05,11

Аномалии магнитной восприимчивости при фазовых переходах второго рода вне точки Кюри

© Г.К. Чепурных¹, В.А. Чёрная¹, О.Г. Медведовская²

¹ Институт прикладной физики,

Сумы, Украина

² Сумский государственный педагогический университет им. А.С. Макаренко,

Сумы, Украина

E-mail: ipfmail@ipfcentr.sumy.ua

(Поступила в Редакцию 6 февраля 2018 г.)

Учитывая неиссякаемый интерес к изучению особенностей физических свойств в окрестности фазовых переходов, а также рост экспериментальных исследований фторида кобальта, изучены особенности магнитной восприимчивости в окрестности критического поля H_C , при котором фторид кобальта из антиферромагнитной фазы переходит в утловую в виде перехода второго рода. При этом обнаружено, что в магнитном поле **H** $\parallel C_4$ магнитная восприимчивость обращается в бесконечность при $H \rightarrow H_C$. Показано, что при отклонении направления магнитного поля от оси C_4 восприимчивость в критическом поле H_C оказывается конечной. Также показано, что изменение восприимчивости с изменением величины магнитного поля значительно уменьшается при крайне незначительном отклонении поля **H** от оси C_4 . Поскольку расчеты выполнены в рамках теории фазовых переходов Ландау, то обращается внимание на сходство и отличие полученных результатов с результатами в окрестности точки Кюри, полученными также путем использования теории фазовых переходов Ландау.

DOI: 10.21883/FTT.2018.09.46382.058

1. Введение

В настоящее время окрестность точки Кюри является единственным случаем, когда при фазовых переходах второго рода возникают аномалии магнитной воосприимчивости¹ [1,2].

Исследованиям фазовых переходов посвящены монографии (см., например, [4,5]) и то, что фазовые переходы представляют одно из наиболее распространенных и интересных явлений, отмечено² в [6–9].

Поскольку в последние годы увеличилось количество экспериментальных исследований [10–15], связанных с использованием фторида кобальта (CoF₂), то в работе [16] изучено состояние фторида кобальта в окрестности критического значения $H_{\rm C}$ продольного магнитного поля **H**, при котором магнитная подсистема этого кристалла переходит в угловую фазу [17,18] вместо обычно наблюдаемого перехода из состояния $\mathbf{l} \parallel \mathbf{A} \parallel [001]$ в состояние $\mathbf{l} \perp \mathbf{A}$ (\mathbf{A} — ось легчайшего намагничивания, \mathbf{l} — вектор антиферромагнетизма).

При этом обнаружено, что состояние магнитной подсистемы CoF_2 при $H = H_C$ оказалось крайне чувствительным к незначительному отклонению вектора магнитного поля **H** от оси C_4 , несмотря на необычайно значительную величину магнитной анизотропии [17,18].

Поскольку также выяснилось, что эта высокая чувствительность исчезает при изменении величины магнитного поля всего лишь на тысячные доли $H_{\rm C}$, то для этого случая возникает необходимость в обнаружении возможных аномалий магнитной восприимчивости.

Для выяснения сходства и отличия наших выводов (в рамках теории фазовых переходов Ландау) о поведении магнитной восприимчивости в окрестности поля H_C с выводами в окрестности точки Кюри T_C , приведенными в [1,2] (также в рамках теории Ландау), кратко напомним эти выводы.

На основании [1,2] в окрестности $T_{\rm C}$ термодинамический потенциал $\phi(P, T, \eta)$ можно записать в виде

$$\phi = \phi_0 + A\eta^2 + B\eta^4 - \eta hV, \qquad (1)$$

где $A = a(T - T_{\rm C}), \eta$ — макроскопический магнитный момент (отнесенный к единице объема), h — магнитное поле, V — объем тела.

Благодаря учету возмущающего оператора вида *ηhV* использование (1) приводит к следующим выражениям [1,2] для магнитной восприимчивости:

$$\chi = \left(\frac{\partial \eta}{\partial h}\right)_{h \to 0} = \frac{V}{4a(T_{\rm C} - T)}$$
 при $T < T_{\rm C}$, (2)

$$\chi = \left(\frac{\partial \eta}{\partial h}\right)_{h \to 0} = \frac{V}{2a(T - T_{\rm C})} \quad \text{при} \quad T > T_{\rm C}.$$
 (2a)

Параметр порядка η является однокомпонентной величиной и в приведенной работе [16] параметр порядка также является однокомпонентной величиной.

¹ Напомним, что при подходе к трикритической точке также возникают аномалии магнитной восприимчивости, однако трикритическая точка является точкой перехода линии фазовых переходов второго рода в линию переходов первого рода [1,3].

² В [6–9] приведены доклады, сделанные 21 декабря 2016 года на Научной сессии Отделения физических наук Российской академии наук "Старое и новое в физике фазовых переходов".

2. Выбор плотности энергии и составление уравнений

Кристалл CoF₂ исследуется в течение многих десятков лет и соответственно этому во многих работах записывается плотность энергии, используя которую, составляются уравнения, определяющие состояние магнитной подсистемы (см. ссылки, например, в [19]). В данной работе используется плотность энергии, предложенная в [18], и составленные там же уравнения состояния.

Так как изучаются особенности физических свойств в окрестности критического поля $H_{\rm C}$, то в плотности энергии \mathcal{H} , предложенной в [18], будем учитывать слагаемые наиболее важные вблизи $H_{\rm C}$ и поэтому

$$\mathcal{H} = 2M_0 \left[\frac{1}{2} E \mathbf{m}^2 + \frac{1}{2} G(\mathbf{m}\mathbf{l})^2 + D(m_x l_y + l_x m_y) + \frac{1}{2} A_I (l_x^2 + l_y^2) - \mathbf{m}\mathbf{H} \right],$$
(3)

где $\mathbf{m} = (\mathbf{M_1} + \mathbf{M_2})/2M_0$, $\mathbf{I} = (\mathbf{M_1} - \mathbf{M_2})/2M_0$, $\mathbf{M_1}$ и $\mathbf{M_2}$ — намагниченности подрешеток, E и G константы обменного взаимодействия, D — константа взаимодействия Дзялошинского-Мория, A_I — константа одноосной анизотропии, H — внешнее магнитное поле.

Из-за зависимости намагниченности подрешеток M_1 и M_2 от магнитного поля условие $m\cdot l=0$ невыполнимо.

Из необходимых условий существования минимума \mathcal{H} как функции переменных θ , φ , **m** (θ и φ — соответственно полярный и азимутальный углы вектора **l**) следуют уравнения

$$\partial \mathcal{H}/\partial \theta = 0, \quad \partial \mathcal{H}/\partial \varphi = 0, \quad \partial \mathcal{H}/\partial \mathbf{m} = 0.$$
 (4)

Определяя **m** из уравнения $\partial \mathscr{H} / \partial \mathbf{m} = 0$ и, таким образом, исключая **m** из плотности энергии, в [18] записана плотность энергии как функция переменных θ и φ и для этих переменных записаны также уравнения. В нашем случае все это имеет вид

$$\begin{aligned} \mathscr{H} &= 2M_0 \bigg\{ -\frac{1}{2E} \left[H_x^2 + H_z^2 - 2H_x D \sin\theta \sin\varphi + D^2 \sin^2\theta \right] \\ &+ \frac{G}{2E(E+G)} \left[H_x^2 \sin^2\theta \cos^2\varphi + H_x H_z \sin 2\theta \cos\varphi \\ &+ H_z^2 \cos^2\theta - 2H_x D \sin^3\theta \sin 2\varphi \cos\varphi - 2H_z D \\ &\times \sin^2\theta \cos\theta \sin 2\varphi + D^2 \sin^4\theta \sin^2 2\varphi \right] + \frac{1}{2}A_1 \sin^2\theta \bigg\}. \end{aligned}$$
(5)
$$\begin{aligned} \frac{\partial \mathscr{H}}{\partial \varphi} &= \frac{1}{E} H_x D \sin\theta \cos\varphi \\ &+ \frac{G}{2E(E+G)} \left[-H_x^2 \sin^2\theta \sin 2\varphi - H_x H_z \sin 2\theta \sin\varphi \\ &- 4H_x D \sin^3\theta \cos 2\varphi \cos\varphi + 4H_x D \sin^3\theta \sin^2\varphi \cos\varphi \\ &- 4H_z D \sin^2\theta \cos\theta \cos 2\varphi + 4D^2 \sin^4\theta \sin 2\varphi \cos 2\varphi \right]. \end{aligned}$$
(6)

$$\frac{\partial \mathscr{H}}{\partial \theta} = \frac{1}{E} H_x D \cos \theta \sin \varphi - \frac{1}{2E} D^2 \sin 2\theta + \frac{G}{2E(E+G)} \left[H_x^2 \sin 2\theta \cos^2 \varphi + 2H_x H_z \cos 2\theta \cos \varphi - H_z^2 \sin 2\theta - 3H_x D \sin 2\theta \sin \theta \sin 2\varphi \cos \varphi - 2H_z D \sin 2\theta \cos 2\theta \sin 2\varphi - + 2H_z D \sin^3 \theta \cos \theta \sin 2\varphi + 2D^2 \sin 2\theta \sin^2 \theta \sin 2\varphi \right] + \frac{1}{2} A_1 \sin 2\theta.$$
(7)

Магнитное поле **H** находится в плоскости *ZX*. Магнитную восприимчивость в окрестности $H_{\rm C}$ будем определять при **H** $\parallel C_4$ и при значениях угла ψ между **H** и C_4 в пределах $0 < \psi \leq 1^\circ$, так как в этих случаях изменение восприимчивости оказывается наиболее значительным.

3. Восприимчивость в поле $H \parallel C_4$

После разложения тригонометрических функций в ряд при $\theta \ll 1$ плотность энергии (5) согласно [16] при $\varphi = \pi/4$ имеет вид:

$$\mathscr{H} = 2M_0 \left(-\frac{H^2}{2E} + A\theta^2 + B\theta^4 \right), \tag{8}$$

$$A = \frac{G}{2E(E+G)} \left[-(H^2 - H_{\rm C}^2) - 2D(H - H_{\rm C}) \right], \quad (9)$$

$$B = \frac{G}{6E(E+G)} \left[H^2 - H_{\rm C}^2 + D(5H - 2H_{\rm C}) + 3D^2 \right].$$
(10)

Формулу (9) удобнее записать в виде

$$A = \frac{G}{2E(E+G)} \left[-(H - H_{\rm C})(H + H_{\rm C} + 2D) \right].$$
(9a)

В выражении (8) параметром порядка являетсяя угол θ . Поэтому в согласии с [1,2] из уравнения $\partial \mathscr{H} / \partial \theta = 0$ следует

$$\theta^2 = -\frac{A}{2B}.\tag{11}$$

Поскольку $H - H_{\rm C} \ll H_{\rm C}$, то выражения для A и B можно записать в виде

$$A = -\frac{G(H_{\rm C} + D)}{E(E + G)} (H - H_{\rm C}), \quad B = \frac{DG(7H_{\rm C} + 3D)}{6E(E + G)}.$$

Поэтому параметр порядка θ определяется формулой

$$\theta = \sqrt{\frac{3(H_{\rm C} + D)}{D(7H_{\rm C} + 3D)}} \times \sqrt{H - H_{\rm C}}.$$
 (11a)

Для определения компонент тензора статической магнитной восприимчивости, выражения для намагниченности, определенные в [18], при условиях $H - H_C \ll H_C$, $\theta \ll 1$, и G = E можно записать в виде

n

$$m_x = m_y = -\frac{\sqrt{2}}{4} \frac{H_{\rm C} + D}{E} \theta, \qquad (12)$$

$$n_z = \frac{1}{2E} \left[H + \frac{3(H - H_{\rm C})(H_{\rm C} + D)}{7H_{\rm C} + 3D} \right].$$
 (13)

Рассчитанные значения магнитной восприимчивости $\chi_{xz}\sqrt{2}(E/H_C)$, изменения $\Delta\theta$ угла θ , обусловленные изменением магнитного поля H/H_C на величину $\Delta H = 0.0001$, а также значения коэффициента пропорциональности K между $\Delta\theta$ и ΔH . Все это сделано для случая, когда угол ψ между **H** и C_4 находится в пределах $0.25'/\leq\psi\leq 1'$.

$\psi=0.25'$							
$H/H_{\rm C}$	0.997	0.998	0.999	1	1.001	1.002	1.003
heta (deg)	0.5785	0.8533	1.5057	2.8911	4.3907	5.6415	6.7016
$\Delta heta$ (rad)	0.0195	0.0413	0.1054	0.1587	0.1356	0.1134	0.0981
K	195	413	1054	1587	1356	1134	981
Восприимчивость	143.6	304	775.9	1168	995	829.9	712.8
$\psi=0.5'$							
$H/H_{\rm C}$	0.997	0.998	0.999	1	1.001	1.002	1.003
heta (deg)	1.1312	1.6018	2.4443	3.6411	4.8669	5.9681	6.9453
$\Delta heta$ (rad)	0.0356	0.0647	0.1082	0.126	0.1162	0.1029	0.0919
K	356	647	1082	1260	1162	1029	919
Восприимчивость	262.1	476	795.6	926	851.9	752	667.1
$\psi=1'$							
$H/H_{\rm C}$	0.997	0.998	0.999	1	1.001	1.002	1.003
heta (deg)	2.1051	2.7464	3.6029	4.5845	5.5722	6.5055	7.3708
$\Delta heta$ (rad)	0.0542	0.0766	0.0947	0.1001	0.0963	0.0896	0.0830
K	542	766	947	1001	963	896	830
Восприимчивость	398.7	563	694.8	732.7	702.7	651.6	601.4

Используя (11а), (12), находим

$$\chi_{xz} = \frac{\partial m_x}{\partial H_z} = \chi_{yz} = \frac{\partial m_y}{\partial H_z} = \frac{a}{\sqrt{H - H_C}}, \qquad (14)$$

где

$$a = \sqrt{\frac{3(H_{\rm C}+D)}{D(7H_{\rm C}+D)}}.$$

Используя (13), получаем

$$\chi_{zz} = \frac{\partial m_z}{\partial H_z} = \frac{1}{2E} \left[1 + \frac{3(H_{\rm C} + D)}{7H_{\rm C} + 3D} \right]. \tag{15}$$

Приведенные компоненты тензора восприимчивости определены для угловой фазы.

В антиферромагнитной фазе (l || A)

$$\chi_{xz} = \chi_{yz} = 0, \quad \chi_{zz} = \frac{1}{2E}.$$
 (15a)

Сравнивая полученное выражение (14) для восприимчивости с известными выражениями (2) для восприимчивости в окрестности точки Кюри, мы видим, что если в несимметричной фазе ($T < T_{\rm C}$) восприимчивость обращается в бесконечность при $T \to T_{\rm C}$ благодаря учету возмущающего оператора ηhV , то в нашем случае восприимчивости χ_{xz} , χ_{yz} обращаются в бесконечность в несимметричной фазе при $H \to H_{\rm C}$ в "чистом" виде, т. е. без учета возмущений.

Кроме того, если согласно [2] в несимметричной фазе $(T < T_{\rm C})$ восприимчивость не является восприимчивостью в обычном смысле слова (т.е. коэффициентом

пропорциональности между M и H), так как $M \neq 0$ и при H = 0, то восприимчивость, определяемая соотношением (14), является восприимчивостью в обычном смысле слова.

Компонента χ_{zz} восприимчивости с ростом величины магнитного поля испытывает скачок в точке фазового перехода.

4. Восприимчивость в наклонном магнитном поле

Поскольку угол ψ между **H** и C_4 находится в пределах $0 < \psi \le 1^\circ$, то для определения восприимчивости χ_{xz} , χ_{yz} воспользуемся уравнением

$$\frac{1}{\sqrt{2}} \frac{H_x}{H_C} \left[\left(1 + \frac{E}{G} \right) \frac{D}{H_C} \cos \theta + \frac{H_z}{H_C} \cos 2\theta \right] + \sin \theta \left\{ \cos \theta \left[-\frac{H_z^2}{H_C^2} - 2 \frac{H_z D}{H_C^2} \cos \theta \right] + 2 \frac{D^2}{H_C^2} \sin^2 \theta + 1 + 2 \frac{D}{H_C} \right] + \frac{H_z D}{H_C^2} \sin^2 \theta \right\} = 0 \quad (16)$$

и его численными решениями (см. рис. 1, 2), полученными в [16]. Учитывается, что $H_x = H \sin \psi = H \psi$, $H_z = H \cos \psi = H$, D = 50 kOe, $H_C = 210$ kOe и принимается условие E = G.

Выражениями для намагниченностей m_x, m_y , определенных в [18], воспользуемся не в виде (12), а в виде³

$$\sqrt{2(E/H_{\rm C})}m_x = \sqrt{2(E/H_{\rm C})}m_y$$
$$= -\sin\theta \left[\frac{D}{H_{\rm C}}\left(1 - \frac{G}{E+G}\sin^2\theta\right) + \frac{H}{H_{\rm C}}\frac{G}{E+G}\cos\theta\right].$$
(17)

Восприимчивость будем определять в окрестности найденных численных решений, учитывая, что в окрестности поля $H_{\rm C}$ (как это наиболее четко следует из формулы 12) изменение намагниченности обусловлено главным образом изменением угла θ .

Любое из решений, представленных на рис. 1, 2, будем обозначать через θ_i , которое реализуется в магнитном поле $H_i/H_{\rm C}$ при заданных значениях угла ψ . Если при этом изменять магнитное поле на величину ΔH , то при условии $\Delta H \ll H_i/H_{\rm C}$ изменение $\Delta \theta_i$ угла θ_i будет удовлетворять условию $\Delta \theta_i \ll \theta_i$. Из этого следует

$$\Delta \theta_i = K_i \Delta H. \tag{18}$$

Полагая в соотношении (17) $\theta = \theta_i + \Delta \theta_i$ и учитывая формулу (18), намагниченность m_{xi} в окрестности поля $H_i/H_{\rm C}$ запишем в виде

$$\begin{split} \sqrt{2}(E/H_{\rm C})m_{xi} &= -\left\{\sin\theta_i + \cos\theta_i \right. \\ &\times \left[\frac{50}{210} \left(1 - \frac{1}{2}\sin^2\theta_i\right) + \frac{H_i}{2H_{\rm C}}\cos\theta_i\right]K_i\Delta H\right\}. \end{split}$$

Поэтому восприимчивость χ_{xzi} определяется соотношением

$$\sqrt{2}(E/H_{\rm C}) \frac{\partial m_{xi}}{\partial (\Delta H)} = \sqrt{2}(E/H_{\rm C})\chi_{xzi}$$
$$= \cos\theta_i \left[\frac{50}{210} \left(1 - \frac{1}{2}\sin^2\theta_i\right) + \frac{H_i}{2H_{\rm C}}\cos\theta_i\right] K_i.$$
(19a)

Затем, полагая в уравнении (16) $\theta = 2.8911^{\circ} + \Delta \theta_1$, $\psi = 0.25'$, $H/H_{\rm C} = 1$, находим при⁴ $\Delta H = 0.0001$, $\Delta \theta_1 = 0.1587$ и соответственно $K_1 = 1587$.

Восприимчивость χ_{xzi} определяется путем исследования соотношения (19а) при $\theta_i = \theta = 2.8911^\circ$, $K_i = K_1 = 1587$.

Поэтому в окрестности заданного значения для угла θ и поля $H/H_{\rm C}$ при $\psi = 0.25'$ получаем⁵

$$\left|\sqrt{2}(E/H_{\rm C})\chi_{xz_1}\right| = 1168.$$
 (20)

Рис. 1. Зависимость ориентации магнитной подсистемы кристалла CoF_2 от ориентации магнитного поля **H** в полях $H/H_C \leq 1$: ψ — угол между осью C_4 и направлением поля **H**, θ — угол между осью C_4 и ориентацией вектора антиферромагнетизма **l**.

Рис. 2. Зависимость ориентации магнитной подсистемы кристалла CoF₂ от ориентации магнитного поля **H** в полях $H/H_C \leq 1$: ψ — угол между осью C_4 и направлением поля **H**, θ — угол между осью C_4 и ориентацией вектора антиферромагнетизма **l**.

Аналогичным способом определены все остальные значения магнитной восприимчивости в окрестности решений, представленных на рис. 1, 2.

Вычисленные значения магнитной восприимчивости в наклонном магнитном поле приведены в таблице и на рис. 3. Из этих данных следует, что при отклонении направления магнитного поля от оси C_4 восприимчивость χ_{xz} в критическом поле H_C оказывается конечной, тогда как в поле **H** $\parallel C_4$ при $H \rightarrow H_C \chi_{xz} \rightarrow \infty$.

³ Поскольку $m_x = m_y$, то в дальнейшем будем писать только m_x и соответственно только χ_{xz} .

 $^{^{4}\}Delta H = 0.0001$ будем использовать в окрестности всех решений, представленных на рис. 1, 2.

⁵ Поскольку в наклонном магнитном поле основное внимание уделяется изменению магнитной восприимчивости χ_{xz} , то записываем восприимчивость χ_{xz} , умноженную на постоянную величину $\sqrt{2}(E/H_{\rm C})$.

Рис. 3. Зависимость магнитной восприимчивости $\chi_{xz}\sqrt{2}(E/H_{\rm C})$ от величины магнитного поля $H/H_{\rm C}$ при различных значениях угла ψ между **H** и C_4 .

Из таблицы и рис. 3 также следует, что в окрестности критического поля H_C изменение восприимчивости χ_{xz} с изменением величины магнитного поля значительно уменьшается при крайне незначительном отклонении направления поля H от оси C_4 .

5. Заключение

Обнаруженная аномалия магнитной восприимчивости при фазовых переходах второго рода вне точки Кюри и ее изменения при отклонении направления магнитного поля от оси C_4 могут представлять интерес для дальнейших экспериментальных и теоретических исследований с целью обнаружения возможных особенностей физических свойств.

Нельзя исключать того, что некоторые из особенностей физических свойств в окрестности точки Кюри, на которые обращалось внимание в [1–9], могут проявляться в окрестности изучаемого нами фазового перехода второго рода. Это важно и потому, что материалы, в которых была обнаружена гигантская магнитострикция [20] ($\Delta l/l \sim 10^{-2}$), если эти материалы подвергнуть более тщательному теоретическому изучению на предмет обнаружения возможных аномалий в уменьшении эффективной магнитной анизотропии при фазовых переходах второго рода, могут найти применение для создания высокочувствительных сенсоров и генераторов мощного звука.

Обратим внимание, что еще в работе [21] было доказано возникновение аномального поглощения звука вблизи точек фазового перехода второго рода не благодаря флуктуациям, а благодаря тому, что уже небольшое возмущение сильно меняет равновесное значение параметра порядка (см. в [1] с. 495, 499, 513).

Учитывая это обстоятельство, в работе [22] было предсказано аномально сильное возрастание безразмер-

ного параметра связи спиновых и упругих волн в антиферромагнетиках при подходе к фазовому переходу.

Список литературы

- [1] Л.Д. Ландау, Е.М. Лифшиц. Статистическая физика, часть І. Наука, Москва (1976).
- [2] Л.Д. Ландау, Е.М. Лифшиц. Электродинамика сплошных сред. Наука, Москва (1982).
- [3] А. Брус, Р. Каули. Структурные фазовые переходы. Москва (1984).
- [4] Г. Стенли. Фазовые переходы и критические явления. Москва (1973).
- [5] А.З. Паташинский, В.Л. Покровский. Флуктуационная теория фазовых переходов. Наука, Москва (1975).
- [6] В.Н. Рыжков, Е.Е. Тареева, Ю.Д. Фомин, Е.Н. Циок. УФН 187, 9, 921 (2017).
- [7] А.Н. Утюж, А.В. Михеенков. УФН 187, 9, 953 (2017).
- [8] Е.И. Кац. УФН 187, 9, 1022 (2017).
- [9] В.В. Бражкин. УФН 187, 9, 1028 (2017).
- [10] T.R. Dugan, J.M. Goldberg, W.W. Brennessel, P.L. Holland. Organometallics 31, 4, 1349 (2012).
- [11] Y.T. Teng, S.S. Pramana, J. Ding, T. Wu, R. Yazami. Electrochimica Acta 107, 301 (2013).
- [12] M.J. Armstrong, A. Panneerselvam, C. O'Regan, M.A. Morrisab, J.D. Holmes. J. Mater. Chem. A 1, 10667 (2013).
- [13] C.Y. Lee, Z. Su, K. Lee, H. Tsuchiya, P. Schmuki. Chem. Commun. 50, 7067 (2014).
- [14] M.C. Leclerc, J.M. Bayne, G.M. Lee, S.I. Gorelsky, M. Vasiliu, I. Korobkov, D.J. Harrison, D.A. Dixon, R.T. Baker. J. Am. Chem. Soc. 137, 16064 (2015).
- [15] J. Tan, L. Liu, S. Guo, H. Hu, Z. Yan, Q. Zhou, Z. Huang, H. Shu, X. Yang, X. Wang. Electrochimica Acta 168, 225 (2015).
- [16] О.Г. Медведовская, Т.А. Федоренко, Г.К. Чепурных. ФТТ, 58, 2350 (2016).
- [17] Н.Ф. Харченко, В.В. Еременко, Л.И. Белый. ЖЭТФ 82, 827 (1982).
- [18] К.Г. Гуртовой, А.С. Лагутин, В.И. Ожогин. ЖЭТФ 83, 1941 (1982).
- [19] Г.К. Чепурных. Области экстремальных характеристик магнитоупорядоченных кристаллов. Киев, Наукова думка (2010).
- [20] К.П. Белов. СОЖ 3, 15 (1998).
- [21] Л.Д. Ландау, И.М. Халатников. ДАН СССР 94, 469 (1954).
- [22] С.В. Пелетминский. ЖЭТФ 37, 452 (1959).

Редактор Ю.Э. Китаев