06 Термооптические и диэлектрические исследования сегнетоэлектрической фазы, индуцированной кальцием, в виртуальном сегнетоэлектрике SrTiO₃

© П.А. Марковин¹, В.А. Трепаков^{1,2}, М.Е. Гужва^{1,3}, А. Dejneka², А.Г. Раздобарин¹, О.Е. Квятковский¹

 ¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
 ² Institute of Physics AS CR, Prague, Czech Republic
 ³ Горный университет, Санкт-Петербург, Россия
 E-mail: P.Markovin@mail.ioffe.ru

(Поступила в Редакцию 27 марта 2018 г.)

Исследованы температурные изменения рефракции света, двупреломления, диэлектрической проницаемости и петель диэлектрического гистерезиса в монокристаллах $Sr_{1-x}Ca_xTiO_3$ с x = 0.014 (SCT-1.4). Диэлектрические свойства исследованы в Sr_{1-x}Ca_xTiO₃ с x = 0.007 (SCT-0.7). Выполнены расчеты *ab initio* равновесных структур и полных энергий трех низкотемпературных фаз для SrTiO₃ и CaTiO₃, на основании которых определена ожидаемая симметрия основного состояния их твердого раствора и направления спонтанной поляризации в индуцированной кальцием сегнетофазе в Sr_{1-x}Ca_xTiO₃. В SCT-1.4 выделен спонтанный вклад в рефракцию света, возникающий за счет спонтанного электрооптического эффекта, вызванного спонтанной поляризацией и ее флуктуациями. Из спонтанного вклада в рефракцию света на основе ранее развитого авторами фенологического подхода впервые количественно определены величины и температурные зависимости среднеквадратичных флуктуаций параметра порядка — поляризации $P_{\rm sh} = \langle P_{\rm fl}^2 \rangle^{1/2}$ (ближний, локальный полярный порядок) в сегнетоэлектрической фазе. Из оптических и диэлектрических измерений в SCT-1.4 определено среднее значение спонтанной поляризации P_s (вклад дальнего порядка). Проведены оценки величин P_{sh} и P_s, характеризующих ближний и дальний порядок в сегнетофазе SCT-0.7. Определение в отдельности величин и температурных зависимостей P_s и P_{sh}, которая значительно превышает величину P_s в упорядоченной фазе, позволило на количественном уровне выявить новые особенности формирования индуцированной полярной фазы в $Sr_{1-x}Ca_x TiO_3$.

П.А. Марковин благодарен программе президиума РАН "Физика конденсированных сред и материалы нового поколения", В.А. Трепаков благодарен программе "Современные проблемы физики низких температур" за частичную финансовую поддержку работы.

DOI: 10.21883/FTT.2018.09.46393.081

1. Введение

Титанат стронция SrTiO₃ (STO) является виртуальным сегнетоэлектриком типа смещения [1]. Принято считать [1], что, как и в КТаО₃ (КТО), нулевые колебания решетки стабилизируют параэлектрическое состояние (ПС) в STO в области низких температур (квантовое параэлектричество). В отличие от КТО, где кубическая фаза сохраняется вплоть до 0 K, в STO при $T_0 = 105$ K происходит структурный фазовый переход в антиферродисторсионную (АФД) фазу с тетрагональной симметрией. В работе [2] показано, что искажение решетки в АФД фазе также подавляет сегнетоэлектрическую (СЭ) неустойчивость решетки. При этом оказывается [3], что лишь совместное действие квантовых эффектов и тетрагонального искажения решетки стабилизирует ПС в STO, так как кубическая фаза была бы неустойчивой даже с учетом влияния нулевых колебаний.

Допирование небольшим количеством примесей (или изотопное замещение ¹⁶О на ¹⁸О в SrTiO₃) с концентрацией выше некоторой критической x_c приводит к се-

гнетоэлектрическому фазовому переходу [1,4-10]. Многочисленные исследования таких систем ($Sr_{1-x}Ca_xTiO_3$, $Sr_{1-x}Ba_xTiO_3$, $KTa_{1-x}Nb_xO_3$, $SrTi({}^{16}O_{1-x}{}^{18}O_x)^3$ и др.) указывают на сосуществование ближнего и дальнего полярного порядка в индуцированной примесями полярной фазе [4-8,11-22]. Однако до настоящего времени экспериментальные данные позволяли сделать только качественное описание сосуществования ближнего и дальнего порядка в сегнетофазе. Наглядным примером являются работы по рефрактометрическим исследованиям таких систем [14–22]. Измерения температурных изменений главных значений показателя преломления $\delta n_i(T)$ после выделения спонтанного полярного вклада $\delta n_i^s(T)$ в показатель преломления, обусловленного квадратичным по поляризации электрооптическим (ЭО) эффектом [23,24], позволяют определить среднее (по времени и объему кристалла) значение квадрата спонтанной поляризации $\delta n^s(T) \propto \langle P^2 \rangle$, которое включает в себя вклад ближнего и дальнего полярного порядка [17,18,25,26]. Подобную информацию в некубических кристаллах можно получить и из спонтанного полярного вклада $\Delta n^s(T) \propto \langle P^2 \rangle$ в температурные зависимости кристаллографического двупреломления $\Delta n(T)$ [14–16,19,21,22]. В индуцированной примесями сегнетофазе в SrTiO₃ и КТаО₃ величина $\langle P^2 \rangle^{1/2}$, включающая и дальний, и ближний порядок, оказывается значительно больше среднего значения спонтанной поляризации $P_s = \langle P \rangle$, что указывает на развитые пространственные флуктуации параметра порядка, характер которых качественно отличается от поведения классических термодинамических флуктуаций вблизи температуры Кюри Т_с. Общей проблемой для рефрактометрических исследований систем, характеризуемых параметром порядка *η*, в которых наблюдается сосуществование ближнего и дальнего порядка, являлось отсутствие метода вычисления из эксперимента величины $\eta_{
m sh} = \langle \eta_{
m fl}^2 \rangle^{1/2}$, обусловленной только ближним порядком (локальным порядком, флуктуациями параметра порядка $\eta_{\rm fl}$) при температурах ниже Т_с. В работе [25] нами был разработан метод количественного вычисления величин $P_{
m sh} = \langle P_{
m fl}^2
angle^{1/2}$ и $P_{s}=\langle P
angle$ из спонтанного полярного вклада $\delta n^{S}(T)$ в температурные изменения главных значений показателя преломления сегнетоэлектриков на основе модификации выражений для изменений показателя преломления под действием спонтанной поляризации с учетом ее флуктуаций. Метод адаптирован для нахождения P_s и P_{sh} из интерферометрических измерений. Показана возможность вычисления P_{sh} и P_s непосредственно из получаемых при интерферометрических измерениях температурных изменений относительного оптического пути света в кристалле, если тем же интерферометрическим методом измерены электрооптические коэффициенты.

В настоящей работе этот метод применен для экспериментального определения величины и температурной зависимости $P_{\rm sh} = \langle P_{\rm fl}^2 \rangle^{1/2}$ в сегнетоэлектрической фазе в монокристаллах $Sr_{1-x}Ca_xTiO_3$ (SCT), в системе, в которой в сегнетофазе сосуществуют ближний и дальний полярный порядок при концентрации кальция выше критической $x_c = 0.0018$ [10]. Вычислены величины и температурные зависимости P_{sh} и P_s в $Sr_{1-x}Ca_xTiO_3$ c x = 0.014 (SCT-1.4). B Sr_{1-x}Ca_xTiO₃ c x = 0.007(SCT-0.7) проведена оценка P_{sh} и P_s на основе наших и литературных данных. Выполнены расчеты ab initio равновесных структур и полных энергий трех низкотемпературных фаз для SrTiO₃ и CaTiO₃, на основании которых определена ожидаемая симметрия основного состояния их твердого раствора $Sr_{1-x}Ca_xTiO_3$, что принципиально для корректного определения направления спонтанной поляризации \mathbf{P}_s ниже T_c при вычислении $P_{\rm sh}$ из рефрактометрических измерений. Результаты работы позволили выявить на количественном уровне новые особенности формирования индуцированной полярной фазы в $Sr_{1-x}Ca_xTiO_3$. Величина P_{sh} , характеризующая ближний порядок, существенно превосходит среднее значение спонтанной поляризации Р_s (вклад дальнего порядка) в упорядоченной фазе и гораздо слабее меняется с концентрацией кальция по сравнению с P_s. Предварительные результаты для SCT-1.4 опубликованы в работе [26].

2. Методика эксперимента и образцы

Температурные изменения рефракции света проводились на гомодинном интерферометре [27,28], на длине волны света гелий-неонового лазера $0.6328 \,\mu\text{m}$ в монокристаллах SCT-1.4 и номинально чистом SrTiO₃ (STO). Метод позволяет измерять относительные изменения оптического пути света в кристалле $\delta\Psi(T)$, которые связаны с изменениями показателя преломления $\delta n(T)$:

$$\delta \Psi_i(T) = \delta n_i(T) + (n_i - 1) \frac{\delta l_j(T)}{l_j}, \qquad (1)$$

где l_i — толщина образца вдоль направления распространения света, δl_i — изменения толщины при внешнем воздействии (изменении температуры в данном случае), n_i — главные значения показателя преломления, индекс і относится к направлению поляризации света, а индекс ј — к направлению распространения света в кристалле. Точность измерения $\delta \Psi(T)$ составляла $\approx 10^{-5}$. Двупреломление измерялось на поляриметре с точностью $\approx 10^{-6}$. Диэлектрические измерения проводились на образцах SCT-1.4 и SCT-0.7. Для измерения температурных зависимостей диэлектрической проницаемости и диэлектрических потерь на частотах 1 kHz и 1 MHz в качестве измерителей полного импеданса образца использовались автоматические цифровые мосты Е7-8 и Е7-12 соответственно. Относительная погрешность определения значения диэлектрической проницаемости составляла не более 0.2%. Амплитуда измерительного поля для моста E7-8 (1 kHz) составляла ≈ 30 V/cm, а для моста E7-12 $(1 \text{ MHz}) \approx 3 \text{ V/cm}$. Измерения петель диэлектрического гистерезиса и температурных зависимостей спонтанной поляризации проводились на автоматизированной установке, работающей по модифицированной схеме Сойера-Тауэра. Установка позволяла проводить измерения образцов с малыми величинами спонтанной и остаточной поляризаций в диапазоне частот 50 Hz-1 kHz. В оптических измерениях использовался гелиевый криостат, в котором образец крепился в вакууме на охлаждаемой головке, что позволяло проводить исследования в интервале 14-300 К. Диэлектрические измерения проводились в парах гелия в диапазоне температур 5-300 К.

Использованные работе монокристаллы в Sr_{1-x}Ca_xTiO₃ были выращены методом зеркальной зонной плавки в исследовательской лаборатории IBM, Цюрих, Рюшликон, Швейцария. Проведенный с помощью метода электронного микрозонда анализ химического состава и однородности распределения Са показал однородность использованных образцов с выявленными флуктуациями $\Delta x = \pm 0.0005$. Кристаллы SrTiO₃ выращивались из раствора в расплаве. Монокристаллические образцы STO и SCT были изготовлены в виде прямоугольных полированных пластин с ребрами, параллельными псевдокубическим направлениям [110]_а, $[1\overline{1}0]_b$ и $[001]_c$ с наибольшим линейным размером

Рис. 1. Направления распространения и поляризация света по отношению к осям образца SCT-1.4 (SCT с x = 0.014) при измерениях изменений рефракции света $\delta \Psi_a$, $\delta \Psi_c$ и морфического двупреломления Δn_{ab} . Жирные черные стрелки — направления распространения света. Серые обоюдоострые стрелки — возможные направления спонтанной поляризации в образце. Тонкие стрелки с обозначениями $\delta \Psi_a$, $\delta \Psi_c$ соответствуют направлениям поляризации света по измерениях $\delta \Psi_a$, $\delta \Psi_c$.

(3.5-2.7 mm) вдоль оси $[001]_c$ и с наименьшим размером 0.8 mm вдоль оси [110]_b. Эти направления и обозначения a, b, c относятся к тетрагональным осям ниже температуры Т₀ антиферродисторсионного фазового перехода ($\Phi\Pi$) $O_h - D_{4h}$ в STO и SCT. Выбранная ориентация и размеры кристаллов в соответствии с [29] позволяли надеяться на формирование структурно монодоменного образца ниже То. По литературным данным температуры структурного ФП T₀ в SCT-1.4 и SCT-0.7 равны соответственно 148 К и 125 К, а температуры индуцированного сегнетоэлектрического перехода T_c — 28 K и 18 K [14,20,30]. В наших измерениях температура Кюри определялась из положения максимумов диэлектрической проницаемости на частоте 1 kHz. При интерферометрических измерениях STO и SCT-1.4 свет распространялся вдоль направления $[1\bar{1}0]_{b}$, а поляризация света была направлена по осям [110]_а, $[001]_{c}$. Морфическое двупреломление $\Delta n_{ab} = n_{b} - n_{a}$ измерялось при направлении распространения света вдоль оси $[001]_c$. Направления распространения и поляризация света при оптических измерениях по отношению к осям образца изображены на рис. 1. Диэлектрические измерения проводились при приложении электрического поля вдоль [110]_b. В качестве электродов использовалась серебряная паста. Температура образца, помещенного в гелиевый криостат, контролировалась независимо тремя датчиками — термопарами медь-константан, медь-медь с примесью железа и полупроводниковым датчиком типа КГГ и определялась с точностью ±0.1 К.

3. Экспериментальные результаты

3.1. Диэлектрические исследования

На рис. 2, а, в представлены температурные зависимости диэлектрической проницаемости в исследованных кристаллах SCT. В SCT-1.4 температурная зависимость диэлектрической проницаемости проходит через резкий максимум при температуре $T_c = 28 \, \text{K}$ на частоте 1 kHz и 29 К на частоте 1 МНz. При температурах, значительно больших Т_с, зависимость диэлектрической проницаемости следует закону Кюри-Вейса (см. вставку на рис. 2, а). Определенная из этой зависимости величина постоянной Кюри имела типичную для сегнетоэлектриков типа смещения величину $C = 7.7 \cdot 10^4$ К. Характерное для систем виртуальных сегнетоэлектриков с примесями отклонение от закона Кюри-Вейса [30] при приближении к температуре перехода в индуцированную сегнетофазу обусловлено тем, что зависимость $\varepsilon(T)$ при низких температурах определяется доминирующей квантовой статистикой систем, находящихся вблизи

Рис. 2. *а* — зависимости $\varepsilon(T)$ на частотах 1 kHz (*1*), 1 MHz (*2*) и tg $\delta(T)$ (*3*) на частоте 1 kHz в SCT с *x* = 0.014. На вставке: зависимость — $\varepsilon^{-1}(T)$ (*4*) на частоте 1 kHz и аппроксимация зависимости $\varepsilon^{-1}(T)$ функцией $A(T - T_c)$ (*5*). *b* — зависимости $\varepsilon(T)$ (*1*) и tg $\delta(T)$ (*2*) на частоте 1 kHz в SCT с *x* = 0.007.

Рис. 3. *а* — петли диэлектрического гистерезиса в SCT с x = 0.014. Масштаб по оси $P - 10^{-2}$ C/m², по оси E - kV/ст. *b* — петли диэлектрического гистерезиса в SCT с x = 0.007. Масштаб по оси $P - 10^{-2}$ C/m², по оси E - kV/ст.

квантово-механического предела [10,30,31]. Полученное значение $T_c = 28$ К для x = 0.014 соответствует зависимости $T_c(x)$ в SCT, приведенной в [10]. В образце SCT-0.7 максимум $\varepsilon(T)$ на частоте 1 kHz наблюдался при температуре 18 К, что согласуется с данными, полученными для кристаллов Sr_{1-x}Ca_xTiO₃ с номинально той же концентрацией кальция в [14,20,30] и которую мы идентифицировали как температуру Кюри $T_c = 18$ К. Изменение с частотой положения максимума $\varepsilon(T)$, как и в образце SCT-1.4, было незначительным, что соответствует результатам работы [30].

Для определения величины и температурной зависимости спонтанной поляризации в SCT с x = 0.014и 0.007 были проведены измерения петель диэлектрического гистерезиса на частоте 50 Hz, результаты которых приведены на рис. 3, *a* и *b* соответственно. Вид петель гистерезиса отличается от классического. Тем не менее, при увеличении электрического поля зависимость P(E)выходит на линейный участок с насыщением (рис. 4, *a* и *b*), экстраполяция которого к E = 0 позволяет оценить

Рис. 4. a — петли гистерезиса в SCT с x = 0.014 при различных амплитудах электрического поля E. b — петли гистерезиса в SCT с x = 0.007 при различных амплитудах электрического поля E.

Рис. 5. Температурные зависимости среднего значения спонтанной поляризации $\langle P_s \rangle(T)$ в SCT-1.4 и SCT-0.7, полученные из петель диэлектрического гистерезиса.

среднее значение спонтанной поляризации (P_s). При температуре $T = 5 \text{ K} \langle P_s \rangle = 2.1 \cdot 10^{-2} \text{ C/m}^2$ в SCT-1.4 и $\langle P_s \rangle = 7.7 \cdot 10^{-3} \,\text{C/m}^2$ в SCT-0.7. На рис. 5 представлена температурная зависимость среднего значения переключаемой поляризации $\langle P_s \rangle$ в SCT-1.4 и SCT-0.7, полученная из петель диэлектрического гистерезиса. Поскольку измерения P(E) проводятся в достаточно сильных электрических полях в материале с сильной поляризуемостью решетки, то нет ничего удивительного в "затягивании" электрическим полем поляризации, получаемой из петель, в область температур выше Т_с. Истинное температурное поведение спонтанной поляризации $\langle P_s \rangle$ в сегнетофазе, индуцированной примесями в виртуальных сегнетоэлектриках, можно получить из измерения спонтанных эффектов (без приложения электрического поля), например, из морфического двупреломления.

3.2. Оптические исследования

На рис. 6 представлены температурные изменения относительного оптического пути света $\delta \Psi_a$ и $\delta \Psi_c$ в SCT-1.4 и STO, соответствующие изменениям главных значений показателя преломления δn_a и δn_c (формула (1)). Индексы а и с соответствуют обозначениям осей образца, указанным в разделе 2 и на рис. 1. В дальнейшем мы будем для обеих величин $\delta \Psi$ и δn использовать термин изменения рефракции света. Температуры T_c и T_0 , обозначенные на рис. 6 стрелками, определялись как температуры максимумов производной $d\{\delta\Psi_i(T)\}/dT$, представленной на рис. 7. Определенная таким образом температура 28 К совпадает с Т_с, полученной из максимума диэлектрической проницаемости. Температуры структурного фазового перехода То определялись как изломы на кривых $\delta \Psi_a$ и $\delta \Psi_c$, а из производной $d\{\delta \Psi_i(T)\}/dT$ определялись так, как показано на рис. 7. Аномалии при T_0 на температурных зависимостях $\delta \Psi_a$ и $\delta \Psi_c$ выражены слабее, чем при T_c .

При извлечении количественной информации из экспериментальных зависимостей $\delta \Psi(T)$ важно корректное разделение спонтанного вклада $\delta \Psi^{s}(T)$, связанного со

Рис. 6. Температурные зависимости $\delta \Psi_a(I)$, $\delta \Psi_c(2)$ в SCT-1.4 и $\delta \Psi_a(3)$, $\delta \Psi_c(4)$ в STO. На ставке фрагмент экспериментальной зависимости $\delta \Psi_a(T)(I)$ в SCT-1.4 и экстраполяция регулярного вклада $\delta \Psi_a^0(T)(5)$ в рефракцию света в SCT-1.4.

Рис. 7. Температурные зависимости производной по температуре $d\{\delta \Psi_a(T)\}/dT$ в SCT-1.4.

Рис. 8. Температурные зависимости спонтанного полярного вклада в рефракцию света $\delta \Psi_a^S$, $\delta \Psi_c^S$ и морфического двупреломления Δn_{ab} в SCT-1.4.

спонтанной поляризацией и так называемого регулярного вклада $\delta \Psi^0(T)$, от нее не зависящего. Метод экстраполяции регулярного $\delta \Psi^0(T)$ вклада из высокотемпературной парафазы в упорядоченную фазу достаточно развит для кристаллов с различным типом упорядочения [27,28,32-35], в том числе для систем на основе SrTiO₃ с примесями [17,18]. Из рис. 6 видно, что, температурный ход $\delta \Psi(T)$ в области высоких температур для монокристаллов SCT-1.4 очень близок к поведению $\delta \Psi(T)$ в STO. Учитывая это, для определения $\delta \Psi^0(T)$ в SCT-1.4 мы использовали экстраполяцию температурного хода $\delta \Psi(T)$ из высокотемпературной параобласти в область низких температур по реперной зависимости $\delta \Psi_r^0(T)$, рассчитанной на основе температурных изменений $\delta \Psi_a(T)$ (кривая 3 на рис. 6) в номинально чистом титанате стронция. Выбор $\delta \Psi_a(T)$ для расчета реперной зависимости $\delta \Psi^0_r(T)$ был обусловлен тем, что в STO ниже $T_0 = 105 \,\mathrm{K}$ вклад параметра порядка структурного фазового перехода в $\delta \Psi_a(T)$ меньше, чем в $\delta \Psi_c(T)$. Пример такой экстраполяции температурной зависимости регулярного вклада $\delta \Psi_a^0(T)$ для SCT-1.4 приведен на вставке рис. 6 (кривая 5). Разность между экспериментальной зависимостью $\delta \Psi_a(T)$ (кривая 1 на вставке рис. 6) и расчетной для регулярного вклада $\delta \Psi_a^0(T)$ (кривая 5) представляет собой спонтанный полярный вклад в рефракцию света $\delta \Psi_a^s(T)$. Температурные зависимости $\delta \Psi_i^s(T)$, полученные таким образом для SCT-1.4, приведены на рис. 8. Во всех исследованных образцах полярный вклад $\delta \Psi_i^s(T)$ возникает при температурах существенно больших температуры Кюри, что очевидно связано с флуктуациями поляризации (ближним, локальным полярным порядком). На этом же рисунке приведена температурная зависимость морфического двупреломления Δn_{ab} . Под морфическим двупреломлением здесь и далее понимается двупреломление, обусловленное изменением симметрии кристалла при фазовом переходе. (В данном случае это полярное морфическое двупреломдение, возникающее при сегнетоэлектрическом переходе). В отличие от полярного вклада в рефракцию света $\delta \Psi^s_a(T)$ и $\delta \Psi^s_c(T)$ Δn_{ab} выше Т_с отсутствует. Это означает, что флуктуации поляризации изотропны вдоль осей а и b образца, по крайней мере выше T_c .

Вычисление спонтанной поляризации и ее флуктуаций из рефрактометрических измерений

В нашей работе [25] в рамках феноменологического подхода показано, что для актуальных полярных групп симметрии 4mm, mm2 и ряда других спонтанный полярный вклад в рефракцию света, обусловленный квадратичным электрооптическим эффектом при появлении поляризации и ее флуктуаций, для главных значений показателя преломления дается выражением

$$\delta n_i^s = -\sum_{k=1}^3 \left(\frac{n_i^3}{2}\right) g_{ik}^* \left(\langle P_{sk}^2 \rangle + \langle P_{flk}^2 \rangle\right), \tag{2}$$

где $P_{sk} = |\langle P_{sk} \rangle|$ — абсолютные значения компонент спонтанной поляризации, связанные с дальним порядком, а P_{flk} — абсолютные значения флуктуационных компонент спонтанной поляризации, которые связаны только с ближним (локальным) порядком, g_{ik}^* квадратичные по поляризации электрооптические (ЭО) коэффициенты в полярной фазе. Для монодоменного кристалла, когда спонтанная поляризация направлена вдоль оси, обозначенной индексом 3, используя обозначения $P_s = |\langle P_{s3} \rangle|$ и $P_{shk} = \langle P_{flk}^2 \rangle^{1/2}$, получаем систему из трех уравнений [25,26]:

$$\delta n_1^s = -\frac{n_1^3}{2} \left[g_{13}^* (P_s^2 + P_{sh3}^2) + g_{11}^* P_{sh1}^2 + g_{12}^* P_{sh2}^2 \right], \quad (3a)$$

$$\delta n_2^s = -\frac{n_2^3}{2} \left[g_{23}^* (P_s^2 + P_{sh3}^2) + g_{21}^* P_{sh1}^2 + g_{22}^* P_{sh2}^2 \right], \quad (3b)$$

$$\delta n_3^s = -\frac{n_3^3}{2} \left[g_{33}^* (P_s^2 + P_{sh3}^2) + g_{31}^* P_{sh1}^2 + g_{32}^* P_{sh2}^2 \right]. \quad (3c)$$

Выражения (3) являются системой из 3-х уравнений с четырьмя неизвестными. Измерения температурных изменений трех главных значений показателя преломления в монодоменном кристалле $\delta n_i(T)$, после вычитания регулярного вклада $\delta n_i^0(T)$ (не связанного с поляризацией) и выделения $\delta n_i^s(T)$, позволяют на основе системы (3) определить величину и температурную зависимость $P_{\rm sh}$ выше и ниже температуры Кюри, если из независимых измерений определена величина P_s , а также получать $P_{\rm sh}$ в системах с локальным полярным упорядочением (без дальнего порядка). Конечно, если известны ЭО-коэффициенты. (Как правило, квадратичные по поляризации электрооптические коэффициенты слабо зависят от температуры [36].) В случае изотропных флуктуаций для определения P_s и P_{sh} достаточно двух уравнений из системы (3). Для анизотропных флуктуаций из (3) определяется сумма $(P_s^2 + P_{sh3}^2)$. В этом случае конечно необходимы измерения P_s другими независимыми методами, например, из петель диэлектрического гистерезиса.

При интерферометрических измерениях спонтанный полярный вклад в относительные изменения оптического пути света, полученный после вычитания из экспериментально измеренной зависимости $\delta \Psi_i(T)$ регулярного вклада $\delta \Psi_i^0(T)$, не связанного с поляризацией, дается выражением

$$\delta \Psi_i^s = \delta n_i^s + (n_i - 1) \, \frac{\delta l_j^s}{l_j},\tag{4}$$

где δn_i^s является спонтанным полярным вкладом в главные значения показателя преломления и определяется выражением (2), а δl_j^s — спонтанный вклад в тепловое расширение, возникающий за счет спонтанной стрикции. Тогда спонтанный полярный вклад $\delta \Psi_i^s(T)$ дается выражением [25,26]:

$$\delta \Psi_{i}^{s} = \sum_{k=1}^{3} \left(-\frac{n_{i}^{3}}{2} g_{ik}^{*} + (n_{i} - 1) Q_{jk}^{*} \right) \langle P_{k}^{2} \rangle$$
$$= -\sum_{k=1}^{3} \left(\frac{n_{i}^{3}}{2} \right) \left[g_{ik}^{*} - \frac{2}{n_{i}^{3}} (n_{i} - 1) Q_{jk}^{*} \right] \langle P_{k}^{2} \rangle.$$
(5)

Вводя эффективные электрооптические коэффициен-

$$g_{ik}^{**} = \left[g_{ik}^* - \frac{2}{n_i^3}(n_i - 1)Q_{jk}^*\right]$$

и используя те же обозначения, что при записи системы (3), для $\delta \Psi_i^s(T)$ получим систему уравнений [25,26], аналогичную (3):

$$\delta\Psi_{1}^{s} = -\frac{n_{1}^{3}}{2} \left[g_{13}^{**} (P_{s}^{2} + P_{\text{sh}3}^{2}) + g_{11}^{**} P_{\text{sh}1}^{2} + g_{12}^{**} P_{\text{sh}2}^{2} \right], \quad (6a)$$

$$\delta\Psi_2^s = -\frac{n_2^3}{2} \left[g_{23}^{**} (P_s^2 + P_{\text{sh}3}^2) + g_{21}^{**} P_{\text{sh}1}^2 + g_{22}^{**} P_{\text{sh}2}^2 \right], \quad (6b)$$

$$\delta\Psi_{3}^{s} = -\frac{n_{3}^{3}}{2} \left[g_{33}^{**} (P_{s}^{2} + P_{\text{sh}3}^{2}) + g_{31}^{**} P_{\text{sh}1}^{2} + g_{32}^{**} P_{\text{sh}2}^{2} \right]. \quad (6c)$$

В [25,26,37] также показано, что при интерферометрических исследованиях ЭО-коэффициентов измеряются именно эффективные коэффициенты g_{ik}^{**} , входящие в (6).

Таким образом, $P_{\rm sh}$, а случае изотропных флуктуаций и P_s , и $P_{\rm sh}$ могут быть определены из интерферометрических изменений $\delta \Psi_i(T)$ (после выделения $\delta \Psi_i^s$) и $\delta \Psi_i(E)$ без измерений теплового расширения, входящего в формулу (1). Поэтому, используя термин рефракция света, мы имеем ввиду оба вклада в $\delta \Psi_i(T)$ (от показателя преломления и от расширения).

Симметрия сегнетоэлектрической фазы в твердом растворе Sr_{1-x}Ca_xTiO₃

При использовании системы (6) для вычисления величины и температурной зависимости P_{sh} из экспериментальных данных $\delta \Psi_i(T)$ в SCT принципиальную роль играет корректное определение направления спонтанной поляризации **Р**_s ниже *T*_c: вдоль или поперек оси 4-го порядка. В АФД-фазе мягкая ТО-мода T_{1и} расщепляется на две моды А_{2и} и Е_и, соответствующие смещениям ионов вдоль и поперек оси C₄ [2]. Обе моды сохраняют устойчивость вплоть до $T = 0 \, \text{K}$, благодаря как вкладу энергии нулевых колебаний в полную энергию, так и положительному сдвигу обеих мод относительно моды Т_{1и} вследствие тетрагонального искажения решетки в АФД-фазе [1,3]. Наличие СЭ-перехода в твердом растворе SCT с зависящей от x температурой Кюри $T_c(x)$ демонстрирует увеличение классического вклада дестабилизирующих сил в ИК-активные ТО-моды с ростом х [31]. СЭ-свойства твердого раствора типа смещения SCT [31] можно понять с помощью метода виртуального кристалла (1 - x)SrTiO₃ – xCaTiO₃, используя результаты расчетов ab initio для компонент твердого раствора [31]. Для STO расчеты *ab initio* классического вклада в частоты $\omega_c \equiv \omega(A_{2u})$ и $\omega_a \equiv \omega(E_u)$ мод A_{2u} и E_u предсказывают СЭ-неустойчивость АФД-фазы в классическом приближении [38,39], причем более неустойчивой оказывается E_u мода, соответствующая направлению \mathbf{P}_s вдоль одной из осей 2-го порядка в плоскости, перпендикулярной оси С₄. Ввиду некоторого расхождения в результатах этих работ, мы выполнили расчеты ab initio полных энергий основного состояния в классическом приближении для трех низкотемпературных структурных фаз STO: неполярной тетрагональной АFD-фазы с симметрией *I4/mcm-D*¹⁸_{4h} (пр. группа 140), тетрагональной СЭ-фазы с симметрией I4cm- C_{4v}^{10} (пр. группа 108) с \mathbf{P}_s вдоль оси C_4 (\mathscr{L} -фаза) и ромбической СЭ-фазы $Ima2-C_{2v}^{22}$ (пр. группа 46) с **Р**_s вдоль оси C₂ (*T*-фаза). Все расчеты выполнены в базисе плоских волн (PW) и

основаны на теории функционала плотности (DFT) в рамках обобщенного градиентного приближения (GGA) с использованием сверхмягких атомных псевдопотенциалов ab initio (Sr.pbe-nsp-van.UPF, Ca.pbe-nsp-van.UPF, Ti.pbe-sp-van_ak.UPF, O.pbe-van_ak.UPF [40]). Использован обменно-корреляционный функционал Педью-Бурке-Ернцерхофа (РВЕ) [41] типа GGA, включающий как локальные, так и нелокальные обменный и корреляционный вклады. Использован набор *k*-узлов в зоне Бриллюэна, эквивалентный 8 × 8 × 8 сетке Монкхорста-Пака [42], а также энергия обрезания 100 Ry. Все расчеты выполнены с использованием кода Quantum Espresso (Ver. 6.1) [43]. Расчеты выигрышей в энергии ΔE_{\min} для \mathscr{L} -фазы и \mathscr{T} -фазы относительно АФД-фазы дают: $\Delta E_{\min}(\mathscr{L}) = 7.6 \text{ meV}$ и $\Delta_{\min}(\mathscr{T}) = 11.4 \text{ meV}$ при расщеплении 3.8 meV. Эти результаты получены для полностью оптимизированной структуры всех трех фаз. Таким образом, наши расчеты показывают, что в STO в классическом приближении основным состоянием является \mathcal{T} -фаза с поляризацией \mathbf{P}_s , направленной вдоль одной из осей 2-го порядка. Аналогичные расчеты для фаз той же симметрии были выполнены для CaTiO₃ (СТО). Было найдено, что для СТО $\Delta E_{\min}(\mathscr{L}) = 0.0 \text{ meV}$ и $\Delta E_{\min}(\mathscr{T}) = 5.8 \text{ meV}$. Нулевые значения $\Delta E_{\min}(\mathscr{L})$ означают устойчивость АФД-фазы относительно возникновения *L*-фазы. Структура АФД-фазы не является основным состоянием в СТО и, согласно нашим расчетам, лежит на 94 meV выше основного состояния СТО. Однако наблюдаемое в SCT при $x \ll 1$ значительное повышение T_0 с ростом *x* свидетельствует, на наш взгляд, о доминировании этой структуры при параметрах решетки, соответствующих STO. Для СТО и, в соответствии с моделью виртуального кристалла, для SCT в этой области параметров решетки можно ожидать увеличения выигрыша в энергии $\Delta E_{\min}(\mathscr{T})$ для полярной Т-фазы, превышающего вклад нулевых колебаний, и формирования ромбической СЭ-структуры со спонтанной поляризаций Р_s, направленной вдоль одной из осей С2. Таким образом, наши результаты показывают, что как в STO, так и в твердом растворе (1 - x)SrTiO₃ – xCaTiO₃ в качестве основного состояния в классическом приближении следует ожидать ромбическую СЭ-фазу с симметрией $Ima2-C_{2v}^{22}$ (пр. группа 46) с P_s вдоль одной из осей C_2 , ортогональной главной оси четвертого порядка АФД-структуры (рис. 1).

Характеристики индуцированной сегнетофазы в Sr_{1-x}Ca_xTiO₃

Для вычисления P_s и P_{sh} в SCT-1.4 из выделенного спонтанного вклада в рефракцию света $\delta \Psi_a^s(T)$ и $\delta \Psi_c^s(T)$ и морфического двупреломления Δn_{ab} из системы уравнений (6) необходимо знание электрооптических коэффициентов g_{ik}^{**} в сегнетофазе. В нашей работе [37] установлено, что при комнатной температуре ЭО-коэффициенты SCT-1.4 в пределах погрешности

измерений совпадают с ЭО-коэффициентами STO [44]. Следует отметить, что в [37,44] измерялись именно эффективные в указанном выше понимании ЭО-коэффициенты в параэлектрической фазе, для которых в литературе, как правило, используются обозначения g_{ik} . Учитывая это, далее в параэлектрической фазе будем следовать общепринятым обозначениям g_{ik} без звездочки, понимая под ними эффективные ЭО-коэффициенты. В кубической центросимметричной парафазе STO и SCT ЭО-эффект описывается тремя независимыми коэффициентами g11, g12, g44. Для кислородно-октаэдрических сегнетоэлектриков ЭО-коэффициенты в полярной фазе могут быть выражены через ЭО-коэффициенты в параэлектрической фазе [23,24]. Это справедливо и для эффективных ЭО-коэффициентов [25,26]. В низкотемпературной полярной фазе Sr_{1-x}Ca_xTiO₃ симметрии $mm2(C_{2v})$ [10,14,20,21] g_{ik}^{**} и g_{11}, g_{12}, g_{44} связаны соотношениями [17,18,26]:

$$g_{13}^{**} = g_{12}, \quad g_{23}^{**} = 1/2(g_{11} + g_{12} - g_{44}),$$
$$g_{33}^{**} = 1/2(g_{11} + g_{12} + g_{44}). \tag{7}$$

При расчетах P_s и $P_{\rm sh}$ для SCT-1.4 из спонтанных вкладов $\delta \Psi_i^s$ по уравнениям (6) были использованы значения ЭО-коэффициентов $g_{11} = 0.15 \,{\rm m}^4/{\rm C}^2$, $g_{12} = 0.04 \,{\rm m}^4/{\rm C}^2$, $g_{44} = 0.08 \,{\rm m}^4/{\rm C}^2$ и показателя преломления $n_i = n = 2.39$. В работе [45] показано, что ЭО-коэффициенты номинально чистого титаната стронция практически не зависят от температуры. Аналогичное поведение мы предположили и для SCT-1.4.

Как следует из расчетов раздела 5, в структурно монодоменном образце Sr_{1-x}Ca_xTiO₃ в тетрагональной парафазе с осью 4-го порядка $[001]_c$ (ось c) при переходе в СЭ-фазу $Sr_{1-x}Ca_xTiO_3$ симметрии $mm2(C_{2v})$ спонтанная поляризация P_s может лежать вдоль осей [110]_a или $[1\bar{1}0]_b$ (рис. 1), что согласуется с интерпретацией экспериментальных данных в работах [10,14,20,21,46]. Поэтому возможны два варианта расчетов из уравнений (6): для монодоменного образца с $P_s = P_{sa}$ (поляризация вдоль направления [110]_а) и для монодоменного образца с $P_s = P_{sb}$ (поляризация вдоль направления $[1\bar{1}0]_b$). Для каждого из фиксированных направлений P_s возможны флуктуации вдоль полярных осей [110]_{*a*} и [110]_{*b*} ($P_{sha} = \langle P_{fla}^2 \rangle^{1/2}$ и $P_{shb} = \langle P_{flb}^2 \rangle^{1/2}$). При конкретизации уравнений (6) далее будем использовать обозначения $P_s = |\langle P_{s3} \rangle| = P_{sa}$ для спонтанной поляризации вдоль оси [110]_а в монодоменном образце и $P_s = |\langle P_{s3} \rangle| = P_{sb}$ для спонтанной поляризации вдоль оси $[1\bar{1}0]_b$. С целью упрощения уравнений для расчетов по каждому из этих вариантов ориентации P_s в SCT обозначим $A_{i3} = -(n^3/2)g_{i3}^{**}$. Тогда, учитывая соотношения (7), численные значения g₁₁, g₁₂, g₄₄ и n, получим

$$A_{13} = -(n^3/2)(g_{12}) = -0.27 \,[\text{m}^4/\text{C}^2],$$

$$A_{23} = -(n^3/4)(g_{11} + g_{12} - g_{44}) = -0.31 \,[\text{m}^4/\text{C}^2],$$

$$A_{33} = -(n^3/4)(g_{11} + g_{12} + g_{44}) = -0.92 \,[\text{m}^4/\text{C}^2].$$

Из условий симметрии $A_{13} = A_{12}$ и $A_{23} = A_{32}$.

В этом случае варианты записи уравнений (6) будут иметь вид:

 $P_s = P_{sa}$ лежит вдоль оси $[110]_a$, флуктуации соответственно вдоль осей $[110]_a$ и $[1\overline{10}]_b$.

$$\delta \Psi_{a}^{S}(T) = A_{33}P_{sa}^{2} + A_{33}P_{sha}^{2} + A_{23}P_{shb}^{2}$$

$$= A_{33}(P_{sa}^{2} + P_{sha}^{2}) + A_{23}P_{shb}^{2},$$

$$\delta \Psi_{b}^{S}(T) = A_{23}P_{sa}^{2} + A_{23}P_{sha}^{2} + A_{33}P_{shb}^{2}$$

$$= A_{23}(P_{sa}^{2} + P_{sha}^{2}) + A_{33}P_{shb}^{2},$$

$$\delta \Psi_{c}^{S}(T) = A_{13}P_{sa}^{2} + A_{13}P_{sha}^{2} + A_{13}P_{shb}^{2}$$

$$= A_{13}(P_{sa}^{2} + P_{sha}^{2} + P_{shb}^{2}).$$
(8)

Для морфического двупреломления $\Delta n_{ab} = n_b - n_a$

$$\Delta n_{ab} = \delta n_b^s - \delta n_a^s = \delta \Psi_b^s - \delta \Psi_a^s = (A_{23} - A_{33}) P_{sa}^2 + (A_{23} - A_{33}) P_{sha}^2 - (A_{23} - A_{33}) P_{shb}^2.$$
(9)

Согласно нашим измерениям морфическое двупреломление Δn_{ab} в SCT-1.4 выше T_c равно нулю (рис. 8). Из (9) следует, что в этом случае $P_{sha}^2 = P_{shb}^2$ выше T_c . Можно предположить, что флуктуации поляризации вдоль осей [110]_a и [110]_b изотропны и ниже T_c и $P_{sha}^2 = P_{shb}^2$. При $P_{sh}^2 = P_{sha}^2 = P_{shb}^2$ и подстановки численных значений коэффициентов уравнения (8) будут иметь вид

$$\delta \Psi_a^S(T) = A_{33} P_{sa}^2 + (A_{33} + A_{23}) P_{sh}^2$$

= [-0.92 P_{sa}^2 - 1.23 P_{sh}^2], (10)

$$\delta \Psi_b(T) = A_{23} P_{sa} + (A_{23} + A_{33}) P_{sh}$$

= $[-0.31 P_{sa}^2 - 1.23 P_{sh}^2],$ (11)
$$\delta \Psi_c^S(T) = A_{13} P_{sa}^2 + 2A_{13} P_{sh}^2 = [-0.27 P_{sa}^2 - 0.54 P_{sh}^2],$$
 (12)

спонтанный полярный вклад в кристаллографическое двупреломление

$$\Delta n_{ac}^{s} = \delta \Psi_{c}^{S}(T) - \delta \Psi_{a}^{S}(T) = (A_{13} - A_{33})P_{sa}^{2} + (2A_{13} - A_{33} - A_{23})P_{sh}^{2} = [0.65P_{sa}^{2} - 0.69P_{sh}^{2}],$$
(13)

морфическое двупреломление $\Delta n_{ab} = n_b - n_a$:

$$\Delta n_{ab} = \delta n_b^s - \delta n_a^s = \delta \Psi_b^S - \delta \Psi_a^S$$
$$= (A_{23} - A_{33})P_{sa}^2 = [+0.61P_{sa}^2].$$
(14)

Для случая, когда $P_s = P_{sb}$ лежит вдоль оси $[1\overline{10}]_b$ и флуктуации вдоль осей $[110]_a$ и $[1\overline{10}]_b$ изотропны $P_{sh}^2 = P_{sha}^2 = P_{shb}^2$ выражения (6) для $\delta \Psi_i^S(T)$ запишутся как

$$\begin{split} \delta \Psi_a^S(T) &= A_{23} P_{sb}^2 + (A_{23} + A_{33}) P_{sh}^2 \\ &= [-0.31 P_{sb}^2 - 1.23 P_{sh}^2], \end{split} \tag{15}$$

$$\delta\Psi_c^S = A_{13}P_{sb}^2 + 2A_{13}P_{sh}^2 = [-0.27P_{sb}^2 - 0.54P_{sh}^2], \quad (17)$$

спонтанный полярный вклад в кристаллографическое двупреломление

$$\Delta n_{ac}^{s} = \delta \Psi_{c}^{s}(T) - \delta \Psi_{a}^{s}(T) = (A_{13} - A_{23})P_{sb}^{2} + (2A_{13} - A_{33} - A_{23})P_{sh}^{2} = [0.04P_{sb}^{2} - 0.69P_{sh}^{2}],$$
(18)

морфическое двупреломление $\Delta n_{ab} = n_b - n_a$:

$$\Delta n_{ab} = \delta n_b^s - \delta n_a^s$$

= $\delta \Psi_b^S - \delta \Psi_a^S = (A_{33} - A_{23})P_{sb}^2 = [-0.61P_{sb}^2].$ (19)

В результате получаем две серии уравнений для двух возможных вариантов монодоменного кристалла (10)-(14) для P_{sa} и (15)-(19) для P_{sb}. В предположении изотропных флуктуаций для каждого варианта экспериментальных данных хватает с избытком, чтобы вычислить и P_s, и P_{sh} только из оптических измерений. Набор экспериментальных данных позволяет провести расчеты для двух вариантов направления спонтанной поляризации монодоменного кристалла (P_{sa} и P_{sb}) и тем самым уточнить преимущественное направление *P_s* (*P_{sa}* или *P_{sb}*). Учитывая большую точность измерения двупреломления, при решении систем уравнений (10)-(14) и (15)-(19) P_s (P_{sa} и P_{sb}) рассчитывалось из морфического двупреломления (14) и (19), а затем, после подстановки P_s в (10), (12) и соответственно в (15), (17) определялось P_{sh} для обеих вариантов. Сравнение расчетов из $\delta \Psi_a^S(T)$ и $\delta \Psi_c^S(T)$ и морфического двупреломления Δn_{ab} для каждого возможного варианта реализации монодоменного кристалла (со спонтанной поляризацией Psb или Psa) позволяет провести верификацию направления спонтанной поляризации и в целом оценить правильность подхода. Значения $P_s = P_{s \text{LOOPS}}$, получаемые из петель диэлектрического гистерезиса, являются проверочными данными для реалистичности расчетов $P_s = P_{sMB}$ из оптических измерений (из морфического двупреломления).

Результаты расчетов приведены на рис. 9, *a*, *b* и рис. 10. Температурные зависимости $P_s = P_{sMB}$ на рис. 10 рассчитаны по формулам (14), (19) из морфического двупреломления $\Delta n_{ab}(T)$, представленного на рис. 8. Полученные значения для $P_s = P_{sMB}(T)$ и экспериментальные данные для $\delta \Psi_a^s(T)$ и $\delta \Psi_c^s(T)$ подставлены в уравнения (10), (12) и (15), (17), из которых для каждого $\delta \Psi_a^s(T)$ и $\delta \Psi_c^s(T)$ вычислены зависимости P_{sh} для обоих вариантов возможного направления спонтанной поляризации в образце SCT-1.4 (рис. 9, *a*, *b*). Видно, что зависимости $P_{sh}(T)$, рассчитанные из $\delta \Psi_a^s(T)$ и $\delta \Psi_c^s(T)$, совпадают только для случая $P_s = P_{sb}$, когда спонтанная поляризация лежит вдоль оси $[1\overline{10}]_b$. Это

Рис. 9. a — температурные зависимости P_{sh} в SCT-1.4, вычисленные из $\delta \Psi_a^S$ (точки) и $\delta \Psi_c^S$ (кружки) с использованием уравнений (10), (12) для P_s , лежащей вдоль оси [110]_a ($P_s = P_{sa}$). b — температурные зависимости P_{sh} в SCT-1.4, вычисленные из $\delta \Psi_a^S$ (точки) и $\delta \Psi_c^S$ (кружки) с использованием уравнений (15), (17) для P_s , лежащей вдоль оси [1 $\overline{10}$]_b ($P_s = P_{sb}$).

направление соответствует одной из легких осей ориентации спонтанной поляризации, полученных в наших расчетах, и согласующихся с интерпретацией экспериментов в работах [10,14,20,21,46]. Однако преимущественным направлением спонтанной поляризации *P_s* при геометрии вырезки образцов SCT-1.4, использованной нами для формирования структурно монодоменного

Рис. 10. Спонтанная поляризация, определенная из морфического двупреломления P_{sMB} и из петель диэлектрического гистерезиса P_{sLOOPS} ; зависимости $P_{sh}(T)$, вычисленные из $\delta \Psi_a^S$ (точки) и $\delta \Psi_c^S$ (кружки) с использованием уравнений (15), (17) для случая P_s , лежащей вдоль оси $[1\overline{10}]_b$ в SCT-1.4.

кристалла в АФД-фазе, оказывается направление вдоль оси $[1\bar{1}0]_b$ образца. Для $P_s = P_{sb}$ совпадение наблюдается в пределах 2% (рис. 9, b) тогда как аналогичные кривые $P_{\rm sh}(T)$, рассчитанные из $\delta \Psi_a^{\rm S}(T)$ и $\delta \Psi_c^{\rm S}(T)$ для P_S , направленной вдоль оси $[110]_a$, отличаются более чем на 10% (рис. 9, a). Данные, представленные на рис. 10, и дальнейшее обсуждение относятся именно к случаю ориентации спонтанной поляризации вдоль оси $[1\bar{1}0]_b$. Обозначения P_s и P_{sh} соответствуют абсолютным значениям величин. На рис. 10 для сравнения представлена также спонтанная поляризация, полученная из петель диэлектрического гистерезиса P_{sLOOPS}. При низких температурах величины поляризации, полученной из морфического двупреломления P_{sMB} и петель гистерезиса P_{sLOOPS} близки по величине. Следует отметить, что P_{sMB} отражает именно спонтанную поляризацию, тогда как P_{sLOOPS} получено при воздействии на образец достаточно сильного электрического поля. Из рис. 10 видно, что в SCT-1.4 при 12 К $P_s = P_{sMB} \approx P_{sLOOPS} \approx 1.8 \cdot 10^{-2} \text{ C/m}^2$, а P_{sh} $\approx 2.7 \cdot 10^{-2} \,\mathrm{C/m^2}$ при 14 К. Большая величина P_{sh} , превышающая величину P_s, указывает на важный вклад в формирование индуцированной примесями сегнетоэлектрической фазы в квантовых параэлектриках пространственных флуктуаций поляризации, которые по величине и температурной зависимости кардинально отличаются от классических термодинамических флуктуаций. В [21] поляризация P_s быоценена при низких температурах для SCT ла

(x=0.007) $P_s\approx 2.3\cdot 10^{-2}\,{\rm C/m^2}$ и в [22]для SCT (x=0.011) $P_s\approx 2.9\cdot 10^{-2}\,{\rm C/m^2}$ из спонтанного полярного вклада в кристаллографическое двупреломление. Эти величины существенно превосходят найденные нами значения $P_s = P_{s \text{LOOPS}} \approx 0.77 \cdot 10^{-2} \text{ C/m}^2$ для SCT (x = 0.007) и $P_s = P_{sMB} \approx P_{sLOOPS} \approx 1.8 \cdot 10^{-2} \,\text{C/m}^2$ для SCT (x = 0.014), но близки по величине к найденному нами значению $P_{\rm sh} \approx 2.7 \cdot 10^{-2} \, {\rm C/m^2}$. В особенности для SCT (x = 0.011), так как экстраполяция $P_{\rm sh}(T)$ к $T = 0\,{\rm K}$ в SCT (x = 0.014) дает величину $P_{
m sh}(0\,{
m K}) pprox 3\cdot 10^{-2}\,{
m C/m^2}$. Такие корреляции обусловлены тем, что в [21,22] оценки проводились с использованием формул, которые не позволяют разделить вклады в рефракцию света среднего значения спонтанной поляризации P_s и сильных пространственных флуктуаций поляризации $P_{\rm sh}$ (вклады ближнего и дальнего порядка), поэтому в поляризацию P_s, приведенную в [21,22], вошел вклад $P_{\rm sh}$, величина которого ниже T_c значительно превышает истинное значение спонтанной поляризации P_s, обусловленной дальним порядком (см. формулы (13), (18) для спонтанного полярного вклада в кристаллографическое двупреломление), т.е. оценки значения поляризации, полученные в [21,22], фактически были обусловлены величиной $P_{\rm sh}$.

Используя наш метод вычисления P_s и P_{sh} , на основе уравнений (18), (19) и экспериментальных данных, приведенных в работе [14,20,21] по температурным зависимостям кристаллографического Δn_{ac} и морфического Δn_{ab} двупреломления мы оценили $P_s = P_{sMB}$ и P_{sh} в $Sr_{1-x}Ca_xTiO_3$ с x = 0.007 при T = 5 К. Оказалось, что при T = 5 К для SCT-0.7 $P_{s\rm MB} \approx 0.7 \cdot 10^{-2} \, {\rm C/m^2}$, что хорошо соответствует нашим данным для $P_s = P_{s \text{LOOPS}} \approx 0.77 \cdot 10^{-2} \text{ C/m}^2$, полученным из петель гистерезиса в SCT-0.7 при той же температуре (рис. 5), а величина $P_{\rm sh}$, характеризующая ближний (локальный) порядок, оказалась равной $P_{\rm sh} \approx 2.5 \cdot 10^{-2} \,{\rm C/m^2}$. Таким образом, по мере уменьшения концентрации примеси кальция, индуцирующей дальний сегнетоэлектрический порядок в $Sr_{1-x}Ca_xTiO_3$, формирование дальнего порядка резко ослабляется. При уменьшении x от 0.014 до 0.007 P_s уменьшается в 2.5 раза, а величина $P_{\rm sh}$, характеризующая локальный полярный порядок меняется слабо. Это указывает на то, что процессы формирования ближнего и дальнего порядка квазинезависимы и, вероятно, имеют разные механизмы.

Результаты $P_s(T)$ и $P_{\rm sh}(T)$, представленные на рис. 10, на примере SCT впервые дают количественное описание формирования индуцированного примесями полярного состояния в квантовых параэлектриках. Значительно выше температуры T_c возникают изотропные вдоль осей *а* и $b (P_{\rm sh}^2 = P_{a\rm sh}^2 = P_{b\rm sh}^2)$ пространственные флуктуации поляризации. Величина $P_{\rm sh}$ возрастает по мере приближения к T_c , а скорость нарастания максимальна в T_c . Одновременно в T_c появляется спонтанная поляризация вдоль оси *b*, величина которой сравнительно меньше пространственных флуктуаций. Дальнейшее охлаждение приводит к росту полярного порядка на обоих масштабах — дальнего и ближнего, P_s и P_{sh}. Таким образом происходит упорядочение на двух характерных масштабах: макроскопическом с дальним порядком и локальным упорядочением на нано- или мезоскопическом масштабе. Различные модельные представления такого упорядочения в системах квантовых параэлектриков с примесями и с изотопным замешением неолнократно обсуждались [4-8,11,15], в том числе в системе Sr_{1-x}Ca_xTiO₃ [7,14,21,22,30,46]. Но количественных характеристик упорядочения на различных масштабах и их сравнений ранее не проводилось. Полученные данные позволили подтвердить ранее наблюдаемые особенности и выявить ряд новых. Результаты хорошо согласуются с предположением о том, что в данной геометрии изготовления образцов спонтанная поляризация направлена вдоль оси b. Наблюдается особенность (излом) в поведении P_{sh} при температуре СЭ-фазового перехода $(T_c = 28 \text{ K})$, что указывает на наличие фазового перехода как на макроскопическом с поляризацией P_s вдоль оси b, так и на нано- или мезоскопическом масштабе с локальным упорядочением вдоль осей а и b. Таким образом, $P_{\rm sh}$ можно рассматривать, как параметр порядка такого квазинезависимого процесса локального полярного упорядочения. Очевидно, что пространственные флуктуации, ответственные за появление $P_{\rm sh}$, могут быть неоднородны по образцу. Величина P_{sh} получена в результате усреднения по времени и объему образца квадрата

локальной поляризации. В этом случае сегнетоэлектрическую фазу в $Sr_{1-x}Ca_xTiO_3$ следует рассматривать как квазиоднородное полярное состояние с определенным средним значением макроскопической спонтанной поляризации P_s , возникающей на фоне локального полярного упорядочения, характеризуемого величиной P_{sh} . В принципе механизмом появления P_{sh} в $Sr_{1-x}Ca_xTiO_3$ может быть образование нанодоменной, кластерной структуры, обсуждаемой в работах [14,21,30,46].

7. Заключение

В настоящей работе проведены термооптические и диэлектрические исследования сегнетоэлектрического фазового состояния в $Sr_{1-x}Ca_xTiO_3$, индуцированного примесью кальция. Изучены температурные изменения рефракции света, двупреломления, диэлектрической проницаемости и петель диэлектрического гистерезиса в монокристаллах $Sr_{1-x}Ca_xTiO_3$ с x = 0.014 (SCT-1.4). В монокристаллах $Sr_{1-x}Ca_xTiO_3$ с x = 0.007 (SCT-0.7) проведены измерения температурных зависимостей диэлектрической проницаемости и петель диэлектрического гистерезиса. В SCT-1.4 выделен спонтанный полярный вклад в рефракцию света, возникающий за счет спонтанного квадратичного электрооптического эффекта, вызванного спонтанной поляризацией и ее флуктуациями. Выполнены расчеты *ab initio* равновесных структур

Физика твердого тела, 2018, том 60, вып. 9

и полных энергий трех низкотемпературных фаз для SrTiO₃ и CaTiO₃, на основании которых определена ожидаемая симметрия основного состояния их твердого раствора и направления спонтанной поляризации в индуцированной кальцием сегнетофазе в Sr_{1-x}Ca_xTiO₃.

Из спонтанного вклада в рефракцию света на основе ранее развитого авторами фенологического подхода [25] впервые количественно определены величины и температурные зависимости среднеквадратичных флуктуаций параметра порядка — поляризации $P_{\rm sh} = \langle P_{\rm fl}^2 \rangle^{1/2}$ (ближний, локальный полярный порядок) в сегнетоэлектрической фазе, ниже температуры индуцированного сегнетоэлектрического перехода Тс. Из морфического двупреломления и петель диэлектрического гистерезиса в SCT-1.4 определено среднее значение спонтанной поляризации P_s (вклад дальнего порядка). Результаты расчетов P_{sh} и P_s из температурных изменений различных главных значений рефракции света и морфического двупреломления показывают, что преимущественным направлением спонтанной поляризации P_s при геометрии вырезки образцов SCT-1.4, использованной для формирования структурно монодоменного кристалла в АФД-фазе, является направление вдоль оси $[110]_{b}$ образца. На основе наших данных по измерению петель диэлектрического гистерезиса и литературных данных по двупреломлению проведены оценки величин P_{sh} и P_s, характеризующих ближний и дальний порядок в сегнетофазе SCT-0.7.

Полученные результаты позволили выявить на количественном уровне новые особенности формирования индуцированной полярной фазы в Sr_{1-x}Ca_xTiO₃. Пространственные флуктуации (ближний, локальный порядок) поляризации, возникающие значительно выше T_c , имеют особенность в T_c, продолжают возрастать в сегнетоэлектрической фазе и существенно превышают среднее значение спонтанной поляризации, характеризующей дольний прядок. По мере уменьшения концентрации примеси кальция, индуцирующей дальний сегнетоэлектрический порядок в Sr_{1-x}Ca_xTiO₃, формирование дальнего порядка резко ослабляется (при уменьшении х от 0.014 до 0.007 Р_s уменьшается в 2.5 раза), а ближний (локальный) полярный порядок, характеризуемый величиной P_{sh}, меняется слабо. Выявленные особенности поведения P_s и P_{sh} указывают на то, что процессы формирования ближнего и дальнего порядка квазинезависимы и, вероятно, имеют разные механизмы.

Следует отметить, что полученные результаты по определению $P_{\rm sh}$ и P_s в SCT-1.4 — пример применения развитого авторами подходя [25] по количественному вычислению из экспериментальных рефрактометрических данных раздельно вкладов ближнего $P_{\rm sh}$ и дальнего P_s порядка в формирование полярной фазы в системах с сосуществованием обоих вкладов в упорядоченной фазе ниже T_c . До настоящей работы нам известны только публикации, в которых приводятся результаты определения $P_{\rm sh} = \langle P_{\rm fl}^2 \rangle^{1/2}$ для случаев, когда спонтанная поляризация, характеризующая дальний порядок $P_s = 0$.

Авторы благодарят В. Клееманна и Дж.Г. Беднорца за предоставление высококачественных монокристаллов SrTiO₃ и Sr_{1-x}Ca_xTiO₃ с x = 0.014 и 0.007.

Список литературы

- [1] О.Е. Квятковский. ФТТ 43, 1345 (2001).
- [2] A. Yamanaka, M. Kataoka, Y. Inaba, B. Hehlen, E. Courtens. Europhys. Lett. **50**, 688 (2000).
- [3] O.E. Kvyatkovskii. Solid State Commun. 117, 455 (2001).
- [4] B.E. Vugmeister, M.D. Glinchuk. Rev. Mod. Phys. 62, 993 (1990).
- [5] U.T. Hoechli, K. Knorr, A. Loidl. Adv. Phys. 39, 405 (1990).
- [6] M.D. Glinchuk, I.P. Bykov. Phase Transitions 40, 1 (1992).
- [7] W. Kleemann. Int. J. Mod. Phys. B 7, 2469 (1993).
- [8] G.A. Samara. J. Phys.: Condens. Mater. 15, R367 (2003).
- [9] M. Itoh, R. Wang, Y. Inaguma, T. Yamaguchi, Y-J. Shan, T. Nakamura. Phys. Rev. Lett. 82, 3540 (1999).
- [10] J.G. Bednorz, K.A. Mueller. Phys. Rev. Lett. 52, 2289 (1984).
- [11] R. Blinc, B. Zalar, V.V. Laguta, M. Jtoh. Phys. Rev. Lett. 94, 147601-1 (2005).
- [12] С.А. Просандеев, В.А. Трепаков. ЖЭТФ 121, 489 (2002).
- [13] V.A. Trepakov, M.E. Savinov, S.A. Prosandeev, S.E. Kapphan, L. Jastrabik, L.A. Boatner. Phys. Status Solidi C 2, 145 (2005).
- [14] W. Kleemann, U. Bianchi, A. Buergel, M. Prasse, J. Dec. Phase Transitions 55, 57 (1995).
- [15] W. Kleemann, F.J. Schäfer, D. Rytz. Phys. Rev. Lett. 54, 2038 (1985).
- [16] T. Azuma, K. Iio, K. Yamanaka, T. Kyomen, R. Wang, M. Itoh. Ferroelectrics 304, 77 (2004).
- [17] P.A. Markovin, W. Kleemann, R. Linder, V.V. Lemanov, O.Yu. Korshuniv, P.P. Syrnikov. J. Phys.: Condens. Mater. 8, 2377 (1996).
- [18] М.Е. Гужва, В. Клееманн, В.В. Леманов, П.А. Марковин. ФТТ **39**, 704 (1997).
- [19] K. Yamanaka, R. Wang, M. Itoh, K. Iio. J. Phys. Soc. Jpn. 70, 3213 (2001).
- [20] U. Bianchi. PhD Thesis, Gerhard-Mercator-Universität-Gesamthochschule-Duisburg, Duisburg (1996). 159 p.
- [21] W. Kleemann, A. Albertini, M. Kuss, R. Lindner. Ferroelectrics 203, 57 (1997).
- [22] W. Kleemann, F.J. Schafer, K.A. Miiller, J.G. Bednorz. Ferroelectrics 80, 297 (1988).
- [23] M. DiDomeniko, S.H. Wemple. J. Appl. Phys. 40, 720 (1969).
- [24] S.H. Wemple, M. DiDomenico. In: Applied Solid State Science / Ed. R. Wolfe. Academic, N.Y. (1972). V. 3.
- [25] П.А. Марковин, В.А. Трепаков, А.К. Таганцев, А. Дейнека, Д.А. Андреев. ФТТ 58, 131 (2016).
- [26] P.A. Markovin, V.A. Trepakov, M.E. Guzhva, A.G. Razdobarin, A.K Tagantsev, D.A. Andreev, A. Dejneka. Mater. Res. Exp. 3, 115705 (2016).
- [27] П.А. Марковин, Р.В. Писарев. ЖЭТФ 77, 2461 (1979).
- [28] R.V. Pisarev, B.B. Krichevtzov, P.A. Markovin, O.Yu. Korshunov, J.F. Scott. Phys. Rev. B 28, 2677 (1983).
- [29] K.A. Muller, W. Berlinger, M. Capizzi, H. Granicher. Solid State Commun. 8, 549 (1970).
- [30] U. Bianchi, J. Dec, W. Kleemann, J.G. Bednorz. Phys. Rev. B 51, 8737 (1995).
- [31] О.Е. Квятковский. ФТТ 44, 1087 (2002).
- [32] О.Ю. Коршунов, П.А. Марковин, Р.В. Писарев. ФТТ 25, 2134 (1983).

- [33] O.Yu. Korshunov, P.A. Markovin, R.V. Pisarev. Ferroelectrics Lett. 13, 137 (1992).
- [34] O.Yu. Korshunov, P.A. Markovin, R.V. Pisarev, L.M. Sapoznikova. Ferroelectrics 90, 151 (1989).
- [35] R.V. Pisarev, P.A. Markovin, B.N. Shermatov, V.I. Voronkova, V.K. Yanovskii. Ferroelectrics 96, 181 (1989).
- [36] А.С. Сонин, А.С. Василевская. Электрооптические кристаллы. Атомиздат, М. (1971). 328 с.
- [37] П.А. Марковин, М.Е. Гужва. ФТТ 58, 136 (2016).
- [38] N. Sai, D. Vanderbilt. Phys. Rev B 62, 13942 (2000).
- [39] R.A. Evarestov, E. Blokhin, D. Gryaznov, E.A. Kotomin. J. Maier. Phys. Rev. B 83, 134108 (2011).
- [40] http://www.quantum-espresso.org
- [41] J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996).
- [42] H.J. Monkhorst, J.D. Pack. Phys. Rev. B 13, 5188 (1976).
- [43] P. Giannozzi, S. Baroni, N. Bonini et al. J. Phys.: Condens. Matter 21, 395502 (2009). http://arxiv.org/abs/0906.2569
- [44] Y. Fuji, T. Sakudo. J. Appl. Phys. 41, 4118 (1970).
- [45] J.E. Geusiz, S.K. Kuttz, L.G. Van Uitert, S.H. Wemple. Appl. Phys. Lett. 4, 141 (1964).
- [46] A. Burgel, W. Kleemann, U. Bianchi. Phys. Rev. B 53, 5222 (1996).

Редактор Т.Н. Василевская