01

Особенности спектров излучения ионов Ni-подобной последовательности. Приложение к расчету длин волн рентгеновских лазеров с оптической самонакачкой

© Е.П. Иванова

Институт спектроскопии РАН, 108840 Троицк, Москва, Россия e-mail: eivanova@isan.troitsk.ru

Поступила в редакцию 14.03.2018 г.

Рассчитаны уровни энергий и вероятности радиационных переходов в основное состояние Ni-подобных ионов с Z = 36-51. Исследованы энергии верхнего $3d_{3/2}4f_{5/2}$ [J = 1] и нижнего $3d_{3/2}4d_{3/2}$ [J = 1] рабочих уровней рентгеновских лазеров с оптической самонакачкой вдоль последовательности Ni-подобных ионов. Показано, что в точках пересечения уровней одной и той же четности происходит сильное взаимодействие этих уровней, приводящее к перераспределению сил осцилляторов радиационных переходов с этих уровней. Вблизи точек пересечения спектры излучения скачкообразно изменяются с изменением заряда ядра Z.

DOI: 10.21883/OS.2018.08.46352.70-18

Введение

В предыдущих расчетах [1] демонстрировался эффект сильного взаимодействия уровней, приводящий к нерегулярному поведению спектров излучения Neподобных ионов вдоль изоэлектронной последовательности. Взаимодействие уровней определяется недиагональными элементами энергетической матрицы — матричными элементами оператора электронного взаимодействия [2]. При сильном взаимодействии происходит смешивание уровней одной четности и одного и того же значения полного момента Ј. В [1] показано, что в области значения заряда ядра Z, соответствующего пересечению — изменению взаимного положения уровней одной и той же четности, возможны большие экстремумы в функциях от Z вероятностей радиационных переходов. Кроме того, в этой области заряда ядра Z возможно "расталкивание" взаимодействующих уровней. Как следствие, зависимости уровней энергий от Z могут быть негладкими. Недавно эти эффекты продемонстрированы в экспериментальной работе [3]. В [3] были выполнены систематические измерения уровней энергий $2p_{1/2}3d_{3/2}$ [J=1] и $2s_{1/2}3p_{1/2}$ [J=1] в Ne-подобных ионах, находящихся в интервале между Ba⁴⁶⁺ и Pb⁷²⁺. Приняты следующие обозначения: $2p_{1/2}$, $2s_{1/2}$ — состояния вакансий в остове $1s^2 2s^2 2p^6$; 3d_{3/2}, 3p_{1/2} — состояния электронов над этим остовом. В [3] показано, что сильное взаимодействие уровней существенно влияло на распределение сил осцилляторов радиационных переходов с этих уровней в удивительно широкой области Z. В [3] исследовались особенности расчета энергий в области пересечения; отмечалось, что в результате сильного взаимодействия точность расчета уровней энергий значительно ухудшалась.

Аналогичные исследования энергетических последовательностей Ni-подобных ионов представляются весьма актуальными: ионы этой последовательности перспективны с точки зрения приложений, но вследствие сложности их спектров до сих пор остаются малоизученными.

Теоретический подход релятивистской теории возмущений с модельным потенциалом нулевого приближения (РПТМП) коротко представлен в нашей недавней работе [4]. В [4] рассчитывались уровни энергий конфигураций $3p^63d^94l$, $3p^53d^{10}4s$, $3p^53d^{10}4p$ (l = 0, 1) и вероятности радиационных переходов в основное состояние $3p^63d^{10}$ в ионе Kr IX; исследовалась стабильность расчета при использовании различных приближений. В этой работе приведены формулы для расчета уровней энергий и вероятностей переходов в основное состояние для ионов, основное состояние которых является замкнутой оболочкой, а возбужденное состояние представляет собой один электрон над заполненной оболочкой и одну вакансию в оболочке.

Многозарядные ионы, принадлежащие последовательностям неона, никеля и палладия, активно изучаются с целью создания эффективных рентгеновских лазеров (РЛ) в области дальнего ультрафиолета. Из многочисленных экспериментов следует (см. обзор [5]), что для создания РЛ на стандартном переходе 0–1 наиболее эффективной является Ni-подобная схема (рис. 1). На рис. 1 показана также схема РЛ с оптической самонакачкой (OC) в Ni-подобных ионах. Рентгеновский лазер на переходах Ni-подобных ионов, основанный на механизме ОС, был предложен в 1996 г. в [6] как альтернативный подход к стандартной радиационностолкновительной схеме РЛ. В стандартной схеме РЛ на переходе 3d4d [J = 0] - 3d4p [J = 1] верхний рабочий уровень заселяется из основного состояния с высокой скоростью за счет электрон-ионных столкновений и радиационно распадается лишь в нижние рабочие уровни (радиационный распад в основное состояние запрещен). Таким образом, инверсия заселенностей обусловлена быстрым распадом нижних рабочих уровней в основное состояние. Инверсия рабочих уровней РЛ в

Рис. 1. Схематическая диаграмма стандартных переходов 3d4d-3d4p РЛ и перехода с ОС $3d_{3/2}4f_{5/2}$ $[J=1]-3d_{3/2}4d_{3/2}$ [J=1].

условиях ОС обусловлена высокой скоростью заселения верхнего рабочего уровня, а также реабсорбцией (перепоглощением) радиационного излучения с верхнего рабочего уровня $3d_{3/2}4f_{5/2}$ [J = 1] в основное состояние $3p^63d^{10}$ [J = 0]. Реабсорбция излучения проявляется в оптически плотной плазме, где скорость радиационного распада с верхнего уровня в основное состояние значительно меньше, чем в изолированном ионе.

Этот новый класс РЛ в Ni-подобных ионах был исследован теоретически в [7], где было предсказано большое усиление спонтанного излучения для перехода $3d_{3/2}4f_{5/2}$ $[J=1]-3d_{3/2}4d_{3/2}$ [J=1] в Мо¹⁴⁺ с длиной волны $\lambda = 22.0$ nm. Длина волны РЛ рассчитывалась многоконфигурационным методом Дирака-Фока (МКДФ), разработанным в [8]. Рентгеновский лазер с оптической самонакачкой (РЛОС) на переходе $3d_{3/2}4f_{5/2}$ $[J=1]-3d_{3/2}4d_{3/2}$ [J=1] в Ni-подобных ионах Zr^{12+} , Nb¹³⁺ и Mo¹⁴⁺ был продемонстрирован экспериментально в [9], где измерялась зависимость энергетического выхода РЛ от длины плазменного шнура. В [9] также приведены длины волн этого перехода для $Z \le 54$, рассчитанные методом МКДФ, откорректированные с учетом экспериментальных длин волн. В [10] были определены специальные условия для наблюдения сильного усиления на переходе $3d_{3/2}4f_{5/2}[J=1]-3d_{3/2}4d_{3/2}[J=1]$ с $\lambda = 16.05$ nm. В недавней работе [11] исследовался лазерный эффект с ОС в Ne-подобных ионах ванадия, хрома, железа и титана, а также в Ni-подобных ионах молибдена, рутения, палладия и серебра. Эти эксперименты показали, что РЛОС могут быть реализованы в ионах, более тяжелых, чем это предполагалось изначально.

Многие авторы исследовали спектры Ni-подобных ионов, используя вакуумную искру, лазерную плаз-

му, электрон-ионную ловушку в качестве источников излучения [12–18]. Конфигурации $3p^63d^94d$ и $3p^63d^94f$ были исследованы для последовательности Rb X—Mo XV [14–15], где использовались параметры экстраполяции в рамках обобщенного метода наименьших квадратов. Этот метод был использован также в [16,17] для предсказания уровней энергий конфигураций $3p^63d^94d$, $3p^63d^94f$ ионов Cd XXI и Ag XX. Уровни энергий этих конфигураций, полученные обобщенным методом наименьших квадратов для ионов Zr XIII—Pd XIX, табулированы в [18].

Следует подчеркнуть, что длина волны (λ_{las}) РЛОС в Мо¹⁴⁺ была определена теоретически в [7,9] с использованием одного и того же варианта метода МКДФ [8]. Однако результаты для λ_{las} различаются весьма значительно — на 4 Å. Причины такого рассогласования требуют детального рассмотрения энергетических по-

Рис. 2. (*a*) Пересечение энергий нижнего рабочего уровня $3d_{3/2}4d_{3/2}$ [J = 1] (кружки, звездочки) с энергиями уровня $3d_{3/2}4d_{5/2}$ [J = 1] (треугольники, крестики) в точке 41 < Z < 42 — сопоставление масштабированных теоретических (кружки, треугольники) и экспериментальных (звездочки, крестики) данных из [18]. (*b*) Сопоставление теоретических (кружки) и экспериментальных (звездочки) масштабированных энергий верхнего рабочего уровня $3d_{3/2}4f_{5/2}$ [J = 1] для Z = 38-47.

Уровень	Z								
	36	37	38	39	40	41	42	43	
$3d_{3/2}4s_{1/2}$	706.2	840.9	995.9	1171.0	1347.3	1532.7	1729.8	1931.4	
$3d_{5/2}4d_{3/2}$	(700.7) 1088.4 (1081.2)	1263.0	1458.1	1673.1	1889.4	2115.1	2352.6	2594.8	
$3d_{5/2}4d_{5/2}$	1098.9 (1093.8)	1275.3	1472.1	1688.8	1906.8	2134.3	2373.4	2617.4	
$3d_{3/2}4d_{5/2}$	1106.4	1284.2	1482.7	1701.4	1921.6	2151.6	2400.8 +	2648.7	
$3d_{3/2}4d_{3/2}$	1110.1	1288.5	1487.5	1706.7	1927.6	2158.2	2393.6+	2640.6	
$3p_{3/2}4p_{1/2}$	1793.6	2025.4	2248.6	2494.2	2740.6	2996.2	3263.4	3535.2	
$3p_{3/2}4p_{3/2}$	1811.0	2045.6	2271.6	2520.6	2770.7	3030.5	3302.4	3579.5	
$3p_{1/2}4p_{1/2}$	1862.1	2104.2	2338.5	2597.0	2857.6	3128.4	3412.6	3703.1	
$3p_{1/2}4p_{3/2}$	1874.4	2119.3	2356.7	2618.9	2883.5	3159.0	3448.2	3744.5	
$3p_{3/2}4f_{5/2}$	2258.9	2.549.8	2832.0	3136.7	3442.4	3757.5	4092.6	4413.0	

Таблица 1. Уровни энергий (в 1000 сm⁻¹) четных состояний Ni-подобных ионов с J = 1, Z = 36-51 (индекс + указывает, что перед этим значением Z данные уровни изменили свое взаимное положение)

Таблица 1. (продолжение).

Уровень	Z								
	44	45	46	47	48	49	50	51	
$3d_{3/2}4s_{1/2}$	2145.1	2369.7	2607.0	2856.4	3113.3	3381.3	3659.5	3948.6	
$3d_{5/2}4d_{3/2}$	2849.6	3115.3	3393.8	3685.5	3984.6	4295.3	4616.5	4948.6	
$3d_{5/2}4d_{5/2}$	2873.9	3141.5	3421.8	3715.5	4016.7	4329.5	4653.1	4987.6	
$3d_{3/2}4d_{5/2}$	2909.5	3181.8	3467.4	3766.8	4074.3	4394.0	4725.1	5067.6	
$3d_{3/2}4d_{3/2}$	2900.6	3172.0	3456.5	3754.8	4060.9	4379.1	4708.5	5049.2	
$3p_{3/2}4p_{1/2}$	3819.4	4114.3	4422.2	4742.5	5070.2	5409.0	5758.3	6118.8	
$3p_{3/2}4p_{3/2}$	3869.5	4171.0	4486.0	4814.4	5150.9	5499.4	5859.3	6231.3	
$3p_{1/2}4p_{1/2}$	4007.8	4325.1	4657.5	5004.5	5361.2	5731.5	6114.8	6512.4	
$3p_{1/2}4p_{3/2}$	4055.5	4379.9	4719.8	5075.4	5441.4	5821.8	6216.2	6625.7	
$3p_{3/2}4f_{5/2}$	4760.5	5116.2	5483.5	5867.5	6257.7	6660.0	7073.3	7497.2	

Таблица 2. Уровни энергий (в 1000 cm⁻¹) нечетных состояний Ni-подобных ионов с J = 1, Z = 36-51 (индекс + указывает, что перед этим значением Z данные уровни изменили свое взаимное положение)

Уровень	Ζ								
	36	37	38	39	40	41	42	43	
$3d_{5/2}4p_{3/2}$	855.9	1005.5	1175.7	1366.2	1557.8	1758.9	1971.7	2210.0+	
$3d_{3/2}4p_{1/2}$	869.6	1020.4	1191.7	1383.1	1575.7	1777.7	1991.5	2189.2 +	
$3d_{3/2}4p_{3/2}$	875.3	1027.6	1200.7	1394.4	1589.5	1794.4	2011.5	2233.8	
$3d_{5/2}4f_{5/2}$	1310.8	1516.9	1743.8	1990.5	2238.1	2495.1	2771.8	3033.7	
$3d_{5/2}4f_{7/2}$	1318.7	1526.3	1755.4	2004.5	2254.7	2514.3	2793.5	3060.0	
$3d_{3/2}4f_{5/2}$	1332.2	1545.2	1779.7	2034.9	2292.0	2559.1	2843.9	3121.3	
$3p_{3/2}4s_{1/2}$	1650.9	1868.7	2077.8	2309.0	2541.3	2782.4	3035.0	3292.3	
$3p_{1/2}4s_{1/2}$	1712.0	1939.7	2159.6	2403.5	2649.6	2905.8	3175.3	3451.0	
$3p_{3/2}4d_{3/2}$	2044.8	2305.1	2256.9	2831.1	3106.7	3391.7	3688.7	3990.8	
$3p_{3/2}4d_{5/2}$	2055.4	2317.2	2570.4	2846.0	3122.9	3409.4	3707.8	4011.6	
$3p_{1/2}4d_{3/2}$	2116.3	2387.8	2651.6	2939.6	3230.2	3531.3	3846.2	4167.8	

следовательностей верхнего и нижнего рабочих уровней. Среди состояний нижних конфигураций $3p^63d^94l$, $3p^53d^{10}4l$ (l = 0-3) Ni-подобных ионов верхний рабо-

чий уровень $3d_{3/2}4f_{5/2}[J=1]$ имеет наибольшие силу осциллятора и вероятность перехода в основное состояние $3p^63d^{10}$. Благодаря этому его уровни энергии

Уровень	Z								
	44	45	46	47	48	49	50	51	
$3d_{5/2}4p_{3/2}$	2440.9	2682.8	2937.5	3205.2	3480.4	3767.1	4064.5	4372.8	
$3d_{3/2}4p_{1/2}$	2419.1	2659.7	2913.1	3179.1	3452.4	3737.0	4031.8	4337.2	
$3d_{3/2}4p_{3/2}$	2468.9	2715.4	2975.2	3248.6	3530.0	3823.4	4128.1	4444.3	
$3d_{5/2}4f_{5/2}$	3321.4	3617.3	3924.2	4247.3	4576.1	4916.4	5267.1	5627.2	
$3d_{5/2}4f_{7/2}$	3350.0	3649.4	3960.0	4286.7	4619.5	4964.0	5319.1	5683.8	
$3d_{3/2}4f_{5/2}$	3419.9	3728.2	4048.4	4383.3	4723.1	5094.1+	5454.3	5828.8	
$3p_{3/2}4s_{1/2}$	3561.8	3842.3	4135.8	4442.1	4757.8	5065.3+	5404.8	5751.8	
$3p_{1/2}4s_{1/2}$	3740.8	4043.4	4360.9	4692.7	5034.2	5389.3	5757.3	6139.8	
$3p_{3/2}4d_{3/2}$	4305.9	4632.5	4972.3	5325.9	5687.3	6060.8	6445.5	6842.3	
$3p_{3/2}4d_{5/2}$	4328.3	4656.6	4998.2	5353.7	5717.2	6092.9	6480.1	6879.4	
$3p_{1/2}4d_{3/2}$	4504.2	4854.0	5219.2	5600.1	5991.3	6397.0	6816.4	7250.9	

измерены с высокой точностью в Ni-подобной последовательности вплоть до $Z \le 84$. В некоторых ионах его энергия измерена с точностью до четырех значащих цифр. Длины волн резонансных переходов были рассчитаны нами до Z = 83 в [19], где использовался метод РТВМП. Выполненное в [19] сопоставление с экспериментальными данными продемонстрировало высокую точность расчета.

В настоящей работе мы выполняем проверку точности расчета верхнего и нижнего рабочих уровней РЛОС вдоль Ni-подобной последовательности; также исследуется гладкость энергетических и излучательных характеристик в зависимости от Z. Негладкость поведения энергии верхнего рабочего уровня $3d_{3/2}4f_{5/2}[J=1]$ обнаружена в областях $Z = 42 \text{ (Mo}^{14+})$ и $Z = 49 \text{ (In}^{21+})$. Задача настоящей работы — исследование причин, приводящих к скачкообразному изменению спектров излучения вдоль последовательности. Конечная задача работы — предсказать длины волн РЛОС в Ni-подобных ионах с $Z \leq 79$.

Энергетические последовательности верхнего и нижнего рабочих уровней РЛОС в Ni-подобных ионах

Из рис. 1 следует, что для стандартной схемы РЛ имеется два перехода: $3d4d [J = 0] - 3d_{5/2}4p_{3/2} [J = 1]$ и $3d4d [J = 0] - 3d_{3/2}4p_{1/2} [J = 1]$. Уровень $3d_{5/2}4p_{3/2}$ [J = 1] является рабочим для всей Ni-подобной последовательности. Уровень $3d_{3/2}4p_{1/2} [J = 1]$ является нижним рабочим уровнем для тяжелых ионов, начиная с Z = 62. Третий нижний уровень $3d_{3/2}4p_{3/2} [J = 1]$ распадается в основное состояние значительно слабее, что не обеспечивает существенного усиления. В нашей недавней работе [5] с использованием расчета РТВМП были уточнены энергии двух стандартных РЛ-переходов в Ni-подобных ионах с $Z \leq 79$.

Переход $3d_{3/2}4f_{5/2}$ $[J = 1] - 3d_{3/2}4d_{3/2}$ [J = 1] является РЛОС-переходом вдоль всей Ni-подобной последовательности; положения рабочих уровней относительно других уровней меняются при определенных значениях Z. На основе наших предварительных исследований [20–22] можно утверждать, что имеется, по крайней мере, четыре различия между механизмами стандартного РЛ и РЛОС.

I. В стандартной схеме верхний рабочий уровень заселяется за счет монопольных переходов, обусловленных электрон-ионными столкновениями. В схеме РЛОС верхний рабочий уровень заселяется за счет дипольного перехода, обусловленного электрон-ионными столкновениями.

II. В схеме РЛОС верхний и нижний рабочие уровни не меняют своей классификации вдоль Ni-подобной последовательности. В стандартной схеме классификация верхнего рабочего уровня изменяется: уровень $3d_{5/2}4d_{5/2} [J = 0]$ доминирует при $Z \le 51$, при Z > 51доминирует уровень $3d_{3/2}4d_{3/2} [J = 0]$.

III. Эффективный РЛОС возможен только в оптически плотной плазме при достаточно большом диаметре *d* плазменного шнура. В стандартной схеме эффективный РЛ возможен в оптически тонкой плазме при малом *d*.

Рис. 3. Разность между экспериментальными значениями длин волн РЛОС λ_{las}^{exp} , предсказанными в [9], и соответствующими значениями λ_{las}^{pres} , рассчитанными в настоящей работе (квадраты); отклонение λ_{las}^{MCDF} от λ_{las}^{pres} (кружки).

IV. Накачка РЛОС должна производиться только ультракоротким импульсом; заселение верхнего рабочего уровня $3d_{3/2}4f_{5/2}[J=1]$ происходит за время ≤ 1 ps после взаимодействия импульса накачки с мишенью. В схеме РЛОС верхний рабочий уровень быстро опустошается за счет радиационного распада в основное состояние. Следовательно, в этой схеме лазерный эффект является непродолжительным (несколько десятков пикосекунд). В стандартной схеме РЛ может работать в квазинепрерывном режиме. Последнее утверждение справелливо для тяжелых Ni-подобных ионов с Z > 54. Для накачки стандартного РЛ возможно использование продолжительного импульса. В табл. 1,2 представлены уровни энергий четных и нечетных состояний Niподобных ионов с полным моментом J = 1 и зарядом ядра Z = 36-51.

Ниже мы демонстрируем нерегулярности в последовательностях верхнего и нижнего рабочих уровней РЛОС. Нерегулярности возникают в результате пересечения каждого из рабочих уровней с другим уровнем той же четности. В окрестности Z, соответствующей пересечению, происходит сильное взаимодействие уровней. На рис. 2, а показаны масштабированные значения энергий нижнего рабочего уровня $3d_{3/2}4d_{3/2}[J=1]$ и близко лежащего к нему уровня $3d_{3/2}4d_{5/2}$ [J = 1]. Помимо рассчитанных здесь теоретических энергий на рис. 2, а показаны также соответствующие экспериментальные энергии из [18]. Заметим, что наши теоретические и экспериментальные уровни энергий очень близки, так что различие между соответствующими значениями составляет несколько единиц в четвертой-пятой значащих цифрах. Это различие обусловлено в основном сдвигом теоретического спектра как целого; этот сдвиг не влияет на длины волн РЛОС-переходов. Масштабирование уровней энергий на $(Z-23)^2$ на рис. 2, *а* позволяет наблюдать поведение третьей-четвертой значащих цифр в зависимости от Z. В начале последовательно-

Рис. 4. Состав нижнего рабочего уровня $3d_{3/2}4d_{3/2}$ [J = 1] в Ni-подобных ионах (в логарифмической шкале) — вклады состояний $3d_{3/2}4d_{3/2}$ (кружки), $3d_{3/2}4d_{5/2}$ (треугольники), $3d_{5/2}4d_{5/2}$ (прямоугольники), $3d_{5/2}4d_{3/2}$ (звездочки).

Рис. 5. Пересечение верхнего рабочего уровня $3d_{3/2}4f_{5/2}$ [J = 1] (кружки) с уровнем $3p_{3/2}4s_{1/2}$ [J = 1] (треугольники) в Ni-подобной последовательности, показанное масштабированными значениями уровней энергий. Для сопоставления показаны соответствующие экспериментальные значения уровня $3d_{3/2}4f_{5/2}$ [J = 1] (звездочки).

Рис. 6. Состав верхнего рабочего уровня $3d_{3/2}4f_{5/2}[J=1]$ для Ni-подобной последовательности — вклады состояний $3d_{3/2}4f_{5/2}$ (квадраты), $3d_{5/2}4f_{7/2}$ (пятиугольники), $3p_{3/2}4s_{1/2}$ (треугольники), $3d_{5/2}4f_{5/2}$ (звездочки).

сти уровень $3d_{3/2}4d_{3/2}[J = 1]$ расположен выше уровня $3d_{3/2}4d_{5/2}[J = 1]$. Пересечение уровней происходит в области 41 < Z < 42, показанной стрелками. Пересечение соответствующих экспериментальных уровней происходит точно в той же области Z. В точке Z = 42 можно наблюдать "расталкивание" уровней, вызванное их взаимодействием и приводящее к нарушению гладкого поведения энергий с изменением Z. "Расталкивание" характерно как для теоретических, так и для соответствующих экспериментальных уровней и составляет несколько тысяч обратных сантиметров, т.е. несколько единиц в четвертой значащей цифре для уровня $3d_{3/2}4d_{5/2}[J = 1]$. Благодаря масштабированию этот эффект заметен на графике.

На рис. 2, b можно наблюдать скачок энергии верхнего рабочего уровня $3d_{3/2}4f_{5/2}[J=1]$ в точке Z=42, который обусловлен сильным взаимодействием трех уровней конфигурации $3p^6 3d^9 4f$ с J = 1. Этот скачок энергии составляет $\sim 7000 \, {\rm cm^{-1}}$ и приводит к значению $\lambda_{\text{las}} = 222.03$ Å, что значительно отклоняется от соответствующего экспериментального значения $\lambda_{las}^{exp} = 226$ Å. Рис. 3 демонстрирует отклонение экспериментальных значений λ_{las}^{exp} от соответствующих значений нашего расчета λ_{las}^{pres} . Там же показано отклонение λ_{las}^{MKDF} — расчета методом МКДФ от наших значений λ_{las}^{pres} . Отметим, что в работах [6,7] $\lambda_{\text{las}} = 220 \text{ Å}$; это значение было рассчитано методом МКДФ [8]. В недавнем эксперименте [11] значения λ_{las} были измерены с более высокой точностью в ионах Mo^{14+} , Ru^{16+} , Pd^{18+} и Ag^{19+} . В Mo^{14+} $\lambda_{las}^{exp} = 226.08$ Å. Этот результат, повидимому, доказывает, что в нашем расчете ошибка в энергии уровня $3d_{3/2}4f_{5/2}[J=1]$ при Z=42 вызвана сильным взаимодействием трех уровней конфигурации $3p^63d^94f$ с J = 1. Здесь важно подчеркнуть, что энергетическая структура нечетных состояний с J = 1 в области 40 < Z < 49 демонстрирует чрезвычайно высокую нестабильность, вызванную взаимодействием этих уровней друг с другом, которое быстро изменяется

вдоль последовательности. Как правило, вблизи точек пересечения уровней наблюдается нарушение точности расчета, что подчеркивалось в [3].

На рис. 4 можно видеть процентный вклад каждого состояния конфигурации $3p^63d^94d$ с J = 1 в состояние $3d_{3/2}4d_{3/2}[J=1]$ в Ni-подобных ионах с Z = 36-79. Вклады состояний $3d_{3/2}4d_{3/2} [J=1]$ и $3d_{3/2}4d_{5/2} [J=1]$ практически равны при Z = 42, что может привести к неправильной идентификации уровней. Теоретические значения энергий этих уровней при Z = 42 равны 2393554 и 2400846 cm⁻¹ (вклады этих состояний в состояние $3d_{3/2}4d_{3/2}[J=1]$ равны соответственно 51 и 41%). Вклады этих уровней в работе [15] составляют 45 и 34%, энергии составляют 2385902 и $2\,393\,229\,{\rm cm^{-1}}$ соответственно. Заметим, что в области малых Z теоретический спектр сдвинут относительно экспериментального на $5000-8000 \text{ cm}^{-1}$. Рис. 4 демонстрирует стремительную перестройку состава нижнего рабочего уровня. Так, вклад уровня $3d_{5/2}4d_{3/2}[J=1]$ возрастает на 5 порядков в интервале 40 < Z < 42.

На рис. 5 показаны теоретические масштабированные энергии верхнего рабочего уровня $3d_{3/2}4f_{5/2}[J=1]$, а также энергии близкого к нему уровня $3p_{3/2}4s_{1/2}[J=1]$ для Ni-подобных ионов в диапазоне $46 \le Z \le 54$.

Рис. 7. Изменение ВРП в основное состояние вдоль Ni-подобной последовательности: (*a*) с уровней $3d_{3/2}4f_{5/2}[J=1]$ (квадраты) и $3p_{3/2}4s_{1/2}[J=1]$ (треугольники); (*b*) с уровней $3p_{1/2}4s_{1/2}[J=1]$ (кружки), $3d_{5/2}4f_{7/2}[J=1]$ (пятиугольники), $3d_{5/2}4f_{5/2}[J=1]$ (звездочки); (*c*) с уровней $3d_{5/2}4p_{3/2}[J=1]$ (квадраты), $3d_{3/2}4p_{1/2}[J=1]$ (кружки), $3d_{3/2}4p_{3/2}[J=1]$ (треугольники); (*d*) с уровней $3p_{3/2}4d_{3/2}[J=1]$ (квадраты), $3p_{3/2}4d_{3/2}[J=1]$ (квадраты), $3p_{3/2}4d_{5/2}[J=1]$ (квадраты), $3p_{1/2}4d_{3/2}[J=1]$ (треугольники); (*d*) с уровней $3p_{3/2}4d_{3/2}[J=1]$ (квадраты), $3p_{3/2}4d_{5/2}[J=1]$ (квадраты), $3p_{1/2}4d_{3/2}[J=1]$ (треугольники).

Конфигурация	Уровень	J	Эксперимент [23]	Расчет РТВМП	Расчет GRASP92 [25]
$3p^63d^{10}$	${}^{1}S_{0}$	0	0.0	0.0	0.0
$3p^{6}3d^{9}4s$	$3d_{5/2}4s_{1/2}$	3	12601.5	12600.1	
	-, ,	2	12616.44	12615.2	12591.1
$3p^{6}3d^{9}4s$	$3d_{3/2}4s_{1/2}$	1	13138.66	13137.8	13110.8
	, ,	2	13148.2	13147.4	13120.7
$3p^{6}3d^{9}4p$	$3d_{5/2}4p_{1/2}$	2	13379.05	13357.5	
	- / - /	3	13388.20	13366.3	
$3p^{6}3d^{9}4p$	$3d_{3/2}4p_{1/2}$	2	13916.27	13894.8	
	, _ ,	1	13940.6	13922.4	13930.6
$3p^{6}3d^{9}4p$	$3d_{5/2}4p_{3/2}$	1	14229.0	14234.9	14221.0
$3p^{6}3d^{9}4p$	$3d_{3/2}4p_{3/2}$	1	14751.0	14756.2	14741.1
$3p^{6}3d^{9}4d$	$3d_{3/2}4d_{3/2}$	1		15935.9	15924.2
$3p^{6}3d^{9}4d$	$3d_{5/2}4d_{5/2}$	1	15556.1	15561.3	15550.2
	, ,	2	15610.2	15614.9	15605.0
$3p^53d^{10}4s$	$3p_{3/2}4s_{1/2}$	1	16247.0	16258.9	
$3p^{6}3d^{9}4d$	$3d_{3/2}4d_{3/2}$	0	16256.2	16284.7	16282.9
$3p^{6}3d^{9}4f$	$3d_{5/2}4f_{7/2}$	1	17045.9	17042.2	17030.6
$3p^{6}3d^{9}4f$	$3d_{3/2}4f_{5/2}$	1	17574.7	17586.5	17585.6
	, _ ,		17580.3*		
$3p^53d^{10}4s$	$3p_{1/2}4s_{1/2}$	1	[18727]	18726.4	18724.4
$3p^53d^{10}4d$	$3p_{3/2}4d_{3/2}$	1	19044.4	19041.8	19057.5
$3p^53d^{10}4d$	$3p_{3/2}4d_{5/2}$	1	19244.5	19234.8	19244.1
$3p^53d^{10}4f$	$3p_{3/2}4f_{7/2}$	2	20589.0	20600.1	20613.8
$3p^53d^{10}4d$	$3p_{1/2}4d_{3/2}$	1	21561.0	21547.0	21614.6

Таблица 3. Уровни энергий (в 1000 сm⁻¹) иона W XLVII — сопоставление настоящего расчета методом РТВМП с экспериментальными значениями из обзоров [23,24] и расчетом по программе GRASP92 [25]

Примечание. * Данные из [24].

Пересечение этих уровней происходит в области 48 < Z < 49. В точке Z = 49 можно наблюдать "расталкивание" этих уровней, вызванное их взаимодействием. "Расталкивание" является результатом теоретического расчета; на рис. 5 можно наблюдать негладкое поведение экспериментальных значений уровней энергий $3d_{3/2}4f_{5/2}[J = 1]$, приведенных в [18]. В литературе отсутствуют данные об энергиях состояния $3p_{3/2}4s_{1/2}[J = 1]$ для этой области Z. Тем не менее можно утверждать, что при Z = 49 происходит скачкообразное изменение спектров излучения линий, связанных с переходами из состояний $3d_{3/2}4f_{5/2}[J = 1]$ и $3p_{3/2}4s_{1/2}[J = 1]$.

Скачкообразную перестройку состава нечетных уровней в точке Z = 49 можно видеть на рис. 6, где показан процентный состав уровня $3d_{3/2}4f_{5/2}$ [J = 1] для Ni-подобных ионов в области $36 \le Z \le 79$. Взаимодействие уровней при Z = 49 приводит к перераспределению сил осцилляторов для Z, близких к 49. Подобные эффекты наблюдались в работах [1,3] для Neподобной последовательности. Здесь при Z = 49 скорости радиационных процессов внезапно изменяются: вероятности радиационных переходов (ВРП) с уровня $3d_{3/2}4f_{5/2}$ [J = 1] в основное состояние и в состояние нижнего рабочего уровня слегка уменьшаются. При этом вероятность перехода в основное состояние с уровня $3p_{3/2}4s_{1/2}$ [J = 1] возрастает на порядок и становится

практически равной ВРП с уровня $3d_{3/2}4f_{5/2}[J=1]$. Графические зависимости ВРП для обоих переходов показаны на рис. 7, а. Из рисунка следует, что линия перехода с уровня $3p_{3/2}4s_{1/2}[J=1]$ в основное состояние практически отсутствует в спектрах излучения ионов с Z < 48. В области больших значений Z эта линия достаточно хорошо видна в резонансных спектрах Niподобных ионов (см. обзор [19]). Вблизи $Z \sim 49$ ВРП с уровня $3d_{3/2}4f_{5/2}[J=1]$ в основное состояние (а также в состояние нижнего рабочего уровня) незначительно уменьшаются. В то же время ВРП с уровня $3p_{3/2}4s_{1/2}$ [J=1] вырастают почти на пять порядков на интервале Z = 47-49. Из рис. 7, *а* следует, что при Z = 49 интенсивности обоих переходов в основное состояние практически равны. По-видимому, в [9] при экстраполировании энергии уровня $3d_{3/2}4f_{5/2}$ [J = 1] до Z = 49 вместо энергии этого уровня использовалось близкое значение энергии уровня $3p_{3/2}4s_{1/2}$ [J = 1]. Это утверждение демонстрируется нашим теоретическим расчетом, показанным на рис. 5, где пересечение уровней при Z = 49 приводит к их расталкиванию. В случае неверной идентификации $\lambda_{las} = 144.7$ Å для Z = 49, что и приводится в [9]. В нашем расчете $\lambda_{\text{las}} = 140.0$ Å, это различие двух расчетов показано на рис. 3.

Рис. 7, *b* демонстрирует ВРП в основное состояние с уровней $3p_{1/2}4s_{1/2}[J=1]$, $3d_{5/2}4f_{7/2}[J=1]$ и $3d_{5/2}4f_{5/2}[J=1]$ вдоль Ni-подобной последовательно-

сти. Здесь можно видеть скачкообразное изменение ВРП с уровня $3d_{5/2}4f_{7/2}[J=1]$, указывающее на существенное взаимодействие в области 42 \leq Z \leq 44. Мы полагаем, что взаимодействие этого уровня с уровнем $3d_{3/2}4f_{5/2}[J=1]$ приводит к скачку энергии последнего при Z = 42, показанному на рис. 2, b. На рис. 7, c можно видеть особенности спектров излучения трех резонансных переходов конфигурации $3p^63d^94p$. Пересечение уровней $3d_{5/2}4p_{3/2}[J=1]$ и $3d_{3/2}4p_{1/2}[J=1]$ в области 42 < Z < 43 (табл. 2) приводит к сильному взаимодействию этих уровней, в результате чего ВРП слабого перехода $3d_{3/2}4p_{1/2}[J=1]$ увеличивается на четыре порядка на интервале 41 ≤ Z ≤ 44. При Z > 44 ВРП с этого уровня представляет собой гладкую слабо меняющуюся функцию от Z. Рис. 7, b и 7, d указывают на спектральные особенности в области Z ~ 54, которые будут рассматриваться в наших последующих работах.

Длины волн РЛОС в Ni-подобных ионах

Рис. З демонстрирует, что отклонение наших теоретических и экспериментальных [9] длин волн РЛОС на переходе $3d_{3/2}4f_{5/2}[J=1]-3d_{3/2}4d_{3/2}[J=1]$ в Niподобных ионах с Z = 37-46 составляет $\leq 1\%$. Там же показано, что отклонение нашего расчета от соответствующего расчета методом МКДФ в [9] такое же. Для двух значений Z наблюдаем исключение: (I) возможна ошибка нашего расчета энергии верхнего рабочего уровня при Z = 42, (II) возможна ошибочная идентификации уровней $3d_{3/2}4f_{5/2}[J=1]$ и $3p_{3/2}4s_{1/2}[J=1]$ при Z = 49в расчетах МКДФ в [9].

Точность расчета уровней энергий верхнего и нижнего рабочих уровней РЛОС мы оцениваем сопоставлением с соответствующими экспериментальными значениями в тяжелых Ni-подобных ионах. В качестве примера в табл. З проведем сопоставление нашего расчета уровней энергий Ni-подобного иона вольфрама (Z = 74, W XLVII) с экспериментальными измерениями, выполненными на установке электрон-ионная ловушка (Super EBIT) [23,24]. Здесь же представлены теоретические значения, рассчитанные по программе GRASP92 [25]. Отметим трудность сопоставления с другим расчетом [26] ввиду запутанности идентификации уровней в этой работе. Табл. 3 демонстрирует хорошее согласие наших теоретических и экспериментальных значений для уровней энергий, максимальное различие составляет две единицы в четвертой значащей цифре. Для проблемы РЛОС необходимо удостовериться в достаточно высокой точности расчета верхнего и нижнего рабочих уровней энергий. В табл. 3 представлены два экспериментальных значения уровня $3d_{3/2}4f_{5/2}[J=1]$, полученных в экспериментах [23,24]. Отклонение энергии этого уровня в нашем расчете от более позднего экспериментального значения [24] составляет шесть единиц в пятой значащей цифре. В литературе отсутствуют данные для энергий нижнего рабочего уровня $3d_{3/2}4d_{3/2}[J=1]$ в ионах с высокими значениями Z.

Таблица 4. Длины волн (λ_{las} , Å) РЛОС-перехода $3d_{3/2}4f_{5/2}$ $[J = 1] - 3d_{3/2}4d_{3/2}$ [J = 1] в ионах Ni-подобной последовательности с Z = 50-79

Ζ	$\lambda_{ m las}$
50	134.08
51	128.12
52	122.54
53	117.39
54	112.66
55	108.36
56	104.295
57	100.51
58	96.98
59	93.68
60	90.57
61	87.65
62	84.89
63	82.28
64	79.81
65	77.47
66	75.23
67	73.08
68	71.06
69	69.11
70	67.25
71	65.47
72	63.75
73	62.10
74	60.51
75	58.97
76	57.48
77	56.04
78	54.64
79	53.23

Однако энергии двух других состояний конфигурации $3p^63d^94d$ с J = 1, 2, представленные в табл. 3, также очень хорошо согласуются с нашим расчетом. Это косвенно подтверждает надежность расчета значений λ_{las} .

В табл. 4 представлен расчет методом РПТМП длин волн перехода $3d_{3/2}4f_{5/2}$ $[J = 1] - 3d_{3/2}4d_{3/2}$ [J = 1] РЛОС для Ni-подобных ионов с Z = 50-79. Значения λ_{las} в табл. 4 получены *ab initio* без использования какихлибо подгонок. Ошибка расчета составляет несколько единиц в четвертой значащей цифре. Из табл. 4 определяем ионы, перспективные для создания интенсивных источников излучения (РЛОС) с длинами волн, для которых разработаны многослойные зеркала с высокими коэффициентами отражения. По крайней мере три значения λ_{las} представляют интерес с точки зрения создания источников для нанолитографии.

(I) Для Z = 50 (Sn²²⁺), $\lambda_{\text{las}} \sim 134$ Å. Это область излучения, для которой многослойные зеркала Mo/Si были разработаны еще в 1993 г. [27]. Уже тогда максимальный коэффициент отражения для этого значения λ при нормальном падении составлял 66% и в дальнейшем достиг 70%.

(II) Для Z = 54, $\lambda_{las} \sim 113$ Å. Серия измерений коэффициентов отражения от многослойного зеркала Мо/Ве при нормальном падении выполнена в [28]. Коэффициент отражения в максимуме для этого λ составил 68.7 \pm 0.2%. В нашей работе [22] представлена модель высокоэффективных источников монохроматического излучения для промышленной нанолитографии, создаваемых в плазме, образованной при взаимодействии интенсивного лазера накачки с потоками кластеров ксенона. Источниками являются РЛ на переходах Ni-подобного ксенона (Xe²⁶⁺): РЛ на переходах $3p^53d^{10}4l - 3p^53d^{10}4l$. ($\lambda_{las} \sim 135$ Å), РЛОС на перехода $3d_{3/2}4f_{5/2}$ [J = 1] $-3d_{3/2}4d_{3/2}$ [J = 1] ($\lambda_{las} = 113$ Å).

(III) В Ni-подобном иттербии (Yb⁴²⁺, Z = 70), $\lambda_{las} \sim 67.25$ Å. Многослойные зеркала на основе La/В для длин волн 67.1–68.9 Å разработаны в [29].

Заключение

Область Z, в которой происходит пересечение уровней энергии одной четности, характеризуется взаимным влиянием этих уровней друг на друга, которое может приводить к скачкам в значениях энергий и вероятностей радиационных переходов вдоль Ni-подобной последовательности. К такому же заключению пришли авторы расчета [30], где рассматривались пересечения уровней энергий Ni-подобной последовательности в области Z = 74-84. Здесь ограничились рассмотрением уровней с J = 1 с целью определения точности расчета верхнего и нижнего рабочих уровней РЛОС. Проведенное исследование указывает на возможную ошибку идентификации верхнего рабочего уровня в \ln^{21+} в расчете МКДФ [9].

Принято считать, что уровни энергий атомов и многозарядных ионов определяются однозначно, независимо от плазменного источника и его плотности. В расчете энергетических уровней иона Mo¹⁴⁺ (Z = 42) мы наблюдаем экстраординарный эффект, который можно назвать "нестабильность состояния многозарядного иона". Предполагаем, что суть эффекта состоит в неоднозначности диагонализации энергетической матрицы изолированного иона. Неоднозначность вызвана сильным взаимодействием уровней $3d_{3/2}4d_{3/2}$ [J = 1] и $3d_{3/2}4d_{5/2}$ [J = 1](рис. 4). Таким образом, результат измерения энергий этих уровней в плотной плазме может не совпадать с результатом измерения в плазме низкой плотности. Эффект обусловлен не различием электронного поля, а неустойчивостью состояния. По аналогии с экспериментом [3] необходимо дополнительное исследование спектров излучения иона Mo¹⁴⁺ в плазме низкой плотности.

Список литературы

- Ivanova E.P., Gulov A.V. // Atom. Data Nucl. Data Tables. 1991. V. 49. N 1. P. 1.
- [2] Собельман И.И. Введение в теорию атомных спектров. М.: Наука, 1977. 317 с.; Sobelman I.I. Introduction to the Theory of Atomic Spectra. Oxford, New York: Pergamon Press, 1972.
- Оптика и спектроскопия, 2018, том 125, вып. 2

- [3] Beiersdorfer P., Scofield J.H., Brown G.V., Chen M.H., Hell N., Osterheld A.L., Vogel D.A., Wong K.L. // Phys. Rev. A. 2016. V. 93. N 5. P. 051403 (R).
- [4] Иванова Е.П. // Опт. и спектр. 2014. Т. 117. № 2. С. 179; Ivanova E.P. // Орt. Spectrosc. 2014. V. 117. N 2. Р. 167.
- [5] Иванова Е.П. // Опт. и спектр. 2015. Т. 118. № 4. С. 506; Ivanova E.P. // Opt. Spectrosc. 2015. V. 118. N 4. Р. 506.
- [6] Nilsen J. // Proc. Conf. X-ray lasers 1996, Lund, Sweden / Ed. by Svanberg S., Walström C.-G. Inst. Phys. Conf. Ser. N 151. 1996. P. 164.
- [7] Nilsen J. // JOSA. B. 1997. V. 14. N 6. P. 1511.
- [8] Grant I.P., McKenzie B.J., Norrington P.H., Mayers D.F., Pyper M.C. // Comput. Phys. Commun. 1980. V. 21. P. 207.
- [9] Nilsen J., Dunn J., Osterheld A.L., Li Yu. // Phys. Rev. A . 1999. V. 60. N 4. P. R2677.
- [10] Kuba J., Klisnick A., Ros D., Fourcade P., Jamelot G., Miquel J.-L., Blanchot N., Wyart J.-F. // Phys. Rev A. 2000. V. 62. N 2. P. 043808.
- [11] Siegrist M., Staub F., Jia F., Feuer T., Balmer J., Nilsen J. // Opt. Commun. 2017. V. 382. P. 288.
- [12] Reader J., Aquista N., Kaufman V. // JOSA. B. 1991. V. 8. N 3. P. 538.
- [13] Chen H., Beiersdorfer P., Fournier K.B., Träbert E. // Phys. Rev. E. 2002. V. 65. N 5. P. 056401.
- [14] Churilov S.S., Ryabtsev A.N., Wyart J.-F. // Phys. Scr. 1988.
 V. 38. P. 326.
- [15] Рябцев А.Н., Чурилов С.С., Нильсен Дж., Ли Ю., Данн Дж., Остерхельд А.Л. // Опт. и спектр. 1999. Т. 87. № 2. С. 197.
- [16] Rahman A., Hammarsten E.C., Sakadzik S., Rocca J.J., Wyart J.-F. // Phys. Scr. 2003. V. 67. P. 414.
- [17] Rahman A., Rocca J.J., Wyart J.-F. // Phys. Scr. 2004. V. 70. P. 21.
- [18] Churilov S.S., Ryabtsev A.N., Wyart J.-F. // Phys. Scr. 2005.
 V. 71. P. 457.
- [19] Иванова Е.П., Гогава А.Л. // Опт. и спектр. 1985. Т. 59. № 6. С. 1310.
- [20] Ivanova E.P. // Laser Phys. Lett. 2015. V. 12. P. 105801.
- [21] Иванова Е.П., Виноходов А.Ю. // Квант. электрон. 2013.
 Т. 43. № 12. С. 1099; Ivanova E.P., Vinokhodov A.Yu. // Quant. Electron. 2013. V. 43. N 12. P. 1099.
- [22] Ivanova E.P. // Laser Phys. 2017. V. 27. P. 055802.
- [23] *Kramida A.E., Shirai T. //* At. Data Nucl. Data Tables. 2009.
 V. 95. P. 305.
- [24] Clementson J., Beiersdorfer P., Brown G.V., Gu M.F. // Phys. Scr. 2010. V. 91. P. 015301.
- [25] Dong C.-Z., Fritzsche S., Xie L.-Y. // JQSRT. 2003. V. 76. P. 447.
- [26] Safronova U.I., Safronova A.S., Hamasha S.M., Beiersdorfer P. // At. Data Nucl. Data Tables. 2006. V. 92. P. 47.
- [27] Stearns D.G., Rosen R.S., Vernon S.P. // Appl. Opt. 1993.
 V. 32. P. 6952.
- [28] Skulina K.S., Alford C.S., Bionta R.M., Makowiecki D.M., Gullikson E.M., Soufli R., Kortright J.B., Underwood J.H. // Appl. Opt. 1995. V. 34. P. 3727.
- [29] Makhotkin I.A., Zoethout E., Van de Kruijs R., Yakunin N., Louis E., Yakunin A.M., Banine V., Bijkerk F. // Opt. Expr. 2013. V. 21. P. 29894.
- [30] Dong C.-Z., Fritzsche S., Gaigalas G., Jacob T., Sienkievicz J.E. // Phys. Scr. 2001. V. 92. P. 314.