02

Eu^{3+} как люминесцентный зонд для исследования структуры R_2O_3 -материалов (R — Y, Eu и Gd)

© В.А. Кравец, К.Н. Орехова, М.А. Яговкина, Е.В. Иванова, М.В. Заморянская

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: vladislav2033@yandex.ru

Поступила в редакцию 21.02.2018 г.

Представлены исследования спектров Eu^{3+} методом локальной катодолюминесценции в различных диэлектрических матрицах (Gd₂O₃: Eu³⁺, Y₂O₃: Eu³⁺, Eu₂O₃, а также в $mSiO_2/Gd_2O_3: Eu^{3+}$ — мезопористых частицах). По результатам исследований удалось идентифицировать локальное окружение иона Eu^{3+} в аморфном образце и зарегистрировать фазовую примесь моноклинного Eu_2O_3 в образцах с оксидом иттрия. Были сняты спектры катодолюминесценции химически чистых Y₂O₃, Eu₂O₃ и Gd₂O₃. Сделаны выводы о структурных особенностях материалов, подтвержденные другими методами исследований (XRD, EPMA).

DOI: 10.21883/OS.2018.08.46356.54-18

Введение

Материалы, содержащие Eu^{3+} , используют в различных областях фотоники в качестве активного элемента генерации фотонов в красном диапазоне спектра. В том числе возможно использование иона Eu^{3+} в качестве люминесцентного зонда для исследования локальной структуры активированного материала [1].

Спектр люминесценции редкоземельных ионов Eu³⁺ представляет собой набор узких полос, связанных с переходами внутри экранируемой f-оболочки. Экранирование ослабляет влияние кристаллического поля матрицы на электроны f-оболочки, из-за чего полосы Eu^{3+} незначительно меняют свое спектральное положение в различных диэлектрических матрицах. Полосы в спектре определяются запрещенными переходами между ⁵D_Jи ${}^{7}F_{J}$ -уровнями иона [2]. Соотношение интенсивностей полос и количество расщеплений в спектрах редкоземельных ионов зависят от локальной симметрии иона в материале, благодаря чему Eu³⁺ можно использовать в качестве люминесцентного зонда, спектр которого крайне чувствителен к структурным изменениям легированного материала. Так, например, интенсивность электродипольного (ED) перехода ${}^{5}D_{0} - {}^{7}F_{2}$ сильно зависит от окружения иона Eu³⁺, тогда как интенсивность магнитодипольного (MD) перехода ${}^{5}D_{0} - {}^{7}F_{1}$ слабо зависит от его локального окружения. Это происходит вследствие различий действующих правил отбора для данных переходов [2,3]. По изменению соотношения интенсивностей полос, связанных с этими переходами (коэффициенту асимметрии — $I_{(ED)}/I_{(MD)}$) можно судить об изменении локальной симметрии иона Eu³⁺ [4]. Это позволяет исследовать локальное положение активатора относительно лигандов матрицы люминесцентными методами. Данный метод можно применить к исследованию наноматериалов, аморфных и поликристаллических материалов, активированных Eu³⁺.

Основными задачами работы являлись:

а) исследование влияния фазовой неоднородности в R_2O_3 -материалах (где R - Y, Eu и Gd) с кубической кристаллической структурой на катодолюминесцентные свойства (коэффициент асимметрии) активатора Eu³⁺;

b) исследование структуры ближнего порядка и неоднородности аморфных материалов, активированных Eu^{3+} , методом катодолюминесценции;

с) апробация использования соотношения максимумов интенсивностей самых интенсивных полос, связанных с переходами ${}^5D_0 - {}^7F_2$ и ${}^5D_0 - {}^7F_1$ в спектрах катодолюминесценции Eu³⁺, для определения структурных изменений в материале (вместо классического коэффициента асимметрии, который рассчитывают по интегральному соотношению полос).

Образцы и методы исследования

В качестве образцов были выбраны материалы $R_2O_3:Eu^{3+}$ (где R — Y, Eu и Gd) с кубической структурой, с уже известными и детально изученными спектрами люминесценции Eu^{3+} [5]: $Gd_2O_3:Eu^{3+}$, $Y_2O_3:Eu^{3+}$, Eu_2O_3 , а также $mSiO_2/Gd_2O_3:Eu^{3+}$ — мезопористые частицы, в порах которых предположительно должен был синтезироваться кубический $Gd_2O_3:Eu^{3+}$.

• $Gd_2O_3:Eu^{3+}$ (5 mol.% Eu^{3+}) — порошок, полученный разложением нитратов Gd и Eu, с последующим отжигом при 800°C (образец 12).

• Монодисперсные сферические частицы мезопористого (диаметр пор 3.1 nm) оксида кремния ($mSiO_2$) с синтезированным в порах $Gd_2O_3:Eu^{3+}$ (5 mol.% Eu^{3+}). Заполнение пор $mSiO_2$ осуществлялось капиллярной пропиткой растворами нитратов Gd и Eu с последующей сушкой и отжигом (образцы 19 и 21). Образец 19 был подвергнут отжигу дважды при 600 и 1000°C в отличие от образца 21, который был отожжен один раз при 600°C. Способ получения образцов подробно описан в работе [6].

Рис. 1. *а* — изображение катодолюминесценции образца Y2 при облучении электронным пучком с диаметром 200 µm. На рис. *b* выделены участки образца Y2 с люминесценцией в синем спектральном диапазоне.

• Порошок Y_2O_3 : Eu^{3+} (5 mol.% Eu^{3+}), синтезированный методом шихтования. Оксиды иттрия и европия перетирались в ступке в течение 30 min с последующим отжигом при 1200°C (образец Y1).

• Порошок Y_2O_3 : Eu^{3+} (5 mol.% Eu^{3+}), синтезированный методом шихтования. Оксиды иттрия и европия перетирались в ступке в течение 15 min с последующим отжигом при 1200°C (образец Y2).

• Порошок $Y_2O_3: Eu^{3+}$ (6 mol.% Eu^{3+}), синтезированный методом Печини с нагревом до 1000°С (образец Y3) [7].

• Химически чистый порошок Eu₂O₃, использовавшийся при синтезе образцов Y1 и Y2 (образец E1).

• Химически чистый порошок Y_2O_3 , использовавшийся при синтезе образцов Y1 и Y2.

• Химически чистый порошок Gd₂O₃, использовавшийся при синтезе образцов Y1 и Y2.

Люминесцентные свойства образцов исследовались методом локальной катодолюминесценции (CL). Данный метод позволяет получать спектры CL с латеральным разрешением от $1\,\mu m$, это позволяет исследовать однородность образцов. Благодаря высокой плотности возбуждения метод позволяет наблюдать люминесценцию в образцах с большим концентрационным тушением, например в Eu₂O₃. Энергия электронов, которые возбуждают катодолюминесценцию, составляет 1-40 keV, что позволяет возбуждать высокоэнергетические переходы Eu³⁺ в спектре. Метод также дает возможность получать CL-изображения образцов в расфокусированном электронном пучке, по которым можно оценить однородность катодолюминесценции образца в области диаметром до 200 µm. Природа контраста CL-изображения зависит от топологии поверхности, фазового и элементного состава материала и др. (рис. 1, *a*).

Для исследования однородности элементного состава образцов использовался метод рентгеноспектрального микроанализа (ЕРМА). Локальность метода в зависимости от диметра электронного пучка составляет $1-200\,\mu$ m. СL- и ЕРМА-исследования образцов проводились на электронно-зондовом микроанализаторе САМЕВАХ, совмещенном с катодолюминесцентной станцией [8]. Это позволяет анализировать состав и регистрировать спектры CL в одной и той же области образца и интерпретировать контраст CL-изображения, связанный с неоднородностью образца по составу.

Для исследований методами CL и EPMA порошки прессовались ручным прессом на подложке из металлического индия и напылялись углеродной пленкой с использованием вакуумного универсального поста JEE-4C (фирма JEOL, Япония).

Для определения кристаллической структуры образцы были исследованы методом рентгенодифракционного фазового анализа (XRD) на рентгеновском порошковом дифрактометре D2Phaser фирмы Bruker.

Результаты

XRD-исследования

Определение составов твердых растворов проводилось методом XRD с использованием внутреннего стандарта (химически чистый NaCl). Результаты XRDисследований представлены в табл. 1. Образцы Y1, Y2, Y3, 12 и E1 имеют кубическую кристаллическую структуру, но в образцах Y1 и Y2 были зарегистрированы в виде примесей фазы оксидов европия с разной кристаллической структурой. В образце Y3 присутствует Al(OH)₃ в объеме не менее чем 20% от объема образца. Образец 21 является рентгеноаморфным. В образце 19 при отжиге образовалось веще-

Описание образцов		EPMA		XRD			
		Химическая формула соединения	Среднее содержание и среднее отклонение содержания Eu ³⁺ , mol.%	Фазовый состав	Кристаллическая система	Объемная доля, 100%	
12	Порошок Gd ₂ O ₃ :Eu ³⁺ , полученный при раз- ложении нитратов Ge(III) и Eu(III). Отжиг при 800°C	$(Gd_{0.96}Eu_{0.04})_2O_3$	0.039 ± 0.0015 (3.8%)	$(Gd_{0.95}Eu_{0.05})_2O_3$	Кубическая	100	
21	Мезопористые (диаметр пор 3.1 nm) частицы аморфного кремнезема с синтезированным в порах Gd ₂ O ₃ : Eu ³⁺ . Отжиг при 600°C	<i>m</i> SiO ₂ / (Gd _{0.94} Eu _{0.06}) ₂ O ₃	0.058 ± 0.004 (6.9%)	_	Аморфная	_	
19	Мезопористые (диаметр пор 3.1 nm) частицы аморфного SiO ₂ с син- тезированным в порах Gd ₂ O ₃ :Eu ³⁺ . Отжиг при 600 и 1000°C	<i>m</i> SiO ₂ / (Gd _{0.94} Eu _{0.06}) ₂ O ₃	0.062 ± 0.0015 (2.4%)	$\mathrm{Gd}_{4.67-x}(\mathrm{SiO}_4)_3\mathrm{O}:\mathrm{Eu}_x$	Гексагональная	_	
Y1	Порошок Y ₂ O ₃ : Eu ³⁺ , полученный шихрованием оксидов Y(III) и Eu(III). Отжиг при 1200°С	$(Y_{0.96}Eu_{0.04})_2O_3$	$0.038 \pm 0.008 \; (21\%)$	$(Y_{0.97}Eu_{0.03})_2O_3)$	Кубическая	97	
				$(Eu_{0.89}Y_{0.11})_2O_3$	Кубическая	3	
Y2	Порошок Y ₂ O ₃ : Eu ³⁺ полученный шихтованием оксидов Y(III) и Eu(III). Отжиг при 1200°С	$(Y_{0.96}Eu_{0.04})_2O_3$	0.041 ± 0.012 (29%)	$(Y_{0.98}Eu_{0.02})_2O_3$	Кубическая	60	
				$(Eu_{0.9}Y_{0.1})_2O_3$	Кубическая	3	
				Eu ₂ O ₃	Моноклинная	1	
¥3	Порошок Y ₂ O ₃ :Eu ³⁺ без фазовых примесей оксидов	$(Y_{0.94}Eu_{0.06})_2O_3$	0.064 ± 0.003 (4.8%)	$(Y_{0.95}Eu_{0.05})_2O_3$	Кубическая	80	
			0.000 (1.070)	Al(OH) ₃	Кубическая	20	
E1	Чистый порошок оксида европия	_	_	Eu ₂ O ₃	Кубическая	100	

Таблица 1. Исследуемые образцы и результаты ЕРМА и XRD

ство $Gd_{4.67-x}(SiO_4)_3O:Eu_x$ с гексагональной кристаллической структурой. Содержание европия в материалах с кубической структурой рассчитывалось по изменению постоянной решетки кристаллической ячейки. В табл. 1 приведен фазовый состав всех исследованных образцов.

ЕРМА-исследования

Измерение состава образцов проводилось при ускоряющем напряжении электронов U = 20 kV и поглощенном токе I = 20 nA. В качестве эталонов использовались монокристаллы EuPO₄, GdPO₄ и Y₃Al₅O₁₂. Диаметр электронного пучка составлял 50 μ m и в несколько раз превышал размер зерен образцов. Для каждого образца было проведено не менее 10 анализов состава в случайных областях. Это позволило получить усредненный элементный состав и оценить однородность распределе-

ния европия в образцах. Полученные результаты представлены в табл. 1. Наиболее неоднородными по составу (табл. 1) являются образцы Y1 и Y2, это объясняется наличием примеси Eu_2O_3 в этих образцах, а также неравномерным легированием материала.

CL-исследования

Для оценки однородности образцов были получены CL-изображения при диаметре электронного пучка 200 μ m. Во всех образцах, кроме Y2, не наблюдалось цветового контраста в CL-изображениях. На рис. 1, *b* представлено катодолюминесцентное изображение образца Y2, в котором выделены участки с преобладанием люминесценции в синем спектральном диапазоне. Спектры CL были получены при следующих условиях: диаметр электронного пучка составлял 4μ m, температура образцов T = 300 K, ускоряющее напряжение

Рис. 2. Спектр CL Eu^{3+} образца 12 при T = 300 K, на вставке спектр CL Eu^{3+} образца 12 в области от 400 до 530 nm.

Рис. 3. Спектры CL Eu³⁺ образцов 12 (верхняя кривая), 19 (средняя) и 21 (нижняя).

электронов U = 15 kV и поглощенный ток I = 10 nA. На рис. 2 представлен спектр CL образца 12, а также приведена интерпретация полос излучения, связанных с переходами между ${}^{5}D_{J}$ - и ${}^{7}F_{J}$ -уровнями Eu³⁺ в порошке Gd₂O₃. Идентификация переходов между ${}^{5}D_{J}$ - и ${}^{7}F_{J}$ уровнями Eu³⁺ в спектре производилась на основании работ [5,9]. Благодаря высокой энергии возбуждения в спектре наблюдались полосы, соответствующие переходам с высокоэнергетических ${}^{5}D_{3}$ -термов в области спектра от 400 до 460 nm.

На рис. 2–6 представлены спектры CL всех исследованных образцов. В связи с тем, что образец Y2 неоднороден (по данным CL-изображения), на нем было проведено детальное исследование спектров CL областей с различной люминесценцией. В областях образца Y2, где содержание европия не превышает 0.1 mol.%, в спектрах CL проявляется широкая полоса с максимумом излучения 365 nm (рис. 5. Y2 (кривая 3)). Данная широкая полоса связана с собственными излучательными центрами Y₂O₃ (рис. 6) [10]. Также был получен спектр химически

Рис. 4. Спектры CL Eu^{3+} образца E1 — химически чистого Eu_2O_3 .

Рис. 5. Спектры CL Eu³⁺ образцов Y1 (кривая *1*), Y2 (2 и 3) и Y3 (4).

Рис. 6. Спектры CL химически чистых оксидов Y_2O_3 (черная кривая) и Gd_2O_3 (серая).

чистого Gd_2O_3 (рис. 6). В спектре катодолюминесценции Gd_2O_3 наблюдается широкая полоса с максимумом в

Образец	Исследуемый материал	Кристаллическая структура $($ локальная позиция Eu ³⁺ , Y^{3+} и Gd ³⁺ $)$	$I_{\rm (ED)}/I_{\rm (MD)}$	Среднее отклонение	$\max I_{(\mathrm{ED})}/I_{(\mathrm{MD})}$	Среднее отклонений
12	$(Gd_{0.96}Eu_{0.04})_2O_3$	Кубическая (C_2, S_6)	5.2	0.05 (0.95%)	8.8	0.25 (2.8%)
Y3	$(Y_{0.96}Eu_{0.04})_2O_3$	Кубическая (C_2, S_6)	5.7	0.3 (5.3%)	8.15	0.5 (6.1%)
E1	Eu_2O_3	Кубическая (C_2, S_6)	_	_	7.9	0.15 (1.9%)
Y1	$(Y_{0.96}Eu_{0.04})_2O_3$	Кубическая (C ₂ , S ₆) Моноклинная (C _S) — по данным CL	4.8	0.15 (3.1%)	6.9	0.3 (4.3%)
Y2	$(Y_{0.96} Eu_{0.04})_2 O_3$	Кубическая (C_2, S_6) , Моноклинная (C_S)	3.9	0.25 (6.4%)	4.1	0.4 (9.8%)
21	$\mathrm{Gd}_{4.67-x}(\mathrm{SiO}_4)_3\mathrm{O}:\mathrm{Eu}_x$	Аморфная	3.3	0.1 (3%)	3.5	0.15 (4.3%)
19	$m{\rm SiO_2/(Gd_{0.94}Eu_{0.06})_2O_3}$	Гексагональная (C_3, C_S)	2.8	0.1 (3.6%)	2.6	0.2 (7.7%)
	-	•	-	-	-	

Таблица 2. Результаты расчетов коэффициентов $I_{(ED)}/I_{(MD)}$ и max $I_{(ED)}/I_{(MD)}$ для разных кристаллических систем и результаты расчетов среднего отклонения значений данных коэффициентов

области 525 nm. Однако в спектрах CL образцов 12, 19 и 21 (рис. 3) эта полоса не проявляется.

Поскольку метод является локальным, для каждого образца было получено не менее 10 спектров в случайных областях. Для каждого спектра CL рассчитывался коэффициент асимметрии $I_{(ED)}/I_{(MD)}$ и тах $I_{(ED)}/I_{(MD)}$. Коэффициент асимметрии $I_{(ED)}/I_{(MD)}$ рассчитывался как отношение площадей под полосами CL, связанными с переходами ${}^{5}D_{0}-{}^{7}F_{2}$ и ${}^{5}D_{0}-{}^{7}F_{1}$. Коэффициент тах $I_{(ED)}/I_{(MD)}$ рассчитывался как отношение лощадей под полосами CL, связанными с переходами ${}^{5}D_{0}-{}^{7}F_{2}$ и ${}^{5}D_{0}-{}^{7}F_{1}$. Коэффициент тах $I_{(ED)}/I_{(MD)}$ рассчитывался как отношение максимумов самых интенсивных полос, связанных с переходами ${}^{5}D_{0}-{}^{7}F_{2}$ и ${}^{5}D_{0}-{}^{7}F_{1}$ соответственно. В табл. 2 представлены средние значения этих коэффициентов для каждого образца и среднее отклонение их значения.

Обсуждение

МD-переход ${}^{5}D_{0} - {}^{7}F_{1}$ (в области спектра 580–600 nm) слабо зависит от локального окружения ионов Eu³⁺ в отличие от ED-перехода ${}^{5}D_{0} - {}^{7}F_{2}$ (в области спектра 600–640 nm). В окружении с симметрией инверсии интенсивность ED-перехода ${}^{5}D_{0} - {}^{7}F_{2}$ падает вследствие запрета по четности, и MD-переход ${}^{5}D_{0} - {}^{7}F_{1}$ становится самым интенсивным в спектре люминесценции [11]. Чем ниже симметрия локальной позиции, которую занимает Eu³⁺, тем интенсивнее переход ${}^{5}D_{0} - {}^{7}F_{2}$, и коэффициент асимметрии $I_{(ED)}/I_{(MD)}$ больше (табл. 2).

Ионы Eu³⁺ занимают позиции Y³⁺ и Gd³⁺ в соответствии с положением этих ионов в легированном материале. В материалах с кубической кристаллической структурой R₂O₃ (12 — Gd₂O₃:Eu³⁺, Y1, Y2, Y3 — Y₂O₃:Eu³⁺, E1 — Eu₂O₃) ионы Eu³⁺ находятся в положениях S₆ (с симметрией инверсии) и C₂ в соотношении 25 к 75 соответственно [12].

По данным XRD образцы 12, Y3 и E1 обладают кубической кристаллической структурой и не содержат

фазовых примесей, активированных Eu^{3+} . В этих образцах значения коэффициента асимметрии $I_{(ED)}/I_{(MD)}$ и max $I_{(ED)}/I_{(MD)}$ наибольшие. Для образца E1 коэффициент асимметрии $I_{(ED)}/I_{(MD)}$ измерить не удалось в связи с низкой интенсивностью люминесценции, но удалось измерить отношение max $I_{(ED)}/I_{(MD)}$ для этого образца. Значения коэффициентов max $I_{(ED)}/I_{(MD)}$ для образцов E1, 12 и Y3 близки, это говорит о том, что этот коэффициент слабо зависит от элементного состава образцов, а обусловливается прежде всего локальным окружением Eu^{3+} .

Коэффициент асимметрии образца Y2 в полтора раза меньше, чем коэффициент асимметрии образца Y3, несмотря на близкий состав. Это объясняется тем, что в образце Y2 содержится значительная примесь β -Eu2O3 с моноклинной кристаллической структурой (табл. 1). В β -Eu2O3 ионы Eu³⁺ находятся в позиции Cs [4], что приводит к понижению коэффициента асимметрии.

Значение коэффициента асимметрии $I_{(ED)}/I_{(MD)}$ образца Y1 находится между значениями для образцов Y2 (кубическая и моноклинная фаза) и ҮЗ (кубическая фаза). Это можно объяснить тем, что в образце Y1, как и в Y2, присутствует фаза β -Eu₂O₃, но ее содержится меньше чем 0.5% от объема образца, в связи с чем эта фаза не была зарегистрирована методом XRD. Данное предположение также подтверждает тот факт, что образцы Y1 и Y2 были получены из одних химических реактивов и при схожих условиях синтеза. Стоит отметить, что полосы, отвечающие высокоэнергетическим переходам (400-550 nm) в образцах Y1 и Y2 имеют заметно большую интенсивность, чем в образцах ҮЗ и 12. Это может объясняться наличием моноклинной примеси в образцах Y1 и Y2 или релаксацией излучения с дефектных уровней У2О3 на высокоэнергетические уровни Eu³⁺. Таким образом, показано, что в образце Y1 содержится примесь β -Eu₂O₃.

По технологическим данным предполагалось, что в порах образцов 21 и 19 должен был синтезироваться Gd₂O₃: Eu³⁺ кубической модификации. По данным XRD при отжиге *m*SiO₂/(Gd,Eu)₂O₃ при 600°С (образец 21) данный материал становится рентгеноаморфным, при дополнительном отжиге при 1000°C (образец 19) в порах синтезируется $Gd_{4.67}(SiO_4)_3O: Eu^{3+}$ с гексагональной кристаллической системой и характерными локальными позициями для $Eu^{3+} - C_s$ и C_3 в соотношении 7 к 9 соответственно [13]. Преобладающее положение C_3 для Eu^{3+} в $Gd_{4.67}(SiO_4)_3O:Eu^{3+}$ обладает более высокой симметрией, чем преобладающее положение С2 в Gd₂O₃: Eu³⁺, поэтому значение отношения $I_{(ED)}/I_{(MD)}$ для образца 19 гораздо меньше, чем для 12. CL-спектры аморфного образца 21 во многом повторяют спектры образца 19, хотя спектр последнего имеет более сложную структуру (рис. 3). Схожесть спектров свидетельствует о том, что в аморфном образце 21 при отжиге при 600°С начинает формироваться Gd_{4.67}(SiO₄)₃O:Eu³⁺ с характерными локальными позициями. Значение коэффициента асимметрии $I_{\rm (ED)}/I_{\rm (MD)}$ для образца 21 несколько больше, чем для образца 19. Это можно объяснить тем, что в образце 21 помимо Gd_{4.67}(SiO₄)₃O:Eu³⁺ присутствует фаза аморфного Gd₂O₃: Eu³⁺ с характерными позициями для Eu^{3+} в кубической фазе Gd_2O_3 , что увеличивает коэффициент асимметрии.

Все вышеизложенные выводы для коэффициента асимметрии $I_{(ED)}/I_{(MD)}$ справедливы и для коэффициента тах $I_{(ED)}/I_{(MD)}$. Коэффициенты $I_{(ED)}/I_{(MD)}$ и тах $I_{(ED)}/I_{(MD)}$ коррелируют между собой (табл. 2). Кроме того, оказалось, что коэффициент тах $I_{(ED)}/I_{(MD)}$ более чувствителен к присутствию фазы с другой локальной позицией активатора. Это дает возможность исследовать структурные изменения в материале, рассчитывая лишь коэффициент тах $I_{(ED)}/I_{(MD)}$.

Измеряя коэффициент асимметрии $I_{(ED)}/I_{(MD)}$ или max $I_{(ED)}/I_{(MD)}$ в случайных областях образца и рассчитывая среднее отклонение получившихся величин, можно сделать выводы о том, насколько образцы однородны по фазовому составу. Среднее отклонение значений измеренного коэффициента (табл. 2) включает в себя как погрешность измерения, так и изменение коэффициента в различных областях, связанное с неоднородностью образца. Наиболее однородными являются образцы 12 и Е1. Среднее отклонение значений коэффициентов, измеренных в этих образцах, минимально (табл. 2, колонки "Среднее отклонение" для каждого из коэффициентов). Наиболее неоднородными по фазовому составу являются образцы 19, Y2 и Y3. Меньшую неоднородность демонстрируют образцы 21 и Y1.

В образце Y2 есть значительная примесь моноклинного Eu_2O_3 , неравномерно распределенного по образцу. Менее значительное среднее отклонение значений коэффициентов для образца Y1 также указывает на то, что в нем присутствует примесь моноклинного Eu_2O_3 . Большое среднее отклонение значений коэффициентов образца 19 объясняется возможным содержанием фаз (в том числе аморфного $Gd_2O_3:Eu^{3+}$), которые не были зарегистрированы методом XRD. Неоднородность образца 21, наиболее вероятно, связана с наличием содержания примеси аморфного $Gd_2O_3:Eu^{3+}$.

Стоит отметить, что средние отклонения значений коэффициентов $I_{(ED)}/I_{(MD)}$ и max $I_{(ED)}/I_{(MD)}$ для каждого образца коррелируют между собой. Это подтверждает тот факт, что значение среднего отклонения не является статистической погрешностью измерений, а имеет физический смысл.

Выводы

Было показано, что коэффициент асимметрии и коэффициент $\max I_{(\text{ED})}/I_{(\text{MD})}$ коррелируют, при этом коэффициент $\max I_{(\text{ED})}/I_{(\text{MD})}$ оказался более чувствительный к присутствию фазы с другой локальной позицией активатора. На основании расчета данных соотношений по спектрам катодолюминесценции была обнаружена фазовая примесь моноклинного Eu₂O₃ в образце Y1.

Было исследовано влияние фазовой неоднородности в образцах на коэффициент асимметрии и коэффициент max $I_{\rm (ED)}/I_{\rm (MD)}$. Было продемонстрировано, что значения средних отклонений данных коэффициентов напрямую зависят от фазовой неоднородности образцов.

Методом локальной катодолюминесценции была исследована структура в рентгеноаморфном образце 21. Было показано, что в порах данных частиц начинает формироваться фаза $Gd_{4.67}(SiO_4)_3O:Eu^{3+}$ и, вероятно, присутствует фаза аморфного $Gd_2O_3:Eu^{3+}$.

Авторы благодарны А.Ю. Мелеху, И.Е. Колесникову и В.Г. Голубеву за предоставление материалов для синтеза и исследований; XRD-исследования выполнены с использованием оборудования федерального ЦКП "Материаловедение и диагностика в передовых технологиях", поддержанного Минобрнауки России (Уникальный идентификатор проекта RFMEFI62117X0018).

Список литературы

- Hirai T., Hirano T., Komasawa I. // J. Colloid Interface Sci. 2002. V. 253. P. 62.
- [2] Гайдук М.И., Золин В.Ф., Гайгерова Л.С. Спектры люминесценции европия. М.: Наука, 1974.
- [3] Ельяшевич М.А. Спектры редких земель. М.: ГИТТЛ, 1953. 456 с.
- [4] Tanner P.A. // Chem. Soc. Rev. Royal Society of Chemistry. 2013. V. 42. N 12. P. 5090–5101.
- [5] Smith E.R., Gruber J.B., Wellenius P., John F. Muth J.F., Everitt H.O. // Phys. Stat. Sol. 2010. V. 247. N 7. P. 1807– 1813.
- [6] Eurov D.A., Kurdyukov D.A., Kirilenko D.A., Kukushkina J.A., Nashchekin A.V., Smirnov A.N., Golubev V.G. // J. Nanopart. Res. 2015. V. 17. P. 2.
- [7] Kolesnikov I.E., Povolotskiy A.V., Mamonova D.V., Lähderanta E., Manshina A.A., Mikhailov M.D. // RSC Advances. 2016. V. 6. P. 76533–76541.

- [8] Zamoryanskaya M.V., Konnikov S.G., Zamoryanskii A.N. // Exp. Tech. 2004. V. 4. P. 477–483.
- [9] Karbowiak M., Mech A., Kepnski L., MielcarekW., Hubert S. // J. Alloys and Compounds. 2005. V. 400. P. 67–75.
- [10] Осипов В.В., Расулева А.В., Соломонов В.И. // ЖТФ. 2008. V. 11. Р. 5–7.
- [11] Cui Hang, Zhu Pei-Fen. // Chin. Phys. B. 2014. V. 23. P. 057801.
- [12] Chang N.C., Gruber J.B. // J. Chem. Phys. AIP Publishing. 1964. V. 41. P. 3227–3234.
- [13] Chambers M.D., Rousseve P.A., Clarke D.R. // J. Luminesc. 2009. V. 129. P. 263.