# 07 Модуль Юнга и коэффициент Пуассона двумерно протяженного колонного графена

#### © А.С. Колесникова, М.М. Мазепа

Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского, Саратов, Россия

E-mail: Kolesnikova.88@mail.ru

#### (Поступила в Редакцию 21 февраля 2018 г.)

Проведено теоретическое исследование модуля Юнга и коэффициента Пуассона двумерно протяженного колонного графена при одноосном растяжении. Рассмотрено влияния длин и диаметров нанотрубок, входящих в состав композита. Численные эксперименты осуществлялись с использованием минимального структурного звена и периодических граничных условий методом функционала плотности. Выявлены численные значения модулей Юнга композита при его растяжении вдоль нормали к графеновому полотну, с увеличением длин углеродных нанотрубок (УНТ) в композите, а также численные значения модулей Юнга композита при его растяжении по направлениям графенового полотна, с увеличением длин углеродных нанотрубок композита. Установлено, что величина коэффициента Пуассона для такого типа композитов составляет 0.025.

Работа выполнена при финансовой поддержке Президентской стипендии 2016-2018 гг. (проект No CП-2502.2016.1).

DOI: 10.21883/FTT.2018.09.46397.041

#### 1. Введение

Актуальной задачей в области усовершенствования работы современных наноустройств является создание композитного материала с уникальными свойствами, который будет использоваться в качестве элементной базы этих наноустройств. Новый виток в области развития таких материалов связан с синтезом и исследованием свойств композитных углеродных наноструктур на основе углеродных нанотрубок (УНТ) и графена. УНТ и графен часто служат составными частями композитных материалов для достижения высоких механических характеристик [1,2]. Это связано тем, что углеродные нанотрубки и графен обладают уникальными свойствами: механическая прочность [3–5], высокая теплопроводность [6], анизотропия электронных свойств [7,8] и т.д.

В настоящее время синтезируемые и моделируемые композитные материалы, состоящие из УНТ и графена, отличаются конфигурацией структурных элементов и способом их соединения [9-14]. Одним из таких композитных материалов является композит — колонный графен, структурное звено которого образуется графеновым листом с вертикально ориентированными углеродными нанотрубками, присоединенными к графеновому листу химическими связями. При образовании композита края УНТ остаются открытыми, а в графеновом листе образуются отверстия размером равным диаметру УНТ. Данные структуры активно синтезируются [9,15–19], а уникальность их электронных [20,21], механических [22-26] и теплопроводящих [26,27] свойств делает возможным их применение в наноэлектронике [20,28-35], энергохранилище [28-33] и теплообменном оборудовании [27].

Для усовершенствования работы устройств наноэлектроники одним из важнейших свойств, которым должен обладать материал, являются прочностные свойства. В связи с этом необходимо наиболее детально изучать механические свойства колонного графена, несмотря на активное исследование механических свойств данного материала [22–26].

В настоящее время не найдено работ по исследованию механических свойств двумерно протяженного колонного графена при одноосном растяжении. Целью данной работы является теоретическое исследование модуля Юнга и коэффициента Пуассона двумерно протяженного колонного графена при одноосном растяжении. Проводилась оценка влияния длин и диаметров нанотрубок, входящих в состав композита. Исследование механических свойств нанокомпозитов осуществлялось на основе минимального структурного звена (элементарной ячейки) с использованием периодических граничных условий методом функционала плотности.

## 2. Объект и метод исследования

Объектом исследования является структура колонного графена, образованная графеновым листом, к которому перпендикулярно графеновой плоскости располагается углеродная нанотрубка armchair. В графеновом полотне в местах присоединения УНТ образованы отверстия, по форме и размеру соответствующие сечению УНТ, края УНТ остаются открытыми. Нанотрубки в композите располагаются в шахматном порядке. Тип киральности нанотрубок armchair был выбран исходя из того, что, согласно экспериментальным данным [36], нанотрубки такой киральности обладают высокими прово-



**Рис. 1.** Фрагмент двумерно протяженного атомарного композита — колонный графен. Жирным цветом выделена элементарная ячейка композита.



**Рис. 2.** Растяжение вдоль нормали (normal) к графеновому полотну. *n* — нормаль к графеновому полотну.

дящими свойствами, а значит, построенный на их основе композит будет являться перспективным материалом для применения в наноэлектронике. Все УНТ в рамках одного композита обладают одинаковой геометрией: одинаковой длиной и диаметром (рис. 1).

Для исследования модуля Юнга и коэффициента Пуассона двумерно протяженного колонного графена проводилось одноосное растяжение композитов в каждом из трех ортонормированных направлениях: вдоль торца аrmchair графенового полотна, вдоль торца zigzag графенового полотна и вдоль нормали (normal) к графеновому полотну. Под растяжением вдоль нормали (normal) к графеновому полотну понимается растяжение вдоль оси УНТ (рис. 2). Алгоритм исследования модуля Юнга и коэффициента Пуассона представлен в работе [5]. Композит равномерно растягивался на 3% относительно первоначальной длины.

# 3. Механические свойства двумерно протяженного колонного графена

Исследования механических свойств двумерно протяженного колонного графена проводились на серии композитов. В серии изменялись длины и диаметры УНТ (таблица). В пределах одного композита длины и диаметры УНТ, а также расстояния между трубками оставались постоянными. Расстояния между стенками трубок во всех исследуемых композитах не изменялись и составили 14 Å.

При использовании алгоритма, представленного в работе [5], получены результаты исследования модуля

Геометрические размеры исследуемых моделей колонного графена

| Диаметр               | Интервал длин нанотрубок<br>для серии композитов<br>с одинаковым диаметром<br>нанотрубок, Å |                         | Размер элементарной<br>ячейки графенового<br>листа, Å |                         |
|-----------------------|---------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------|-------------------------|
|                       | min                                                                                         | max                     | zigzag                                                | armchair                |
| 5.47<br>8.01<br>12.12 | 4.10<br>5.37<br>3.95                                                                        | 16.70<br>13.96<br>10.10 | 15.99<br>18.18<br>20.13                               | 16.32<br>19.63<br>21.20 |

Юнга для протяженного колонного графена (рис. 3-5). Результаты обобщены относительно направлений исследования модуля Юнга: вдоль торца armchair графенового полотна, вдоль торца zigzag графенового полотна и вдоль нормали (normal) к графеновому полотну (вдоль УНТ).

Из результатов видно, что модуль Юнга протяженных композитов увеличивается с увеличением длин УНТ в композите при исследовании вдоль нормали к



**Рис. 3.** Зависимость величины модуля Юнга, соответствующего направлению armchair, протяженного колонного графена.



**Рис. 4.** Зависимость величины модуля Юнга, соответствующего направлению zigzag, протяженного колонного графена.

1782



**Рис. 5.** Зависимость величины модуля Юнга, соответствующего направлению нормали к графеновому полотну, протяженного колонного графена.

поверхности графенового полотна и уменьшается при исследовании вдоль направлений графенового полотна. Из графиков видно, что прочность композита при растяжении вдоль направлений графенового полотна превосходит прочность при растяжении вдоль нормали к графеновому полотну.

Порядок значений модуля Юнга для каждого из трех одноосного растяжения согласуется с результатами для многослойных композитов (композитов, имеющих несколько графеновых слоев, между которыми располагаются углеродные нанотрубки) [22]. Однако на основе работы [22] судить о качественной картине изменения модуля Юнга не имеется возможным, так как в работе [22] имеется только по два численных значения модуля Юнга при изменении длины УНТ и расстояния между УНТ.

Проведено исследование зависимости коэффициента Пуассона от геометрических размеров УНТ композита. Установлено, что коэффициент Пуассона не зависит от размеров УНТ и направления исследования. Полученный коэффициент Пуассона составляет 0.025, что относит протяженный колонный графен к хрупким материалам, у которых модуль Юнга на сжатие превосходит модуль Юнга на растяжение. Данный результат согласуется с результатами работы [22].

# 4. Заключение

В работе представлены результаты теоретического исследования зависимости модуля Юнга и коэффициента Пуассона двумерно протяженного углеродного композита — колонного графена при одноосном растяжении на 3% от геометрических размеров УНТ — длин и диаметров.

Результаты численного эксперимента показали, что:

 модуль Юнга композита, при его растяжении вдоль нормали к графеновому полотну, увеличивается с увеличением длин УНТ в композите;  модуль Юнга композита, при его растяжении по направлениям графенового полотна, уменьшается с увеличением длин УНТ композита.

Выявлено, что прочность на растяжение в направлениях графенового полотна превышает прочность на растяжение в направлении нормали к графеновому полотну.

Исследован коэффициент Пуассона протяженного колонного графена. Установлено, что величина коэффициента Пуассона не зависит от направления исследования, длин и диаметров УНТ и составляет 0.025.

По результатам исследований наибольшей прочностью на растяжение в любом из трех направлений (вдоль торца armchair графенового полотна, вдоль торца zigzag графенового полотна и вдоль нормали (normal) к графеновому полотну (вдоль УНТ)) обладает протяженный композит, с диаметром трубок 5.47 Å и с длиной трубок 4.18 Å.

Можно предположить, что полученные результаты получат широкое применение в развитии электроники, а исследованные композиты получат применение в автоэлектронной эмиссии.

# Список литературы

- [1] О.Е. Глухова, А.С. Колесникова, И.Н. Салий, М.М. Слепченков. Вестн. Самарского гос. ун-та 9, 102 (2013).
- [2] S. Vadukumpully, J. Paul, N. Mahanta, S. Valiyaveettil. Carbon 49, 198 (2011).
- [3] А.В. Елецкий. УФН 177, 233 (2007).
- [4] Е.Д. Грайфер, В.Г. Макотченко, А.С. Назаров, С.Д. Ким, В.Е. Федоров. Успехи химии 80, 784 (2011).
- [5] О.Е. Глухова, А.С. Колесникова, Г.В. Торгашов, З.И. Буянова. ФТТ 52, 1240 (2010).
- [6] А.Г.Проневский, М.С. Тиванов. Вестн. БГУ. Сер. 1. Физика. Математика. Информатика 1, 48 (2015).
- [7] М.В. Харламова. УФН 183, 1145 (2013).
- [8] А.В. Елецкий. УФН 172, 401 (2002).
- [9] Y. Zhu, L. Li, C. Zhang, G. Casillas, Z. Sun, Z. Yan, G. Ruan, Z. Peng, A.R.O. Raji, C. Kittrell, R.H. Hauge, J.M. Tour. Nature Commun. 3, 1 (2012).
- [10] J.H. Deng, F.J. Wang, L. Cheng, B. Yu, G.-Z. Li, X.-G. Hou, D.-J. Li, G.-A. Cheng. Mater. Lett. **124**, 15 (2014).
- [11] V. Varshney, S.S. Patnaik, A.K. Roy, G. Froudakis, B.L. Farmer. ACS Nano 4, 1153 (2010).
- [12] E. Pop, V. Varshney, A.K. Roy. MRS Bull. Mater. Res. Soc. 37, 1273 (2012).
- [13] J. Gong, P. Yang. RSC Adv. 4, 19622 (2014).
- [14] Y. Wu, T. Zhang, F. Zhang, Y. Wang, Y. Ma, Y. Huang, Y. Liu, Y. Chen. Nano Energy 1, 820 (2012).
- [15] V.A. Labunov, B. G. Shulitski, A.L. Prudnikova, Y.P. Shaman, A.S. Basaev. Semicond. Phys. Quantum Electron. Optoelectron. 13, 137 (2010).
- [16] F. Du, D. Yu, L. Dai, S. Ganguli, V. Varshney, A.K. Roy. Chem. Mater. 23, 4810 (2011).
- [17] V. Jousseaume, J. Cuzzocrea, N. Bernier, V.T. Renard. Appl. Phys. Lett. 98, 123103 (2011)
- [18] N.D. Kim, Y. Li, G. Wang, X. Fan, J. Jiang, L. Li, Y. Ji, G. Ruan, R.H. Hauge, J.M. Tour. Nanoletters 16, 1287 (2016).
- [19] О.Е. Глухова, А.С. Колесникова, М.М. Слепченков, Д.С. Шмыгин. ФТТ 57, 994 (2015).

- [20] О.Е. Глухова, А.С. Колесникова, М.М. Слепченков, Г.В. Савостьянов, Д.С. Шмыгин. Радиотехника 7, 64 (2015).
- [21] R. Shahsavari, N. Sakhavand. Carbon 95, 699 (2015).
- [22] S. Sihn, V. Varshney, A.K. Roy, B.L. Farmer. Carbon 50, 603 (2012).
- [23] C.H. Wang, T.H. Fang, W.L. Sun. J. Phys. D 47, 405 (2014).
- [24] Y.C. Wang, Y.B. Zhu, F.C. Wang, X.Y. Liu, H.A. Wu. Carbon 118, 588 (2017).
- [25] M. Moradi, J.A. Mohandesi. AIP Adv. 5, 117143 (2015).
- [26] K. Xia, H. Zhan, Y. Wei, Y. Gu. Beilstein J. Nanotechnology 5, 329 (2014).
- [27] T.-H. Fang, W.-J. Chang, Y.-C. Fan, W.-L. Sun. Jpn J. Appl. Phys. 55, 040301 (2016).
- [28] P. Lv, X.-W. Tan, K.-H. Yu, R.-L. Zheng, J.-J. Zheng, W. Wei. Carbon 99, 222 (2016).
- [29] X. Wang, G. Sun, P. Chen. Frontiers Energy Res. 2, 1 (2014).
- [30] T. Mayalagan, X. Dong, P. Chen, X. Wang. J. Mater. Chem. 2, 5286 (2012).
- [31] K.P. Prasad, Y. Chen, P. Chen. Appl. Mater. Interfaces 6, 3387 (2014).
- [32] M.G. Hahm, A.L.M. Reddy, D.P. Cole, M. Rivera, J.A. Vento, J. Nam, H.Y. Jung, Y.L. Kim, N.T. Narayanan, D.P. Hashim, C. Galande, Y.J. Jung, M. Bundy, S. Karna, P.M. Ajayan, R. Vajtai. Nano Lett. 12, 566 (2012).
- [33] H. Ji, L. Zhang, M.T. Pettes, H. Li, S. Chen, L. Shi, R. Piner, R.S. Ruoff. Nano Lett. 12, 2446 (2012).
- [34] Y. Zhang, Z. Zhen, Z. Zhang, J. Lao, J. Wei, K. Wang, F. Kang, H. Zhu. Electrochem. Acta 157, 131 (2015).
- [35] D.C. Higgins, M.A. Hoque, F. Hassan, J.-Y. Choi, B. Kim, Z. Chen. ACS Catal. 4, 2734 (2014).
- [36] R. Saito, G. Dresselhaus, M.S. Dresselhaus. Physical Properties of Carbon Nanotubes. World Sci. Publ., London (1998). P. 259.

Редактор Т.Н. Василевская