первых ncl-Si в период $t_{\rm on} \approx (1 - 100)$ мс, вторая фаза — это увеличение их концентрации до $\sim 10^{10}\,{\rm cm}^{-3}$ при мало изменяемом размере наночастиц ($d \le 5$ нм) в период $t_{\rm on} \approx (0.01-5)$ с. Когда наночастицы начиная с $d \approx 5$ нм становятся отрицательно заряженными за счет прилипания к ним электронов, наступает третья фаза — это укрупнение наночастиц до $d \approx 20$ нм, происходящее в период $10^2 \, \text{мc} < t_{\text{on}} \le 5 \, \text{c}$ после начала работы плазмы. При достижении наночастицами размера $d \approx 20$ нм, когда $t_{\rm on} > 5$ с, коагуляция происходит за счет прилипания к поверхности ncl-Si молекул.

По мнению авторов работ [22,23] в RF-разряде с $(SiH_4 + Ar)$ -газовой смесью после выключения RF-разряда через $t_{on} \approx 0.5$ с происходит коагуляция "пылеобразных" частиц, через $t_{on} \approx 1$ с появляются две различные по размеру атомные группировки, одна из которых размером $d \approx (10-20)$ нм существует всего 4 с, а другая — до размеров $d \approx 75$ нм, причем концентрация первых уменьшается за счет их коагуляции [22]. Кроме того, в RF-разряде за $t_{on} \approx 5$ с отношение количества анионов к числу катионов возрастает в ~ 50 раз вследствие концентрации электронов в разряде уменьшения из-за их прилипания к нейтральным частицам [11].

Изучение DC-разряда важно для понимания многих фундаментальных аспектов плазмы с участием силана [7]. Так, в [7] сообщается, что столкновение энергичных ионов, нейтральных атомов и молекул с силаном является основной причиной этого активированного плазмой роста пленки. Другими словами, нейтральные радикалы вносят основной вклад в рост пленки *a*-Si:H.

Несколько иначе ведет себя плазма при добавлении в (SiH₄ + Ar)-газовую смесь кислорода [4,15–18,24,25]. В работе [15] изучалось влияние содержания кислорода ($C_{O_2} = 0.15 - 23.5 \text{ мол}$) в (SiH₄ + Ar + O₂)-газовой смеси при использовании модулированной по времени плазмы DC-магнетрона на состав аморфной матрицы субокисла кремния a-SiO_x (0 < x < 2) и на фотолюминесценцию (ФЛ) ncl-Si размером $d \le 5$ нм. В экспериментах сочетание значений времени пребывания катушки магнита магнетрона во включенном $(t_{\rm on}=10\,{\rm c})$ и в выключенном ($t_{\rm off} = 15\,{\rm c}$) состояниях было неизменным (максимальная величина тока катушки I_m^{\max} достигалось за $t_{\rm on} \approx 15 \, {\rm c}$). Включение и выключение катушки производилось многократно (n = 180). В [15] показано, что увеличение содержания кислорода в газовой смеси и возникающий в таком режиме работы плазмы эффект самоиндукции увеличивает концентрацию кислорода в матрице a-SiO_x (значение x увеличивается) и усиливает диссоциацию SiH₄ и O₂. В результате концентрация ncl-Si и ионов O^{2+} и O^{2-} в разряде увеличивается, возрастает поток наночастиц в сторону электродов магнетрона за счет усиления процесса прилипания ионов O^{2+} и O^{2-} и электронов к поверхности ncl-Si. Кроме этого, предварительные исследования показали взаимосвязь (непосредственно не отражающих существование ncl-Si) ИК-спектров аморфной матрицы $a \operatorname{SiO}_x$ и спектров $\Phi \Pi$ ncl-Si, существующих в этой матрице. Следовательно, после этих экспериментов появилась необходимость выяснить влияние различных сочетаний параметров модуляции DC-плазмы, т.е. различных сочетаний значений $t_{\rm on}$ и $t_{\rm off}$ в пределах $t \le 15$ с, на ИК- и ФЛ-спектры, полученные при неизменной концентрации кислорода (C_{O2}) в $(SiH_4 + Ar + O_2)$ -газовой смеси.

Цель настоящей работы — изучить влияние различных сочетаний $t_{on} = 5$, 10, 15 с и $t_{off} = 1$, 2, 5, 10, 15 с при неизменной величине $C_{O2} \approx 15.5$ мол% на ИК-и ФЛ-спектры полученных в DC-магнетроне пленок a-SiO_x:H, содержащих ncl-Si.

2. Эксперимент

Условия эксперимента подробно изложены в [15]. В данном случае устанавливался заранее рассчитанный поток кислорода, чтобы впоследствии получить $C_{O_2} \approx 15.5 \text{ мол}\%$. Интересно, что для прямого эквимолекулярного взаимодействия SiH₄ и O₂ с образованием SiO₂ в смеси {(20%SiH₄ + 80%Ar) + O₂} (без плазмы) для применяемого в наших опытах $P_{SiH_4} \approx 1.27 \cdot 10^{-3}$ Торр требуется $C_{O_2} \approx 16.7 \text{ мол}\%$, что несколько больше используемой концентрации O₂ в настоящих опытах ($C_{O_2} \approx 15.5 \text{ мол}\%$). Однако в нашем случае образование *a*-SiO_x инициируется плазмой и, как выяснилось в [15], еще и эффектом самоиндукции, возникающим при многократном выключении катушки магнита DC-магнетрона.

Катушка магнита имела N = 2900 витков, длину $l \approx 68.7 \cdot 10^{-3}$ м, площадь сечения катушки $S \approx 2.2 \cdot 10^{-3}$ м² и относительную магнитную проницаемость стального магнитопровода $\mu \approx 200$. Индуктивность катушки соответствовала $L = \mu_0 \mu N^{-2} S l^{-1} \approx 42.2 \text{ B} \cdot \text{c} \cdot \text{A}^{-1}$.

В магнетроне напряженности электрического и магнитного (H_m) полей находились в скрещенном состоянии. Магнитное поле загибает траекторию движения электронов, вынуждая их двигаться с центростремительным ускорением по окружности, центр которой катится равномерно, что в совокупности формирует траекторию движения электрона. В нашем случае, при периодическом включении на время t_{on} и выключении на время t_{off} катушки магнита величина H_m изменяется со временем. С увеличением H_m при неизменном анодном напряжении радиус катящегося круга постепенно будет уменьшаться. Величина напряженности магнитного поля определялась по следующей формуле:

$$H_m = I_m N l^{-1}. (1)$$

Многократное выключение (с помощью реле времени) катушки магнита приводит за счет эффекта самоиндукции к мгновенному краткосрочному резкому возрастанию тока и напряженности магнитного поля катушки I_m и H_m до очень больших величин. Это сопровождается увеличением центростремительного ускорения электронов, движущихся по окружности, центр которой катится по траектории с меньшим радиусом, чем до разрыва цепи катушки. За счет этого увеличивается вероятность столкновения электронов с компонентами газовой смеси, усиливая тем самым диссоциацию последних. При этом на подвижность тяжелых частиц (ионов и более сложных атомных ассоциатов) резкое изменение H_m из-за эффекта самоиндукции не сказывается.

Для случая, когда $t_{on} = t_{off} = 15$ с, после первых включения (I_m^{on}) и выключения (I_m^{off}) катушки магнита изменение I_m со временем можно оценить следующими формулами:

$$I_m^{\rm on} \approx I_\infty [1 - \exp(-t\tau^{-1})], \qquad (2)$$

$$I_m^{\text{off}} \approx I_0 \exp(-RtL^{-1})],\tag{3}$$

где $I_{\infty} \approx 0.55 \,\mathrm{A}$ — значение тока катушки при первом ее включении за время $t_{\mathrm{on}} = \infty$ (в нашем случае I_m^{max}

достигается через $t_{on} = 15 c$) и $I_0 \approx 0.55 A$ — исходное значение тока катушки в момент первого ее выключения для $t_{on} = 15 c$. Постоянная времени равна

$$\tau^- = LR^{-1} \approx 2.11 \,\mathrm{c},\tag{4}$$

где R = 20 Ом — активное сопротивление катушки. В этот первоначальный период времени работы катушки согласно выражениям (1)-(3) можно оценить значения $H_m^{\text{on}}(t_{\text{off}})$ и $H_m^{\text{off}}(t_{\text{off}})$:

$$\begin{split} H^{\rm on}_m(t_{\rm on} &= 5\,{\rm c}) \approx 16.5\,{\rm KA}\cdot{\rm M}^{-1},\\ H^{\rm on}_m(t_{\rm on} &= 10\,{\rm c}) \approx 18\,{\rm KA}\cdot{\rm M}^{-1},\\ H^{\rm on}_m(t_{\rm on} &= 15\,{\rm c}) &= H^{\rm max}_m \approx 18.3\,{\rm KA}\cdot{\rm M}^{-1},\\ H^{\rm off}_m(t_{\rm off} &= 1\,{\rm c}) \approx 11.3\,{\rm KA}\cdot{\rm M}^{-1},\\ H^{\rm off}_m(t_{\rm off} &= 2\,{\rm c}) \approx 7.1\,{\rm KA}\cdot{\rm M}^{-1},\\ H^{\rm off}_m(t_{\rm off} &= 5\,{\rm c}) \approx 1.7\,{\rm KA}\cdot{\rm M}^{-1},\\ H^{\rm off}_m(t_{\rm off} &= 10\,{\rm c}) \approx 0.17\,{\rm KA}\cdot{\rm M}^{-1}\,{\rm H}\,H^{\rm off}_m(t_{\rm off} &= 15\,{\rm c}) \approx 0. \end{split}$$

Приведенные данные говорят о том, что вклад непосредственно магнитного поля отключенной катушки (кроме эффекта самоиндукции) в движение электронов начиная с $t_{\rm off} \approx 1$ с является для всех сочетаний $t_{\rm off}$ и $t_{\rm on}$ наибольшим и сравним с магнитным полем действующей в течение $t_{\rm on} = 1$ и 5 с катушки: $H_m^{\rm off}(t_{\rm off} = 1 \text{ c}) \approx 11.3 \text{ кA} \cdot \text{M}^{-1}$ и $H_m^{\rm on}(t_{\rm on} = 1 \text{ c}) \approx$ $\approx 12.1 \text{ кA} \cdot \text{M}^{-1}$, $H_m^{\rm on}(t_{\rm on} = 5 \text{ c}) \approx 16.5 \text{ кA} \cdot \text{M}^{-1}$.

Сочетание, например, $t_{off} = 5$ с и $t_{on} = 10$ с записывается как $t_{off}/t_{on} = 5/10$. Использовались следующие сочетания t_{off} и t_{on} (в секундах): $t_{off}/t_{on} = 1/5$, 2/5, 5/5, 10/5, 15/5, 1/10, 2/10, 5/10, 10/10, 15/10, 1/15, 2/15, 5/15, 10/15, 15/15.

ИК-спектры пропускания пленок получены с помощью фурье-спектрометра FTIR-8400s фирмы Shimadzu в интервале волновых чисел 400–4000 см⁻¹.

Спектры ФЛ пленок измерялись в стационарном режиме при возбуждении излучением лазера с длиной волны $\lambda = 404$ нм в области линейной зависимости интенсивности ФЛ ($I_{\rm PL}$) от интенсивности накачки. Регистрация ФЛ производилась охлаждаемым германиевым фотоприемником. Спектры ФЛ получены при 300 К и скорректированы на спектральную чувствительность измерительной системы.

3. Результаты и их обсуждение

Как известно [5–25], в газовом разряде низкого давления зарождаются, увеличиваются по концентрации и по размерам, диссоциируют и адсорбируются стенками рабочей камеры различные атомные компоненты плазмы. Идут также процессы рекомбинации, нейтрализации заряда и абсорбции электронов наночастицами плазмы,

2* Физика и техника полупроводников, 2018, том 52, вып. 10

что в совокупности и определяет состав получаемой пленки.

В нашем случае используется модулированная по времени DC-плазма с (SiH₄ + Ar + O₂)-газовой смесью на входе в рабочий объем (PO) с $C_{O_2} \approx 15.5$ мол%. Модуляция осуществляется путем многократного выключения и включения питания катушки магнита DC-магнетрона. При этом используются различные сочетания $t_{on} = 5$, 10, 15 с и $t_{off} = 1$, 2, 5, 10, 15 с. Очевидно, что эти различные сочетания t_{on} и t_{off} предопределяют кинетику процессов, которые происходят в эти времена в плазме.

На формирование матрицы a-SiO_x: Н и ncl-Si в итоге влияют при прочих равных параметрах процесса (например, *n* и C_{O2}) изменяющиеся во времени величины $H_m^{on}(t)$ и $H_m^{off}(t)$ и эффект самоиндукции [15]. Так как количество включений и выключений катушки магнита в нашем случае неизменно (n = 180), можно заключить (с определенными оговорками), что в итоге на различие составов плазмы и пленок в основном влияет возрастающая по закону (2) со временем величина $H_m(t)$ до значения $H_m^{\rm on}(t=t_{\rm on})$ в соответствии с $t_{\rm on}$. Учитывая то, что после выключения катушки в РО существует убывающая по закону (3) $H_m^{\text{off}}(t)$ до минимального значения $H_m^{\text{off}}(t = t_{\text{off}})$ в соответствии с t_{off} , некоторые процессы (правда, уже ослабленные) в плазме, как и при работающей катушке, все еще протекают. Так, согласно [11,13,15,19,20,25], к наночастицам за период $t_{\rm off} = 1 \, {
m c} \, \left(H_m^{\rm off}(t_{\rm off} = 1 \, {
m c}) pprox 11.3 \, {
m KA} \cdot {
m M}^{-1}
ight)$ все еще прилипают электроны и ионы кислорода, что поддерживает потоки этих наночастиц к электродам DC-магнетрона. Так как величины $I_m^{\text{off}}(t)$ и $H_m^{\text{off}}(t)$ после окончания действия эффекта самоиндукции уменьшаются по экспоненте согласно выражению (3), то, как показал расчет, наибольший эффект воздействия магнитного поля на состав плазмы и пленки следует ожидать при оптимальном сочетании длительности этого воздействия, т.е. за $t_{\rm off} \approx 1\,{\rm c}$: на электроны плазмы действует поле с $H_m^{
m off}(t_{
m off}=1\,{
m c}) pprox 11.3\,{
m \kappa}{
m A}\cdot{
m m}^{-1},$ что составляет $\sim 61.7\%$ от $H_m^{\max} \approx 18.3 \,\mathrm{kA} \cdot \mathrm{M}^{-1}$. За время $t_{\mathrm{off}} \approx 5 \,\mathrm{c}$ после выключения катушки, согласно выражениям (1) и (3), величина $H_m^{
m off}(t)$ падает до $H_m^{
m off}(t_{
m off} \ge 5\,{
m c}) \le 1.7\,{
m \kappa}{
m A}\cdot{
m m}^{-1}$ (менее 9% от H_m^{\max}). Следует ожидать, что такого магнитного поля уже недостаточно для создания эффективной диссоциации SiH₄ и O₂.

Очевидно, что длительность пребывания катушки в выключенном состоянии (t_{off}) также влияет на кинетику процессов диссоциации компонент плазмы, нейтрализации их заряда и абсорбции электронов наночастицами плазмы.

3.1. Инфракрасные спектры пленок a-SiO_x:H

На рис. 1, *a*-*c* приведены ИК-спектры полученных образцов. Основные результаты этих исследований приведены в табл. 1 и 2.

Анализ положения колебательных мод атомов водорода и кислорода (в локальной группировке

HSi-Si_{3-x}O_x) в ИК-спектре проведен в диапазоне волновых чисел (400–1400) см⁻¹. Во-первых, в ИК-спектре раскачивающая ($\omega_{Si-O-Si}^{R}$) и изгибающая (ω_{Si-H}^{R}) колебательные моды в области ~ 420

Puc. 1. ИК-спектры образцов *a*-SiO_x: H, содержащих ncl-Si: $a - t_{on} = 5$ c, n = 180: $1, 2, 3, 4, 5 - t_{off} = 1, 2, 5, 10, 15$ c; $b - t_{on} = 10$ c, n = 180: $6, 7, 8, 9, 10 - t_{off} = 1, 2, 5, 10, 15$ c; $11 - t_{off}/t_{on} = 10/10, n = 30$; $c - t_{on} = 15$ c, n = 180: $12, 13, 14, 15, 16 - t_{off} = 1, 2, 5, 10, 15$ c; $17 - t_{off}/t_{on} = 15/15, n = 120$.

Puc. 2. Значение x в матрице a-SiO_x: Н в зависимости от сочетания значений t_{off} и t_{on} : $t_{off}/t_{on} = 1, 2, 5, 10, 15/5, 10, 15$ (n = 180).

 $\sim 500\,\mathrm{cm}^{-1}$ соответственно становятся более И различимыми, чем при $t_{on} = 5$ с. Кроме того, становятся более четкими пики, характеризующие колебания атома $H(\omega_{Si-O-Si}^B \approx 650-665 \, \text{см}^{-1})$ [26–28], сильно связанные колебания атомов Н и О в группе Si-O-Si-H $(\omega_{\rm Si-O}^{\rm B} \approx 795 - 800 \, {\rm cm}^{-1})$ и растягивающие колебания $(\omega_{\rm Si-H}^{\rm S} \approx 850 - 875\,{\rm cm}^{-1})$ [8,27]. Наконец, более резкими становятся пики, характеризующие растягивающие колебания ($\omega_{\text{Si-O-Si}}^{\text{S}(m)} \approx 1010 - 1035 \,\text{см}^{-1}$) [29–31] мостикового кислорода. При этом недостаточно четко в ИК-спектре проявляются низкочастотные $(\omega_{Si-O-Si}^{S(LF)}\!\approx\!940\!-\!960\,\text{cm}^{-1})$ и высокочастотные ($\omega_{\text{Si-O-Si}}^{\text{S(HF)}} \approx 1070 - 1120 \,\text{сm}^{-1}$) плечи основной полосы поглощения [26,27,30,31] (рис. 1, b, табл. 1 — кривые 6-10). Правда, их можно различить в увеличенном масштабе. Значения $\omega_{\rm Si-O-Si}^{\rm S(m)}$ и x (табл. 1 кривые 6-10, рис. 2) с ростом t_{off} имеют тенденцию к уменьшению (исключение составило 2400 см⁻¹ для образцов, полученных с помощью модулированной DC-плазмы при $t_{\text{off}}/t_{\text{on}} = 10/10$ и 15/10 c). Все колебательные моды (рис. 1, табл. 1, 2), характерные для атомной группировки HSi-Si_{3-x}O_x, без исключения с ростом ton проявляются в более четких пиках, что согласуется с увеличением длительности пребывания плазмы в рабочем состоянии в более сильном магнитном поле:

$$t_{\rm on} = 1 \, {\rm c}$$

(на рисунках и в таблицах не отражено).

Расчет по выражениям (1) и (2) показывает, что через $t_{\rm on} = 1$ с достигается $H_m^{\rm on} \approx 7$ кА · м⁻¹, что составляет ~ 37.5% от $H_m^{\rm max} \approx 18.3$ кА · м⁻¹. Забегая вперед, заметим, что через $t_{\rm on} = 5$ с в катушке создается достаточно сильное магнитное поле, $H_m^{\rm on} \approx 16.5$ кА · м⁻¹,

№ кривой на рис. 1	1	2	3	4	5	6	7	8	9	10	11
Газ	$(20\% SiH_4 + 80\% Ar) + O_2$										
n	180									30	
$t_{\rm on}, c$	5				10						
$t_{\rm off}, c$	1	2	5	10	15	1	2	5	10	15	10
$\sum t_{ m on}, c$	900	900	900	900	900	1800	1800	1800	1800	1800	300
$\omega_{\rm Si-O-Si}^{\rm R}$, cm ⁻¹ [26,27,31]	406	408	418	426	418	447	433	419	424	440	420
$\omega_{\rm Si-H}^{\rm B}$, cm ⁻¹ [27,28]	501	503	503	503	501	505	503	502	503	499	501
$\omega_{\rm Si-H}^{\rm B}$, см ⁻¹ [27,28,31]	636	637	668	662	656	649	649	666	646	649	653
$\omega_{\rm Si-O}^{\rm B},{ m cm}^{-1}[28]$	785	795	771	790	789	794	794	786	795	800	775
$\omega_{\rm Si-H}^{\rm B}$, см $^{-1}$ [8,27]	865	868	846	845	847	869	867	849	867	876	846
$\omega_{ m Si-O-Si}^{ m S(LF)}$, см $^{-1}$ [26,27,31]	956	962	_	942	952	947	960	942	946	958	-
$\omega_{ ext{Si-O-Si}}^{ ext{S}(ext{m})}$, см $^{-1}$ [29,30,31]	1052	1023	1014	1010	995	1026	1023	1010	1019	1026	981
$\omega_{ m Si-O-Si}^{ m S(HF)},$ см $^{-1}$ [30,31]	1099	1103	_	1070	1046	1117	1097	1072	1099	1120	1027
$\omega_{\rm Si-H}^{\rm B}$, cm ⁻¹ [28,32]	2105	2126	2098	2104	2105	2121	2105	2096	2118	2111	2094
x (отн. ед.) (в <i>a</i> -SiO _x) [31]	1.21	1.23	1.1	1.04	0.81	1.27	1.23	1.1	1.17	1.27	0.61

Таблица 1. Значения колебательных мод ИК-спектров образцов, полученных в газовой смеси $\{(20\%SiH_4 + 80\%Ar) + O_2\}$ и n = 180 и 30 при различных сочетаниях $t_{off} = 1, 2, 5, 10, 15$ с и $t_{on} = 5$ и 10 с

Таблица 2. Значения колебательных мод ИК-спектров образцов, полученных в газовых смесях $\{(20\%SiH_4 + 80\%Ar) + O_2\}$ и (Ar + O₂) при n = 180 и 30 и различных сочетаниях $t_{off} = 1, 2, 5, 10, 15$ с и $t_{on} = 15$ с

№ кривой на рис. 1	12	13	14	15	16	17	_	-
Газ		$\mathrm{Ar} + \mathrm{O}_2$						
п	180 120							180
$t_{\rm on}, c$	15							15
$t_{ m off}, c$	1	2	5	10	15	15	_	10
$t_{\rm on}, c$	2700	2700	2700	2700	2700	1800	2700	2700
$\omega_{\rm Si-O-Si}^{\rm R}$, см $^{-1}$ [26,27,31]	417	438	411	413	412	418	434	457
$\omega_{ m Si-H}^{ m B}$, см $^{-1}$ [27,28]	503	502	488	496	502	502	512	-
$\omega_{ m Si-H}^{ m B}$, см $^{-1}$ [27,28,31]	643	659	650	638	633	678	635	629
$\omega_{ m Si-O}^{ m B}$, см $^{-1}$ [28]	794	797	787	797	798	-	795	809
$\omega_{ m Si-H}^{ m B}$, см $^{-1}$ [8,27]	867	876	871	873	875	822	869	_
$\omega_{ m Si-O-Si}^{ m S(LF)}$, см $^{-1}$ [26,27,31]	947	957	966	973	951	_	957	1007
$\omega_{ ext{Si-O-Si}}^{S(m)}$, см $^{-1}$ [29,30,31]	1030	1038	1028	1030	1019	996	1018	1066
$\omega_{\mathrm{Si-O-Si}}^{\mathrm{S(HF)}}$, см $^{-1}$ [30,31]	1099	1103	1112	1114	1097	_	1092	1087
$\omega_{ m Si-H}^{ m B}$, см $^{-1}$ [28,32]	2103	2110	2105	2103	2102	2110	2115	-
х (отн. ед.) (в <i>a</i> -SiO _x) [31]	1.33	1.45	1.3	1.33	1.17	0.83	1.2	1.87

что составляет ~ 90% от H_m^{max} . Несмотря на это, при $t_{\text{on}} = 5$ с получаются "рыхлые" структуры аморфной матрицы (рис. 1, *a*). Следовательно, режим опытов с $t_{\text{on}} = 1$ с, как нам кажется, должен быть еще менее эффективным для получения матрицы *a*-SiO_x: Н и поэтому здесь не рассматривается:

$$t_{\rm on} = 5 \, \rm c$$

(рис. 1, *a*, табл. 1 — кривые *1*-5).

Как сказано выше, на структуру и состав матрицы a-SiO_x: Н (при прочих равных параметрах эксперимента: $n = 180, \, \mathrm{C}_{\mathrm{O}}, \, = 15.5 \,$ мол%) в основном влияют длительность пребывания плазмы в рабочем состоянии (ton) и значение H_m^{on} . Так, для самого короткого из всех используемых нами по длительности горения плазмы процесса величина $H_m^{\rm on} \approx 16.5 \, {\rm kA} \cdot {\rm m}^{-1}$, достигаемая за $t_{\rm on} = 5 \, {\rm c}$, является достаточно большой и составляет ~ 90% от $H_m^{\rm max} \approx 18.3 \, {\rm kA} \cdot {\rm m}^{-1}$. Однако, судя по ИК-спектру (рис. 1, a, табл. 1 — кривые 1-5), для всех сочетаний $t_{on} = 5$ с и $t_{off} = 1$, 2, 5, 10 и 15 с структура аморфной матрицы оказывается достаточно "рыхлой", т.е. состав и структура тетраэдров в $HSi-Si_{3-x}O_x$ являются несовершенными. Кроме того, эти тетраэдры, скорее всего, далеко не все связаны мостиковым кислородом, о чем говорит "размытый" пик в области $\omega \approx 940 - 1000 \,\mathrm{cm}^{-1}$ [29,30]. В то же время с ростом t_{off} величины $\omega_{\text{Si-O-Si}}^{\text{S(m)}}$ и *х* стремятся к уменьшению (рис 1 с теб 1 (рис. 1, *a*, табл. 1 — кривые 1-5, рис. 2). Правда, как видно из рис. 1, a (кривая I), на состав и структуру матрицы заметно и положительно оказали влияние величина $H_m^{\text{on}} \approx 16.5 \,\text{кA} \cdot \text{м}^{-1}$ и "остаточное" магнитное поле неработающей катушки уже в первую секунду после ее выключения $(H_m^{\text{off}}(t_{\text{off}} = 1 \text{ c}) \approx 11.3 \text{ кA} \cdot \text{м}^{-1}),$ что составляет $\sim 90\%$ от $H_m^{\rm max}$. Видимо, за это время сказалась менее интенсивная гибель компонент плазмы:

 $t_{\rm on} = 10 \, {\rm c}$

(рис. 1, *b*, табл. 1 — кривые 6–11).

Увеличение времени горения плазмы ЛО $t_{\rm on} = 10 \,{
m c}$ приводит в итоге к $H_m^{\rm on} \approx 18 \,{
m kA} \cdot {
m m}^{-1}$, что составляет ~ 98.4% от $H_m^{\max} \approx 18.3 \,\text{кA} \cdot \text{м}^{-1}$. Это сразу сказывается на ИК-спектре образцов для всех $t_{\rm off} \approx 1\,{\rm c}$ (рис. 1, *b*, табл. 1 — кривые 6-10). Во-первых, в ИКспектре раскачивающая ($\omega_{Si-O-Si}^{R}$) и изгибающая (ω_{Si-H}^{B}) колебательные моды в области ~ 420 и $\sim 500\,{
m cm}^{-1}$ соответственно становятся более различимыми, чем при $t_{on} = 5 c$. Кроме того, становятся более четкими пики, характеризующие колебания атома Н $(\omega_{\text{Si-O-Si}}^{\text{B}} \approx 650-665 \,\text{см}^{-1})$ [27, 28], сильно связанные колебания атомов Н и О в группе Si-O-Si-H $(\omega_{\rm Si-O}^{\rm B} \approx 795 - 800 \, {\rm cm}^{-1})$ и растягивающие колебания $(\omega_{\text{Si-H}}^{\text{S}} \approx 850 - 875 \,\text{см}^{-1})$ [8,27]. Наконец, более резкими становятся пики, характеризующие растягивающие $(\omega_{\rm Si-O-Si}^{\rm S(m)} \approx 1010 - 1035 \, {\rm cm}^{-1})$ колебания [29–31] мостикового кислорода. При этом недостаточно четко в ИК-спектре проявляются низкочастотные

 $(\omega_{\rm Si-O-Si}^{\rm S(LF)}\approx 940{-}960\,{\rm cm}^{-1})$ И высокочастотные $(\omega_{{
m Si-O-Si}}^{
m S(HF)}pprox$ 1070–1120 см $^{-1})$ плечи основной полосы поглощения [26,27,30,31] (рис. 1, b, табл. 1 кривые 6-10). Правда, их можно различить в увеличенном масштабе. Значения $\omega_{{\rm Si-O-Si}}^{{
m S}(m)}$ и x (табл. 1 кривые 6-10, рис. 2) с ростом t_{off} имеют тенденцию к уменьшению (исключение почему-то составило S(m) $\omega_{\text{Si-O-Si}}^{\text{Com}}$ для $t_{\text{off}} = 5 \text{ c}$). Это говорит о том, что при отключенной катушке магнита процессы формирования HSi-Si_{3-x}O_x-тетраэдров продолжаются, видимо, за счет пока непрекращающейся диссоциации силана и кислорода, а также прилипания электронов и ионов кислорода к атомным группировкам плазмы. Следует обратить внимание на то, что уменьшение *n* до 30 привело к значительному ослаблению диссоциации SiH4 и О2 за счет ослабления влияния на этот процесс самоиндукции: наблюдается уменьшение $\omega_{\text{Si-O-Si}}^{\text{S(m)}}$ и x (рис. 1, b, табл. 1 — кривая 11, рис. 2). Сравните с рис. 1, *b*, табл. 1 — кривая 9 и рис. 2: *t*_{on} = 15 с (рис. 1, *c*, табл. 2 — кривые 12-16).

Увеличение t_{on} до 15 с соответствует увеличению длительности работы магнитного поля и его наибольшей напряженности от $(H_m^{on}(t_{on} = 10 \text{ c}) \approx 18 \text{ кA} \cdot \text{m}^{-1})$ до $(H_m^{on}(t_{on} = 15 \text{ c}) \approx H_m^{max} = 18.3 \text{ кA} \cdot \text{m}^{-1})$. Это приводит в итоге к более резким пикам ИК-спектра по сравнению с $t_{on} = 10 \text{ c}$, хотя $H_m^{on}(t_{on} = 10 \text{ c}) \approx 18 \text{ кA} \cdot \text{m}^{-1}$ очень близка к $H_m^{on}(t_{on} = 15 \text{ c}) = 18.3 \text{ кA} \cdot \text{m}^{-1}$. Как и в предыдущей серии опытов, для $t_{on} = 15 \text{ c}$ с ростом t_{off} наблюдается усиление ИК-поглощения.

Все выше сказанное находится в согласии с характером изменения параметра x в a-SiO_x:H (рис. 2, табл. 1, 2). Во-первых, при $t_{on} = 5$ с вклад влияния t_{off} в значение x более заметен, чем для $t_{on} = 10$ и 15 с. Во-вторых, наибольшее значение x достигается при $t_{on} = 15$ с. В-третьих, в случае неизменного t_{off} и $t_{on} \neq$ const наибольшее влияние на концентрацию мостикового кислорода в матрице a-SiO_x:H оказывает сочетание $t_{off}/t_{on} = 15/5$ и 10, 15. Значение x рассчитывалось, согласно работе [31], по следующей формуле:

$$x = \left(\omega_{\text{Si-O-Si}}^{\text{S}(\text{m})} - 940 \,\text{cm}^{-1}\right) \cdot (67.5^{-1} \,\text{cm}^{-1}). \tag{5}$$

Как и в случае с $t_{off}/t_{on} = 10/10$ (рис. 1, *b*, табл. 1 — кривая *11*), на опыте с $t_{off}/t_{on} = 10/15$ уменьшение *n* (здесь до 120) приводит к такому изменению состава (т. е. к уменьшению *x*) и структуры матрицы *a*-SiO_x:Н за счет ослабления влияния на электроны плазмы эффекта самоиндукции (рис. 1, *c*, табл. 2 — кривая *17*), что часть кривой ИК-спектра, соответствующей колебательной моде $\omega_{\text{Si-OSi}}^{\text{S(m)}}$, проявляется в виде излома, а не четкого пика.

Интересно, если сравнить значения x в a-SiO_x: Н для немодулированной плазмы (табл. 2, n = 1) и модулированного разряда с $t_{off}/t_{on} = 1$, 5, 10, 15/15 (табл. 2 кривые 12, 14–16), то можно заметить, что они практически одинаковы. В первом случае ионы кислорода в основном идут на формирование только аморфной матрицы, а во втором — идут не только в матрицу, но и прилипают к ncl-Si. Наблюдаемая разница в количестве ионов кислорода в матрице a-SiO_x:Н в случае немодулированного и модулированного разрядов, видимо, обусловлена эффектом самоиндукции, имеющим место в случае модулированной плазмы. Также можно предположить, что режим, когда одновременно создаются матрица a-SiO_x:Н и ncl-Si при $t_{off}/t_{on} = 15/15$, с точки зрения влияния на величину x изменяющегося значения H_m^{on} от нуля до $H_m^{max} \approx 18.3 \text{ кA} \cdot \text{M}^{-1}$ за время $t_{on} = 15 \text{ с}$, повторяющегося 180 раз в течение $\sum t_{on} = 2700 \text{ с}$ и сопровождающегося эффектом самоиндукции (табл. 2 — кривая 16), как оказывается, мало чем отличается от режима непрерывного процесса в течение $t_{on} = 2700 \text{ с}$ (табл. 2 — n = 1). Это, видимо, обусловлено малой концентрацией кислорода в газовой смеси ($C_{O_2} = 15.5 \text{ мол}$ %). Об этом было сказано в работе [15].

Аналогичная попытка использования модулированной DC-плазмы в случае (Ar + O₂)-газовой фазы (т.е. в отсутствие SiH₄) с $t_{off}/t_{on} = 10/15$ привела к значительному ослаблению пропускания всех вышеперечисленных колебательных мод, кроме основного пика $\omega_{\text{Si-O-Si}}^{\text{S}(\text{m})} \approx 1065 \, \text{см}^{-1}$ и раскачивающих колебаний при $\omega_{\mathrm{Si-O-Si}}^{\mathrm{R}} \approx 460 \,\mathrm{cm}^{-1}$ [26,27,30,31] (табл. 2). Основной пик этого образца по сравнению с другими, но содержащими SiH₄ этой же серии, смещается в сторону больших значений волновых чисел (x = 1.87), т.е. смещается в сторону состава a-SiO₂, при том же самом содержании кислорода в газовой фазе. Это говорит о том, что в случае отсутствия SiH₄ в газовой фазе ncl-Si нет или их очень мало, и, следовательно, в плазме отсутствует компонент, к которому прилипают ионы кислорода и электроны.

3.2. Фотолюминесценция ncl-Si в матрице *a*-SiO_x : H

Интенсивность фотолюминесценции ncl-Si (I_{PL}^{ncl-Si}) , полученной при $t_{on} = 5$ с, точнее, при $t_{off}/t_{on} = 5$, 10, 15/5 с (рис. 3, кривые 1-3), характеризуется в основном полосой излучения в области (900 нм $\leq \lambda \leq$ 970 нм). Такая длинноволновая ФЛ обусловлена, скорее всего, относительно большими размерами ncl-Si, а также низкой концентрацией наночастиц и ионов кислорода в плазме, что согласуется с ИК-спектроскопией этих образцов (рис. 1, *a*).

Как нами ожидалось, с точки зрения гибели некоторых компонент плазмы и (или) потери ими заряда условия напыления $t_{\text{off}}/t_{\text{on}} = 1/15$ (n = 180, $\sum t_{\text{on}} = 2700 \text{ c}$) достаточно близки к условиям непрерывного процесса ($n = 1, t_{\text{on}} = 2700 \text{ c}$). Об этом говорят ИК-спектры соответствующих образцов (рис. 1, *c*, табл. 2 — кривая *12* и n = 1, рис. 2). В то же время на процесс с модулированной плазмой влияет эффект самоиндукции [15], что, как показано выше, приводит не только к улучшению структуры матрицы a-SiO_x:H, но и должно привести к увеличению $I_{\text{PL}}^{\text{ncl-Si}}$.

Однако ситуация сложилась так, что нам не удалось снять спектры ФЛ этого образца, т.е. с $t_{\text{off}}/t_{\text{on}} = 1/15$ с, хотя они заслуживают внимание (рис. 2).

Рис. 3. Спектры ФЛ ncl-Si, находящиеся в матрице a-SiO_x:H (n = 180): $1 - t_{off}/t_{on} = 5/5$, $2 - t_{off}/t_{on} = 5/10$, $3 - t_{off}/t_{on} = 5/15$, $4 - t_{off}/t_{on} = 10/5$, $5 - t_{off}/t_{on} = 10/10$, $6 - t_{off}/t_{on} = 10/15$, $7 - t_{off}/t_{on} = 15/5$, $8 - t_{off}/t_{on} = 15/10$, $9 - t_{off}/t_{on} = 15/15$.

Кроме того, на всех зависимостях $I_{\rm PL}^{\rm ncl-Si} = f(t_{\rm off}/t_{\rm on})$ (рис. 3, кривые 1-9) можно увидеть при большом увеличении перегиб кривой при $\lambda \approx 840$ нм, который при росте значения $t_{on}(10 c \le t_{on})$ становится более отчетливым и который превращается, на наш взгляд, в пик при $\lambda \approx 790$ нм, когда $t_{\rm off}/t_{\rm on} = 10/15$ (рис. 3, кривая 6). Это свидетельствует о существовании в плазме и в аморфной матрице a-SiO_x:Н при $10 c \le t_{on}$ наночастиц Si малых размеров (~2нм [15,32-36]) и о появлении в плазме такого количества ионов кислорода, которого достаточно как на формирование матрицы a-SiO_x:H, так и на создание заметного потока наночастиц Si в сторону электродов DC-магнетрона. Существование ncl-Si малых размеров подтверждается также смещением длинноволновой полосы излучения при $\lambda \approx 920$ нм в сторону коротких длин волн (рис. 3). Сказанное об увеличении концентрации ионов кислорода в плазме подтверждается ростом значения x, характеризующим содержание мостикового кислорода в матрице *a*-SiO_x:H (рис. 1, табл. 1, 2).

Спектры ФЛ сняты О.Б. Гусевым, за что авторы ему благодарны.

4. Заключение

Применение модулированной по времени DC-плазмы при получении пленок a-SiO_x: H с помощью магнетрона, когда n = 180 и C_{O2} = 15.5 мол.%, показало следующее.

1) В матрице a-SiO_x: Н появляются ncl-Si с концентрацией и с размерами ($d \le 5$ нм), дающими возможность фиксировать их существование с помощью спектров ФЛ.

2) При неизменных n = 180 и $C_{O_2} = 15.5 \text{ мол}\%$ на "совершенство" и состав матрицы a-SiO_x:H, а также на $I_{\text{PL}}^{\text{ncl-Si}}$ положительно влияют следующие факторы: сочетание длительности пребывания плазмы в рабочем состоянии ($t_{\text{on}} \approx 10 \text{ с } \text{и} H_m^{\text{on}}(t_{\text{on}} \geq 10 \text{ с}) \geq 98\% H_m^{\text{max}}$; кратковременное нахождение катушки магнита в выключенном состоянии ($t_{\text{off}} \approx 1-2 \text{ c}$).

При кратковременном нахождении плазмы в рабочем состоянии ($t_{on} \le 5$ с) независимо от величины H_m^{on} получаются "рыхлые" матрицы a-SiO_x: Н с малым содержанием мостикового кислорода. Правда, несмотря на это, в такой матрице, скорее всего, за счет эффекта самоиндукции появляются ncl-Si, преимущественно излучающие в длинноволновой области спектра (900–970 нм).

Максимум полос излучения ncl-Si, полученных при $t_{\rm off}/t_{\rm on} = 10, 15/10, 15$, смещается в коротковолновую область и при $t_{\rm off}/t_{\rm on} = 10/15$ наблюдается самая корот-коволновая ФЛ из всех полученных образцов.

Из данных настоящей работы (и работы [15]) следует, что для получения более совершенных структур матрицы a-SiO_x: Н и создания больших концентраций ncl-Si меньших размеров содержание кислорода $C_{O_2} = 15.5 \text{ мол}\%$ следует считать недостаточным.

Список литературы

- [1] А. И. Гусев. Наноматериалы, наноструктуры, нанотехнологии (М., Физматгиз, 2007).
- [2] И.П. Суздалев. Нанотехнология: Физико-химия нанокластеров, наноструктур и наноматериалов (М., Книжный дом "ЛИБРОКОМ", 2009).
- [3] О.Б. Гусев, А.Н. Поддубный, А.А. Прокофьев, И.Н. Яссиевич. ФТП, 47 (2), 147 (2013).
- [4] B. Drevillon, J. Perrin, J.M. Siefert, J. Huc, A. Lioret, G. de Rosny, P.M. Schmitt. Appl. Phys. Lett., 42 (9), 801 (1983).
- [5] Y. Watanabe, M. Shiratani, Y. Kubo, I. Ogana, S. Ogi. Appl. Phys. Lett., 53 (14), 1263 (1988).
- [6] D.A. Doughty, A. Gallagher. Phys. Rev. A, 42, 6166 (1990).
- [7] Y. Kanzawa, S. Hayashi, K. Yamamoto. J. Phys.: Condens. Matter, 8, 4823 (1996).
- [8] L. Boufendi, J. Gaudin, S. Huet, G. Viera, M. Dudemaine. Appl. Phys. Lett., 79, 4301 (2001).
- [9] A. Puzder, A.J. Williamson, J.C. Grossman, G. Galli. Phys. Rev. Lett., 88 (9), 09740 (2002).
- [10] L. Boufendi, M.Ch. Jouanny, E. Kovacevic, J. Berndt, M.M. Kikian. J. Phys. D: Appl. Phys., 44 (17), 174035 (2011).
- [11] Т.Т. Корчагина, Д.В. Марин, В.А. Володин, А.А. Попов, М. Vergnat. ФТП, 43 (11), 1557 (2009).
- [12] A. Bouchoule, A. Plain, L. Boufendi, J.Ph. Blondeau, C. Laure. J. Appl. Phys., 70, 1991 (1991).
- [13] L. Boufendi, A. Plain, J.Ph. Blondean, A. Bouchoule, C. Laure, M. Toogood. Appl. Phys. Lett., 60 (2), 169 (1992).
- [14] L. Boufendi, J. Hermann, A. Bouchoule, B. Dubreuli, S.S. Stoffele, W.W. Stoffels, M.L. de Giorgi. J. Appl. Phys., 76 (1), 148 (1994).
- [15] Ю.К. Ундалов, Е.И. Теруков, О.Б. Гусев, И.Н. Трапезникова. ФТП, **50** (4), 538 (2016).
- [16] F. Fogarassy, A. Slaoui, M. Froment. Phys. Rev. B, 37, 6468 (1988).
- [17] M.T. Swihart, S.L. Girshick. J. Phys. Chem. B, 103, 64 (1999).
- [18] K. Koga, Y. Matsuoka, K. Tanaka, M. Shiratani, Y. Watanabe. Appl. Phys. Lett., 77, 196 (2000).
- [19] L. Couëdel, M.M. Mikikian, L. Boufendi, A.A. Samarian. Phys. Rev. E, 74, 026403 (2006).
- [20] L. Couëdel, A.A. Samarian, M. Mikikian, L. Boufendi. Physics Plasmas, 15, 063705 (2008).

- [21] М.А. Олеванов, Ю.А. Манкелевич, Т.В. Рахимова. ЖЭТФ, 125 (2), 324 (2004).
- [22] Y. Watanabe, M. Shiratani. Plasma. Sources Sci. Technol., 3, 286 (1994).
- [23] G. Lucovsky, J. Yang, S.S. Chao, J.E. Tyler, W. Czubatyi. Phys. Rev. B, 28 (6), 3225 (1983).
- [24] D.V. Tsu, G. Lucovsky, B.N. Davidson. Phys. Rev. B, 40, 1795 (1989).
- [25] T. Fukuzawa, S. Kushima, Y. Matsuoka, M. Shiratani, Y. Watanabe. J. Appl. Phys., 86, 3543 (1999).
- [26] C. Biasotto, A.M. Dalrini, R.C. Teixeira, F.A. Bascoli, J.A. Diniz, S.A. Moshkalev, I. Doi. J. Vac. Sci. Technol. B, 25, 1166 (2007).
- [27] G. Lucovsky, J. Yang, S.S. Chao, J.E. Tyler, W. Czubatyi. Phys. Rev. B, 28 (6), 3225 (1983).
- [28] G. Lucovsky, W.B. Pollard. J. Vac. Sci. Technol. A, 1 (2), 313 (1983).
- [29] J.C. Knights, R.A. Street, G. Lucovsky. J. Non-Cryst. Sol., 35– 36, 279 (1980).
- [30] D.V. Tsu, G. Lucovsky, B.N. Davidson. Phys. Rev. B, 40, 1795 (1989).
- [31] P.G. Pai, S.S. Chao, Y. Takagi, G. Lucovsky. J. Vac. Sci. Technol. A, 4, 689 (1986).
- [32] G. Lucovsky. Sol. St. Commun., 29, 571 (1979).
- [33] W.D.A.M. de Boer, D. Timmerman, K. Dohnalova, I.N. Yassievich, H. Zhang, W.J. Buma, T. Gregorkiewiecz. Nature Nanotechnology, 5, 878 (2010).
- [34] G. Allan, C. Delerue, M. Lannoo. Phys. Rev. Lett., 78, 3161 (1997).
- [35] M.P. Garrity, T.W. Peterson, J.F. O'Hanlon. J. Vac. Sci. Technol. A, 14, 550 (1996).
- [36] L. Patrone, D. Nelson, V.I. Safarov, M. Sentis, W. Marine, S. Giorgio. J. Appl. Phys., 87 (8), 3829 (2000).

Редактор Г.А. Оганесян

The study of the influence of temporal characteristics of modulated DC-plasma (SiH_4-Ar-O_2) is a gas phase on the growth of ncl-Si in the matrix of a-SiO_x:H $(C_{O_2} = 15.5 \text{ mol}\%)$

Yu.K. Undalov¹, E.I. Terukov^{1,2}, I.N. Trapeznikova¹

² loffe Institute,

- 194021 St. Petersburg, Russia
- ² St. Petersburg Electronical University "LETI",
- 197376 St. Petersburg, Russia

Abstract The effect of various modes of operation of a time-modulated DC-plasma on the formation of an amorphous a-SiO_x:H matrix and silicon nanoclusters (ncl-Si) using IR-spectra and PL spectra was studied. The modulation of the DC-plasma consisted in the multiple (n = 180) switching-off and switching-on of the magnetron magnet coil with different combinations of time $t_{off} = 1, 2, 5, 10, 15$ s with $t_{on} = 5, 10, 15$ s, respectively, at the constant concentration of oxygen (Co₂ = 15.5 mol%) to (SiH₄ + Ar + O₂)-gas. The positive influence of the self-induction effecton the formation of both an amorphous matrix, and ncl-Si was confirmed. The largest value x in a-SiO_x:H and PL intensities were observed in the combination of a prolonged plasma stay in the working state ($t_{on} = 10-15$ s) and the highest value of the magnetic field strength. The effect of t_{off} on the processes of formation a matrix of a-SiO_x:H and ncl-Si is also noted.