04,09,11

Электронная структура, оптические свойства и поведение под давлением в соединениях CdB₄O₇ и HgB₄O₇

© А.С. Шинкоренко, В.И. Зиненко, М.С. Павловский

Институт физики им. Л.В. Киренского СО РАН (ФИЦ КНЦ СО РАН), Красноярск, Россия

E-mail: shas@iph.krasn.ru

(Поступила в Редакцию 15 марта 2018 г.)

В рамках теории функционала плотности с использованием пакета VASP из первых принципов выполнены расчеты структурных, электронных и оптических свойств соединений тетраборатов HgB₄O₇ и CdB₄O₇ в трех структурных модификациях с симметрией *Pbca*, *Cmcm* и *Pmn*2₁. Расчеты электронной зонной структуры показали, что исследуемые соединения во всех рассматриваемых модификациях являются диэлектриками с шириной запрещенной зоны 2-4 eV. Расчеты структурных свойств исследуемых тетраборатов под давлением показали, что фазовый переход между структурами *Pbca* и *Pmn*2₁ в тетраборате кадмия и тетраборате ртути происходит при давлениях 4.8 GPa и 4.7 GPa соответственно.

Работа выполнена при финансовой поддержке гранта РФФИ 16-32-00373 мол_а и с использованием оборудования Центра коллективного пользования "Комплекс моделирования и обработки данных исследовательских установок мега-класса" НИЦ "Курчатовский институт", http://ckp.nrcki.ru/.

DOI: 10.21883/FTT.2018.09.46381.069

1. Введение

Соединения боратов с химической формулой $M^{+2}B_4O_7$ обладают рядом интересных особенностей, таких как люминесценция, нелинейные оптические и электрические свойства [1]. Эти свойства могут иметь прикладное значение. В дополнение к этому они интересны с кристалохимической точки зрения. Данные соединения реализуются в нескольких основных структурных формах, содержащих BO_3 — треугольники и/или BO_4 — тетраэдры. Как показывают эксперименты [2–10], в зависимости от радиуса иона M^{+2} и внешних условий соединения $M^{+2}B_4O_7$ могут существовать в двух из трех основных структурных типов, за некоторыми исключениями [11].

Первый структурный тип принадлежит пространственной группе симметрии Pbca. Основу структуры этого типа составляет борокислородный каркас, состоящий из соединенных между собой вершинами тетраэдров BO₄ и треугольников BO₃ (в соотношении один к одному). В полостях такого каркаса располагаются атомы M⁺². Этот структурный тип, как правило, реализуется в соединениях, в которых ионный радиус металла имеет величину в интервале 0.9Å-1Å. Для соединений с ионным радиусом металла меньшем 1 Å при высоких температурах и давлениях реализуется второй структурный тип с группой симметрии Стст. В отличие от структуры с пространственной группой Pbca, в этой структуре присутствуют только борокислородные тетраэдры — ВО₄. И, наконец, третий структурный тип имеет полярную группу *Pmn2*₁, также состоит только из тетраэдров -ВО4 и этот структурный тип при нормальном давлении реализуется в соединениях с

радиусом иона металла большем 1.3 Å. Для соединений с радиусом иона металла в интервале 1.1 Å < 1.3 Å этот структурный тип реализуется при высоких давлениях. Ионы кадмия и ртути имеют радиус иона ~ 1.15 Å и можно ожидать, что в тетраборатах с этими ионами могут реализоваться все три структурных типа.

Для тетрабората ртути известны как фаза нормального [12], так и фаза высокого давления [9]. Для соединения тетрабората кадмия экспериментально известна лишь фаза нормального давления [13]. В [14] авторы в рамках первопринципного расчета исследовали фазовую диаграмму CdB₄O₇ при гидростатическом давлении. Согласно их расчетам, в тетраборате кадмия под давлением 5 GPa происходит фазовый переход из *Pbca* в *Cmcm*. Исследований по определению электронных и оптических свойств данных соединений в литературе не найдено.

В данной статье представлены результаты первопринципных вычислений структурных, электронных и оптических свойств тетраборатов кадмия и ртути в фазах со структурами *Pbca*, *Cmcm*, *Pmn*2₁ и исследуется их фазовая диаграмма под давлением.

2. Метод расчета

Расчеты проводились с использованием Projector Augmented Wave (PAW) [15,16] в DFT, реализованного в коде "The Vienna Ab initio Simulation Package" (VASP) [17,18]. Использовалось обобщенное градиентное приближение GGA с параметризацией Perdew-Burke-Ernzerhof [19]. Были выбраны электронные конфигурации для потенциалов атомов: Cd: $4d^{10}5s^2$, Hg: $5d^{10}6s^2$, B: $2s^22p^1$, O: $2s^22p^4$. Число плоских волн ограничивалось энергией 600 eV. Размер сетки *k*-точек на основе схемы Monkhorst-Pack [20] составлял $4 \times 5 \times 3$ (для типа структуры Pbca), $4 \times 6 \times 8$ (для структурного типа Cmcm) и $4 \times 9 \times 9$ (для типа структуры $Pmn2_1$). Для вычисления DOS сетка k-точек увеличивалась в два раза в каждом направлении. Геометрия структур была оптимизирована до тех пор, пока остаточные силы не станут меньше 1 meV/Å.

Расчеты электронной структуры и оптических свойств проводились на релаксированных параметрах решетки и координатах.

3. Электронная структура

В табл. 1-3 приведены вычисленные параметры ячейки и относительные координаты атомов для трех структурных модификаций соединений CdB₄O₇ и HgB₄O₇. Там же приведены имеющиеся в литературе экспе-

Таблица 1. Вычисленные и экспериментальные (в скобках) координаты атомов и параметры решетки соединений CdB_4O_7 [13] и HgB₄O₇ [12] в структуре *Pbca* (*Z* = 8)

Pbca	а	b	С
CdB ₄ O ₇ HgB ₄ O ₇	8.41 (8.21) Å 8.548 (8.399) Å	8.90 (8.70) Å 8.955 (8.806) Å	14.34 (14.18) Å 14.371 (14.137) Å
M ^{Cd} M ^{Hg}	$\begin{array}{c} 0.1262 \ (0.1210) \\ 0.1393 \ (0.1394) \end{array}$	$\begin{array}{c} 0.1105 \ (0.1105) \\ 0.1157 \ (0.1122) \end{array}$	$\begin{array}{c} 0.6138 \ (0.6125) \\ 0.1174 \ (0.1169) \end{array}$
$\begin{array}{c} B_1^{Cd} \\ B_1^{Hg} \end{array}$	$\begin{array}{c} 0.4453 \ (0.4473) \\ 0.4516 \ (0.4542) \end{array}$	$\begin{array}{c} 0.2830 \ (0.2864) \\ 0.2876 \ (0.2810) \end{array}$	$\begin{array}{c} 0.5647 \ (0.5679) \\ 0.0623 \ (0.0616) \end{array}$
$\begin{array}{c} B_2^{Cd} \\ B_2^{Hg} \end{array}$	$\begin{array}{c} 0.0156(0.0140)\\ 0.5076\ (0.5109)\end{array}$	$\begin{array}{c} 0.3218 \ (0.3385) \\ 0.3343 \ (0.3294) \end{array}$	0.7658 (0.7654) 0.2336 (0.2348)
$\begin{array}{c} B_3^{Cd} \\ B_3^{Hg} \end{array}$	$\begin{array}{c} 0.0091 \ (0.0061) \\ 0.5188 \ (0.5165) \end{array}$	$\begin{array}{c} 0.0684 \ (0.0640) \\ 0.0699 \ (0.0632) \end{array}$	$\begin{array}{c} 0.8376 \ (0.8376) \\ 0.1618 \ (0.1609) \end{array}$
$\begin{array}{c} B_4^{Cd} \\ B_4^{Hg} \end{array}$	$\begin{array}{c} 0.2048 \ (0.2019) \\ 0.7152 \ (0.7176) \end{array}$	$\begin{array}{c} 0.1476 \ (0.1374) \\ 0.1557 \ (0.1487) \end{array}$	$\begin{array}{c} 0.9549 \ (0.9575) \\ 0.0490 \ (0.0489) \end{array}$
$\begin{array}{c} \mathbf{O}_1^{Cd} \\ \mathbf{O}_1^{Hg} \end{array}$	0.0479 (0.0543) 0.0337 (0.0426)	$\begin{array}{c} 0.4225 \ (0.4103) \\ 0.4246 \ (0.4173) \end{array}$	$\begin{array}{c} 0.6920 \ (0.6875) \\ 0.1924 \ (0.1895) \end{array}$
$\begin{array}{c} O_2^{Cd} \\ O_2^{Hg} \end{array}$	0.3890 (0.3853) 0.4030 (0.4003)	$\begin{array}{c} 0.1387 \ (0.1325) \\ 0.1346 \ (0.1332) \end{array}$	$\begin{array}{c} 0.5994 \ (0.5980) \\ 0.0951 \ (0.0933) \end{array}$
$\begin{array}{c} O_3^{Cd} \\ O_3^{Hg} \\ O_3^{Hg} \end{array}$	$\begin{array}{c} 0.3489 \ (0.3544) \\ 0.3574 \ (0.3627) \end{array}$	$\begin{array}{c} 0.3691 \ (0.3759) \\ 0.3584 \ (0.3646) \end{array}$	$\begin{array}{c} 0.4996 (0.5021) \\ -0.0059 (0.0064) \end{array}$
$\begin{array}{c} O_4^{Cd} \\ O_4^{Hg} \end{array}$	$\begin{array}{c} 0.4693 \ (0.4733) \\ 0.4611 \ (0.4651) \end{array}$	$\begin{array}{c} 0.3856 \ (0.3837) \\ 0.3845 \ (0.3834) \end{array}$	$\begin{array}{c} 0.6477 \ (0.6469) \\ 0.1467 \ (0.1474) \end{array}$
$\begin{array}{c} O_5^{Cd} \\ O_5^{Hg} \end{array}$	$\begin{array}{c} 0.0322 \ (0.0335) \\ 0.5300 \ (0.5288) \end{array}$	$\begin{array}{c} 0.1773 \ (0.1642) \\ 0.1810 \ (0.1730) \end{array}$	$\begin{array}{c} 0.7567 \ (0.7545) \\ 0.2440 \ (0.2448) \end{array}$
$\begin{array}{c} O_6^{Cd} \\ O_6^{Hg} \end{array}$	$\begin{array}{c} 0.1016 \ (0.1094) \\ 0.6120 \ (0.6153) \end{array}$	$\begin{array}{c} 0.2611 \ (0.2561) \\ 0.2679 \ (0.2650) \end{array}$	0.9831 (0.9799) 0.0210 (0.0208)
$\begin{array}{c} \mathbf{O}_7^{Cd} \\ \mathbf{O}_7^{Hg} \end{array}$	$\begin{array}{c} 0.1634 \ (0.1595) \\ 0.6725 \ (0.6733) \end{array}$	$\begin{array}{c} 0.0546 \ (0.0428) \\ 0.0526 \ (0.0617) \end{array}$	$\begin{array}{c} 0.8853 & (0.8841) \\ 0.1189 & (0.1180) \end{array}$

Таблица	a 2.	Вычисл	енные	коор	динаты	ато	мов	И	пара	метры
решетки	coe	цинений	CdB ₄ C) 7 и	HgB ₄ O	7 B	стр	укт	rype	Cmcm
(Z = 4)										

Cmcm	а	b	С
CdB_4O_7	11.062 Å	6.838 Å	5.325 Å
HgB_4O_7	11.118 Å	6.896 Å	5.383 Å
M ^{Cd}	0.0000	0.2163	0.2500
M ^{Hg}	0.0000	0.2162	0.2500
$\begin{array}{c} B_1^{Cd} \\ B_1^{Hg} \end{array}$	0.7105	0.0000	0.0000
	0.7123	0.0000	0.0000
$\begin{array}{c} B_2^{Cd} \\ B_2^{Hg} \end{array}$	0.6213	0.2886	0.2500
	0.6222	0.2861	0.2500
$\begin{array}{c} O_1^{Cd} \\ O_1^{Hg} \\ \end{array}$	0.0000	0.8851	0.2500
	0.0000	0.8776	0.2500
$\begin{array}{c} O_2^{Cd} \\ O_2^{Hg} \end{array}$	0.2872	0.4698	0.2500
	0.2882	0.4674	0.2500
$\begin{matrix} O_3^{Cd} \\ O_3^{Hg} \\ O_3^{Hg} \end{matrix}$	0.1380	0.3267	-0.0285
	0.1407	0.3285	-0.0317

Таблица 3. Вычисленные и экспериментальные [11] координаты атомов и параметры решетки соединений CdB_4O_7 и HgB₄O₇ в структуре *Pmn*2₁ (*Z* = 2)

$Pmn2_1$	а	b	С
CdB_4O_7	10.769 Å	4.420 Å	4.226 Å
HgB_4O_7	10.825 (10.656) Å	4.445 (4.381) Å	4. 239 (4.187) Å
$M^{Cd} M^{Hg}$	0.0000 0.0000 (0.0000)	$\begin{array}{c} 0.1648 \\ 0.1800 \ (0.1802) \end{array}$	0.1033 0.1033 (0.1033)
$\begin{array}{c} B_1^{Cd} \\ B_1^{Hg} \end{array}$	0.8794	0.6721	0.6359
	0.8794 (0.8796)	0.6768 (0.6738)	0.5869 (0.5900)
$\begin{array}{c} B_2^{Cd} \\ B_2^{Hg} \end{array}$	0.7510	0.8259	0.1596
	0.7513 (0.7513)	0.8301 (0.8258)	0.0696 (0.0704)
$\begin{array}{c} \mathbf{O}_1^{Cd} \\ \mathbf{O}_1^{Hg} \end{array}$	0.7777	0.8644	0.8027
	0.7791 (0.7762)	0.8700 (0.8637)	0.4197 (0.4272)
$\begin{array}{c} O_2^{Cd} \\ O_2^{Hg} \end{array}$	0.8600	0.3530	0.7127
	0.8583 (0.8615)	0.3586 (0.3518)	0.5153 (0.5155)
$\begin{array}{c} O_3^{Cd} \\ O_3^{Hg} \\ O_3^{Hg} \end{array}$	0.8661	0.7316	0.2985
	0.8653 (0.8667)	0.7361 (0.7275)	0.9235 (0.9322)
$\stackrel{O_4^{Cd}}{O_4^{Hg}}$	0.000	0.7716	0.7456
	0.0000 (0.0000)	0.7701 (0.7770)	0.4787 (0.4809)

риментальные данные. Из приведенных таблиц видно хорошее согласие с экспериментальными данными как параметров ячейки, так и координат атомов.

Вычисленная электронная зонная структура соединений CdB₄O₇ и HgB₄O₇ в структуре с группой симметрии *Pbca* показана на рис. 1. Качественных отличий в

Рис. 1. Вычисленная электронная зонная структура соединений HgB₄O₇ (a) и CdB₄O₇ (b) в структуре Pbca.

электронной структуре этих соединений не обнаружено. Полная (TDOS) и частичная (PDOS) плотности состояний для рассматриваемых соединений в трех структурах приведены на рис. 2. Все TDOS и PDOS нормированы на формульную единицу. Ширина запрещенной зоны ΔE в разных структурах исследуемых соединений приведена в табл. 4.

Вычисленные электронные TDOS и PDOS для различных структурных типов кристаллов CdB_4O_7 и HgB₄O₇ качественно не отличаются. Видно, что структура валентной зоны почти одинакова во всех модификациях рассматриваемых соединений. Она состоит из *d*-состояний атомов M^{2+} (середина зоны, высокий пик), *s*-и *p*-состояний атомов В (центр и дно зоны) и *p*-состояний атомов О (центр и верхняя часть зоны).

Наибольшие различия наблюдаются в зоне проводимости для всех типов структур. Во всех рассматриваемых случаях нижняя узкая часть зоны проводимости отделена от основной части (величина данного интервала энергий ΔE_1 приведена в табл. 4). Эта нижняя часть

Таблица 4. Вычисленные значения ширины запрещенной зоны ΔE и ΔE_1 соединений CdB₄O₇ и HgB₄O₇ в различных структурах

		CdB ₄ O ₇		HgB ₄ O ₇				
	Pbca	Cmcm	$Pmn2_1$	Pbca Cmcm Pmn2				
ΔE , eV ΔE_1 , eV	3.9 1.0	4.6 0.9	3.1 2.9	2.57 2.7	3.0 2.2	1.9 4.1		

зоны проводимости состоит из *s*-состояний электронов атомов M^{2+} и *p*-состояний электронов атомов О. В зависимости от структуры и состава дно зоны проводимости изменяет свое положение относительно верхней части валентной зоны, что в свою очередь меняет ширину запрещенной зоны. Наибольшая ширина запрещенной зоны наблюдается в структуре с группой симметрии *Стст.* Наименьшая ширина зоны в структуре *Pmn2*₁. Верхняя часть зоны проводимости из *p*-состояний электронов каждого атома.

В тетраборате ртути во всех структурах ширина запрещенной зоны меньше, чем в тетраборате кадмия, так как возбужденные *s*-состояния электронов ионов Hg находятся на более низком энергетическом уровне, чем возбужденные состояния *s*-электронов ионов Cd [21]. Верхняя часть зоны проводимости в обоих соединениях расположена примерно на одном уровне энергии.

4. Оптические свойства

Для всех типов структур для CdB_4O_7 и HgB_4O_7 были вычислены диэлектрическая функция [22], и коэффициент поглощения α от частоты [23]:

$$lpha(\omega) = rac{2\omega}{c} \sqrt{rac{|arepsilon(\omega)| - arepsilon'(\omega)}{2}},$$

где $\varepsilon(\omega)$ — комплексная диэлектрическая функция, $\varepsilon'(\omega)$ — вещественная часть диэлектрической функции. Вычисленные зависимости коэффициента поглощения

Рис. 2. Вычисленные TDOS и PDOS соединений HgB₄O₇ (a, b, c) и CdB₄O₇ (d, e, f) в различных структурах *Pbca*, *Cmcm*, *Pmn*2₁ соответственно.

показаны на рис. 3. Существенной анизотропии в оптических свойствах обнаружено не было, поэтому на рисунках приведено среднее значение коэффициента поглощения. Из этих зависимостей можно определить край поглощения материала соответственно для трех структур кристалла CdB₄O₇: *Pbca* \sim 300 nm, *Cmcm* \sim 250 nm, *Pmn*2₁ \sim 350 nm и кристалла HgB₄O₇: *Pbca* \sim 440 nm, *Cmcm* \sim 370 nm, *Pmn*2₁ \sim 600 nm. Полученные значения

Рис. 3. Вычисленная зависимость коэффициента поглощения α от длины волны для соединений HgB₄O₇ (*a*) и CdB₄O₇ (*b*) в различных структурах.

края поглощения соответствуют особенностям вычисленных зонных структур, описанным выше.

5. Упругие свойства и поведение под гидростатическим давлением

Экспериментально установлено, что приложение гидростатического давления влияет на образование в структурах борокислородных тетраэдров – ВО₄ при росте кристаллов тераборатов двухвалентных металлов. В соединениях с малым ионным радиусом двухвалентного иона, как правило, конкурируют структуры с пространственными группами *Pbca* в *Стст.* Например, соединение ZnB₄O₇ при нормальном давлении кристаллизуется в пространственной группе *Pbca*, а при высоких давлениях ZnB₄O₇ кристаллизуется в пространственной группе *Стст* [8]. В соединениях с бо́льшим ионным радиусом конкурируют структуры с пространственными группами *Pbca* и *Pmn*2₁. Например, SnB₄O₇ при

Рис. 4. Зависимость разницы энтальпии соединений HgB₄O₇ (*a*) и CdB₄O₇ (*b*) в трех структурах от давления. Точкой отсчета является энергия.

высоком давлении кристаллизуется в пространственной группе *Pmn2*₁. Структура фазы при нормальном давлении SnB₄O₇ не установлена [9]. Граничный радиус иона, где могут конкурировать все три рассматриваемые здесь структурных типа, составляет приблизительно ~ 1.15 Å. Таким ионным радиусом обладают атомы Cd $(R_{Cd} = 1.15 \text{ Å})$ и Hg $(R_{Hg} = 1.14 \text{ Å})$. Энергетическая выгодность фаз с пространственными группами Pmn21 и Стст (где, как уже отмечалось, присутствуют только ВО₄ тетраэдры) при высоких давлениях по сравнению с фазой с пространственной группой Рbca (где в равной пропорции присутствуют BO₄ тетраэдры и BO₃ треугольники) связана, по-видимому, с различием химических связей в этих фазах и, соответственно, с различием упругих свойств. В табл. 5 представлены вычисленные в данной работе значения упругих постоянных CdB₄O₇ и HgB_4O_7 в фазах с пространственными группами $Pmn2_1$, Стст и Рьса.

Как видно из табл. 5, упругие свойства рассматриваемых соединений в структурах *Pmn2*₁ и *Cmcm*, содержащих только борокислородные тетраэдры, существенно отличаются от упругих свойств этих соединений

Таблица 5. Вычисленные значения упругих постоянных *C_{ii}* [GPa] соединений CdB₄O₇ и HgB₄O₇ в различных структурах

		C_{11}	<i>C</i> ₂₂	C ₃₃	C_{12}	C_{13}	C_{23}	C_{44}	C 55	C ₆₆
CdB_4O_7	Pbca	87	85	89	17	34	39	20	32	50
	Cmcm	370	318	338	147	128	114	85	131	115
	$Pmn2_1$	261	272	334	30	30	28	64	90	78
HgB ₄ O ₇	Pbca	93	91	66	16	24	38	15	30	47
	Cmcm	352	302	321	148	136	110	84	121	96
	$Pmn2_1$	267	279	335	42	40	42	38	93	56

со структурой *Pbca*, состоящей из борокислородных треугольников и тетраэдров в равной пропорции.

Чтобы оценить давление, при котором происходят фазовые переходы в кристаллах CdB₄O₇ и HgB₄O₇, для каждой из фаз *Pbca*, *Cmcm* и *Pmn*2₁ проводилась релаксация параметров ячейки и координат ионов при определенных значениях гидростатического давления. При каждом давлении сравнивались значения энтальпии H = E + PV (где E — полная энергия кристалла, P давление, V — объем ячейки), приходящейся на одну формульную единицу. Результаты расчета приведены на рис. 4. Из рисунка видно, что фазовый переход из Pbca в *Pmn2*₁ в тетраборате кадмия происходит при давлении 4.8 GPa. Тот же фазовый переход в тетраборате ртути происходит при давлении 4.7 GPa. Полученное значение давления, при котором происходит фазовый переход в тетраборате ртути, качественно согласуется с экспериментальными данными работы [9], где кристалл HgB₄O₇ в фазе *Pmn2*₁ был выращен при давлении 7.5 GPa. В настоящих расчетах фазовый переход из Pbca в Стст не наблюдается. Стоит отметить, что разница в энергии между фазами Стст и Ртп21 в соединении CdB4O7 во всем интервале используемых при расчете значений давления очень мала ($\Delta E_{\text{tot}} = 0.05 \,\text{eV}$ / per formula).

6. Заключение

В рамках теории функционала плотности с использованием пакета VASP выполнены расчеты структурных, электронных и оптических свойств тетраборатов ртути и кадмия в трех структурных модификациях с симметрией Pbca, Cmcm и $Pmn2_1$. Расчет показал, что в обоих соединениях во всех рассмотренных структурах величина энергетической щели между валентной зоной и зоной проводимости составляет порядка 2-4 eV. Особенностью электронной структуры данных соединений является то, что нижняя часть зоны проводимости представляет собой узкую зону из *s*-состояний электронов

атомов металла и *p*-состояний электронов атомов кислорода и эта нижняя часть отделена от основной части зоны проводимости на величину порядка нескольких электрон-вольт.

В результате расчета получено, что упругие свойства исследуемых соединений в структурах Pmn2₁ и Cmcm, состоящих из борокислородных тетраэдров, существенно отличаются от упругих свойств этих соединений со структурой Pbca, состоящей из борокислородных треугольников и тетраэдров в равной пропорции. Проведено исследование свойств тетраборатов кадмия и ртути под давлением в различных фазах. Расчеты свойств HgB4O7 и CdB4O7 под давлением показали, что фазовый переход между структурами Pbca и Pmn21 в тетраборате кадмия и тетраборате ртути происходит при давлении 4.8 GPa и 4.7 GPa соответственно. Установлено, что переход между структурами Cmcm и Pmn2₁ в рассматриваемом в рамках настоящего расчета интервале давлений (до 50 GPa) не наблюдается. Однако энергии фаз со структурами Pbca и Pmn21 в CdB4O7 близки $(\Delta E_{\rm tot} = 0.05 \, {\rm eV} \, / \, {\rm per formula})$ во всем интервале используемых в расчете величин давления.

Список литературы

- [1] P. Becker. Adv. Mater. 10, 13, 979 (1998).
- [2] M. Martinez-Rippol, S. Martinez-Carrera, S. Garcia-Blanco. Acta Cryst. B **27**, 672 (1971).
- [3] R.D. Shannon. Acta Cryst. A 32, 751 (1976).
- [4] M. Prokic. Nucl. Instrum. Meth. 175, 1, 83 (1980).
- [5] J. Krogh-Moe. Acta Chem. Scand. 18, 2055 (1964).
- [6] K. Machida, H. Hata, K. Okuno, G. Adachi, J. Shiokawa. J. Inorg. Nucl. Chem. 41, 1425 (1979).
- [7] H. Huppertz. Z. Naturforsch. 58b, 257 (2003).
- [8] H. Huppertz, G. Heymann. Solid State Sci. 5, 2, 281 (2003).
- [9] J.S. Knyrim, F.M. Schappacher, R. Pottgen, J.S. auf der Günne, D. Johrendt, H. Huppertz. Chem. Mater. 19, 2, 254 (2007).
- [10] H. Emmea, M. Weilb, H. Huppertz. Z. Naturforsch. 60b, 815 (2005).
- [11] J. S. Knyrim, S. Romer, W. Schnick, H. Huppertz. Solid State Sci. 11, 2, 336 (2009).
- [12] M. Weil. Acta Cryst. E 59, 40 (2003).
- [13] M.Ihara, J. Krogh-Moe. Acta Cryst. 20, 132 (1966).
- [14] B. Winkler, A.G. Castellanos Guzman, L. Wiehl, L. Bayarjargal, V. Milman. Solid State Sci. 14, 8, 1080 (2012).
- [15] G. Kresse, D. Joubert. Phys. Rev. B 59, 1758 (1999).
- [16] P.E. Blochl. Phys. Rev. B 50, 17953 (1994).
- [17] G. Kresse, J. Hafner. Phys. Rev. B 47, 558 (1993).
- [18] G. Kresse, J. Furthmuller. Phys. Rev. B 54, 11169 (1996).
- [19] J.P. Perdew. In: Electronic Structures of Solids' 91 / Eds P. Ziesche, H. Eschrig. Akademie Verlag, Berlin (1991). P. 11.
- [20] H.J. Monkhorst. J.D. Pack. Phys. Rev. B 13, 5188 (1976).
- [21] J.A. McLeod, R.J. Green, N.A. Skorikov, L.D. Finkelstein, M. Abu-Samak, E.Z. Kurmaev, A. Moewes. Proc. SPIE 7940, 79400R-1 (2011).
- [22] M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt. Phys. Rev. B 73, 045112 (2006).
- [23] F. Han. A Modern Course in The Quantum Theory of Solids. World Scientific Publishing Co. Pte. Ltd, Singapore (2012). 720 p.

Редактор Т.Н. Василевская