06;09

Антистоксова люминесценция нанокристаллов Gd_2O_3 , легированных ионами Er^{3+} и Yb^{3+}

© В.А. Пустоваров, Е.С. Трофимова, Ю.А. Кузнецова, А.Ф. Зацепин

Уральский федеральный университет, Екатеринбург, Россия E-mail: vpustovarov@bk.ru

Поступило в Редакцию 4 апреля 2018 г.

Антистоксова люминесценция (АСЛ) нанокристаллического оксида гадолиния, легированного ионами Er^{3+} и Yb³⁺, исследована в диапазоне температур 90–400 К. Нанокристаллы синтезированы методом химического осаждения и имеют кубическую кристаллическую структуру со средним размером частиц 48–57 nm. Показана зависимость интенсивности АСЛ в красной (переход ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ в ионах Er^{3+}) и зеленой (переход ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$) областях спектра от температуры и концентрации примесных ионов, а также дефектов кристаллической структуры (анионных вакансий), создаваемых дополнительным введением в решетку ионов Zn^{2+} или облучением быстрыми электронами с энергией 10 MeV. Процессы транспорта энергии определяют эффективность и спектр АСЛ люминофора.

DOI: 10.21883/PJTF.2018.14.46343.17315

Антистоксова люминесценция (АСЛ) (up-conversion luminescence) в твердом теле может наблюдаться, когда поглощение двух или более низкоэнергетических фотонов приводит к эмиссии фотона более высокой энергии [1,2]. Такое преобразование поглощенной энергии имеет потенциальное применение в оптической термометрии, светотехнике, при создании скрытых меток, визуализации инфракрасного лазерного излучения, повышении эффективности солнечных батарей и т.д. [3]. Для АСЛ твердотельных матриц наиболее эффективным является использование ионов Er^{3+} как примесных центров благодаря наличию у них развитой структуры возбужденных электронных состояний и большому времени жизни (τ) возбужденных состояния $^{4}I_{11/2}$. Электронные переходы из различных возбужденных состояний формируют

42

АЛС преимущественно в зеленой или красной спектральных областях. В то же время использование пары ионов ${\rm Er}^{3+}/{\rm Yb}^{3+}$ позволяет повысить выход АСЛ за счет механизма последовательной сенсибилизации, который предполагает поглощение инфракрасного излучения ионом Yb³⁺ и последующий перенос энергии (energy transfer — ET) между ионами $Yb^{3+} \rightarrow Er^{3+}$. На время жизни τ и, главное, на эффективность ET существенное влияние оказывают дефекты кристаллической решетки, выступающие как центры безызлучательной релаксации. Эффективность ЕТ определяется рядом факторов, связанных как с материалом матрицы (кристаллическая структура, дефектность, размерность, поверхностные эффекты), так и со свойствами примесных ионов (качественный и количественный состав донорно-акцепторных пар, сечение поглощения, квантовый выход и кинетика затухания люминесценции). Определение оптимальных концентраций легирующих примесей и установление роли дефектов кристаллической структуры являются основными задачами для достижения максимальной эффективности переноса энергии.

Кристаллы оксида гадолиния (ширина запрещенной зоны $E_g = 5.6 \,\mathrm{eV}$) представляют интерес как матрицы для функциональных устройств нанофотоники, оптоэлектроники, конверторов излучения из-за их высокой термической стабильности, химической стойкости, низкой энергии предельных фононов (~ $600 \,\mathrm{cm^{-1}}$) [4,5]. Люминесценция кристаллов Gd₂O₃, легированных редкоземельными ионами, в частности $\mathrm{Er^{3+}}$, исследовалась при рентгеновском или ВУФ/УФвозбуждении в ряде работ (см., например, [4–7]). Хорошо известны результаты изучения АСЛ в макроскопических порошках Gd₂O₃ (результаты суммированы в монографии [8]), в то же время результаты исследования АСЛ в синтезированных различными методами нанокристаллических Gd₂O₃ с разной кристаллической структурой представляют значительный практический интерес [9–15].

В настоящей работе в диапазоне температур 90–400 К изучена ACЛ нанокристаллического оксида гадолиния кубической сингонии, легированного ионами Er^{3+} или парой ионов $\mathrm{Er}^{3+}/\mathrm{Yb}^{3+}$ различной концентрации. Исследовано влияние дефектов кристаллической структуры на эффективность и спектры ACЛ.

Нанокристаллические образцы были синтезированы в Уральском федеральном университете методом химического осаждения. Фазовый состав образцов исследовался методом рентгеновской дифракции (XPertPro MPD-дифрактометр). Установлено, что все образцы содержат

одну кубическую фазу Gd₂O₃ (пространственная группа *Ia*-3, JCPDS N 65-3181). Исследование морфологии образцов и определение размера наночастиц были выполнены с применением сканирующего электронного микроскопа Carl Zeiss SIGMA VP. Средний размер частиц во всем диапазоне исследуемых концентраций примесных редкоземельных ионов составлял 48–57 nm. Детальное описание методики синтеза и результатов аттестации исследуемых образцов приведено в нашей работе [11].

Для возбуждения АСЛ использовался лазерный GaAs-диод (980 nm, 100 mW). АСЛ детектировалась с применением монохроматора МДР-23 и фотоэлектронного умножителя ФЭУ-106. Спектры АСЛ корректировались на спектральную чувствительность оптического тракта. Облучение образцов быстрыми электронами проводилось на линейном ускорителе УЭЛР-10С в Уральском федеральном университете (E = 10 MeV, флюенс $1 \cdot 10^{17}$ е/cm²).

На рис. 1, а представлен спектр АСЛ Gd₂O₃ : Ег. В спектре доминируют группы линий, соответствующие электронным переходам в ионах Er^{3+} в зеленой (переход ${}^4S_{3/2} \rightarrow {}^4I_{15/2}$) и красной (${}^4F_{9/2} \rightarrow {}^4I_{15/2}$) областях спектра. Механизм возбуждения АСЛ состоит в поглощении первого низкоэнергетического кванта основным состоянием иона Er^{3+} (переход ${}^4I_{15/2} \rightarrow {}^4I_{11/2}$). Второй квант поглощается возбужденным состоянием ${}^4I_{11/2}$ за счет электронного перехода на более высокий энергетический уровень. Время жизни возбужденного состояния ${}^4I_{11/2}$ должно быть достаточно большим, чтобы за время прихода второго кванта возбуждения не произошло излучения с этого состояния [1-3,8]. Безызлучательная фононная релаксация с уровня ${}^4S_{3/2}$ на уровень ${}^4F_{9/2}$ зависит от энергии эффективных фононов, типа и степени дефектности кристаллической решетки, она маловероятна для фторидов, но, как правило, значительна для оксидов [8].

Ранее в работе [11] нами было установлено, что при внутрицентровом фотовозбуждении ионов Er^{3+} ($\lambda_{exc} = 380$ nm, переход ${}^{4}I_{15/2} \rightarrow {}^{4}F_{7/2}$) в $\mathrm{Gd}_2\mathrm{O}_3$: Ег выход внутрицентровой фотолюминесценции максимален при концентрации $\mathrm{Er}_2\mathrm{O}_3$ 2 mol.% и далее с ростом концентрации он падает за счет концентрационного тушения. С учетом этого мы исследовали АСЛ в $\mathrm{Gd}_2\mathrm{O}_3$: Ег в диапазоне концентраций $\mathrm{Er}_2\mathrm{O}_3$ 0.5–8 mol.%. Установлено, что относительный выход АСЛ в красной области растет с увеличением концентрации Er^{3+} (см. вставку на рис. 1, *a*). Из этого следует, что скорость безызлучательной релаксации

Рис. 1. Спектры АСЛ Gd_2O_3 : Er (2 mol.%) (*a*) и Gd_2O_3 : Er (2 mol.%)/Yb (3 mol.%) (*b*). На вставках показаны отношения интенсивности "красной" (660 nm) и "зеленой" (560 nm) линий в зависимости от концентрации Er_2O_3 в Gd_2O_3 : Er (*a*) и концентрации Yb_2O_3 в Gd_2O_3 : Er (2 mol.%)/Yb (*b*).

с уровня ${}^{4}S_{3/2}$ на излучательный уровень ${}^{4}F_{9/2}$ возрастает с ростом концентрации примесных ионов Er^{3+} .

На рис. 1, b представлен спектр АСЛ Gd₂O₃, легированного парой ионов Er³⁺/Yb³⁺. Сразу отметим, что выход АСЛ ионов Er³⁺, определяемый по интегралу интенсивности спектра АСЛ в области 500-700 nm, возрастает. В этом случае первый этап механизма возбуждения АСЛ заключается в последовательной сенсибилизации. Этот этап состоит в поглощении возбуждающего инфракрасного излучения ионом Yb³⁺ и последующем переносе энергии между ионами $Yb^{3+} \rightarrow Er^{3+}$ [1,2]. Увеличение концентрации этих примесных ионов, с одной стороны, увеличивает поглощение возбуждающего излучения и вероятность переноса энергии $Yb^{3+} \rightarrow Er^{3+}$, но, с другой стороны, уменьшает время жизни как возбужденного ${}^{2}F_{5/2}$ -состояния иона Yb^{3+} , так и излучательных состояний иона Er^{3+} . Эти процессы определяют оптимальную концентрацию пары примесных ионов. В Gd_2O_3 : Er^{3+}/Yb^{3+} с ростом концентрации Yb³⁺ растет относительный выход красного свечения (см. вставку на рис. 1, b). Это снова указывает на то, что при заселении возбужденных состояний ионов Er³⁺ за счет процесса ET возрастает скорость безызлучательной фононной релаксации с уровня ⁴S_{3/2} на излучательный уровень ${}^4F_{9/2}$ в ионе Er^{3+} .

Чтобы определить роль дефектов кристаллической решетки как "килеров" процесса ET в паре Yb³⁺ - Er³⁺, мы исследовали АСЛ Gd₂O₃, легированного парой ионов Er³⁺/Yb³⁺ и двухвалентными ионами Zn²⁺, создающими анионные вакансии в кристаллической решетке за счет локальной компенсации заряда. Отметим, что литературные данные по влиянию гетеровалентных ионов на выход и спектры АСЛ в различных оксидах противоречивы [12,15]. На основе наших данных выделим два логичных результата. Во-первых, выход АСЛ, определяемый по интегралу интенсивности спектра АСЛ в области 500-700 nm, снижается. Во-вторых, с увеличением концентрации Zn²⁺ немонотонно возрастает относительный выход красного свечения (см. вставку на рис. 2). В настоящей работе мы не приводим результаты спектральнокинетических исследований обычной стоксовой фотолюминесценции, но по нашим данным и по аналогии с результатами, полученными при исследовании АСЛ на фторидных системах [8], этот факт объясняется уменьшением как времени жизни возбужденного ²F_{5/2}-состояния иона Yb³⁺, так и времени жизни излучательных состояний иона Er³⁺ из-за их взаимодействия с дефектами окружения. Кроме того, такое взаи-

Рис. 2. Спектры АСЛ Gd_2O_3 : Er (2 mol.%) + Zn (4 mol.%) при T = 295 K. На вставке показано отношение интенсивности "красной" (660 nm) и "зеленой" (560 nm) линий в зависимости от концентрации ионов Zn²⁺.

модействие приводит и к изменению процессов фононной релаксации возбужденных состояний ионов Er^{3+} , в результате чего относительная вероятность излучательных переходов ${}^4F_{9/2} \rightarrow {}^4I_{15/2}$ возрастает.

Такой вывод подтверждается исследованием АСЛ кристаллов Gd_2O_3 , легированных парой ионов Er^{3+}/Yb^{3+} , после их дополнительного облучения быстрыми электронами с энергией 10 MeV. При таком облучении наиболее вероятно образование дефектов в анионной подрешетке кристалла по механизму ударного смещения. Чтобы исключить отжиг радиационно-индуцированных дефектов во время облучения, образцы размещались в специальной камере с водяным охлаждением, температура образцов при облучении не превышала 70°С. После облучения при флюенсе 1 · 10¹⁷ e/cm², во-первых, не наблюдается появления окраски кристаллов, однако в спектре фотолюминесценции исчезает линия 315 nm (переход ${}^6P_{3/2} \rightarrow {}^8S_{7/2}$ в ионах Gd³⁺) и регистрируется новая широкая полоса в области 500 nm; все это указывает на проявления радиационно-индуцированных дефектов кристаллической

Рис. 3. Температурная зависимость выхода АСЛ на длинах волн 560 и 660 nm в Gd_2O_3 : Er (2 mol.%)/Yb (5 mol.%) и Gd_2O_3 : Er (2 mol.%).

структуры [12]. Во-вторых, действительно, в спектре АСЛ облученных кристаллов относительная интенсивность "красной" линии возрастает. Кроме того, дополнительные спектрально-кинетические измерения по-казывают сокращение времени жизни излучательных ${}^{4}S_{3/2}$ -состояний ионов Er^{3+} .

Температурные зависимости АСЛ для разных электронных переходов в ионах Er^{3+} в $\mathrm{Gd}_2\mathrm{O}_3:\mathrm{Er}^{3+}$ и $\mathrm{Gd}_2\mathrm{O}_3:\mathrm{Er}^{3+}/\mathrm{Yb}^{3+}$ при оптимальной концентрации примесных ионов, обеспечивающих максимальный выход АСЛ, показаны на рис. 3. На рис. 1, *а* для примера показан также низкотемпературный спектр АСЛ. Из представленных данных следует, что вероятность указанных излучательных переходов в ионах Er^{3+} имеет разную температурную зависимость. Поскольку механизм возбуждения АСЛ в $\mathrm{Gd}_2\mathrm{O}_3:\mathrm{Er}^{3+}/\mathrm{Yb}^{3+}$ предполагает стадию переноса энергии $\mathrm{Yb}^{3+} \rightarrow \mathrm{Er}^{3+}$, такие зависимости в $\mathrm{Gd}_2\mathrm{O}_3:\mathrm{Er}^{3+}$ и $\mathrm{Gd}_2\mathrm{O}_3:\mathrm{Er}^{3+}/\mathrm{Yb}^{3+}$ различны. Кроме того, отметим, что, как и для других оксидов или фторидов, наиболее выраженную температурную зависимость имеет линия 524 nm (излучательный переход ${}^2H_{11/2} \rightarrow {}^4I_{15/2}$, на рисунке не

показан), наименьшую — "красная" линия 660 nm (${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$). Наиболее адекватное объяснение температурных зависимостей заключается в изменении времени жизни возбужденных состояний ионов Er^{3+} за счет взаимодействия с дефектами кристаллической структуры или в изменении скорости фононной релаксации [8,12]. Изменения относительной интенсивности АСЛ разных излучательных переходов могут найти применение в оптической термометрии [13,14].

Работа выполнена при финансовой поддержке Министерства образования и науки РФ (базовая часть государственного задания, проект № 3.1485.2017/4.6).

Список литературы

- [1] Auzel F., Pecile D., Morin D. // J. Electrochem. Soc. 1975. V. 122. P. 101-107.
- [2] Feofilov P.P., Ovsyankin V.V. // Appl. Opt. 1967. V. 6. P. 1828-1833.
- [3] Shalav A., Richards B.S., Trupke T., Krämer K.W., Güdel H.U. // Appl. Phys. Lett. 2005. V. 86. P. 013505.
- [4] Guo H., Dong N., Yin M., Zhang W., Lou L., Xia S. // J. Phys. Chem. B. 2004.
 V. 108. P. 19205–19209.
- [5] Singh S.K., Kumar K., Rai S.B. // Appl. Phys. B. 2009. V. 94. P. 165-173.
- [6] Zatsepin A., Kuznetsova Yu., Spallino L., Pustovarov V., Rychkov V. // Energy Procedia. 2016. V. 102. P. 144–151.
- [7] Kuznetsova Yu.A., Zatsepin A.F., Tselybeev R.A., Rychkov V.N., Pustovarov V.A. // J. Phys.: Conf. Ser. 2016. V. 741. P. 012089.
- [8] Чукова Ю.П. Антистоксова люминесценция и новые возможности ее применения. М.: Сов. радио, 1980. 192 с.
- [9] Tamrakar R.K., Bisen D.P., Upadhyay K., Bramhe N. // J. Lumin. Appl. 2014.
 V. 1. P. 23–29.
- [10] Li Y, Hong G, Zhang Y, Yu Y. // J. Alloys Compd. 2008. V. 456. P. 247–250.
- [11] Kuznetsova Yu.A., Zatsepin A.F., Pustovarov V.A., Mashkovtsev M.A., Rychkov V.N. // J. Phys.: Conf. Ser. 2017. V. 917. P. 052015.
- [12] Trofimova E.S., Pustovarov V.A., Kuznetsova Yu.A., Zatsepin A.F. // AIP Conf. Proc. 2017. V. 1886. P. 020024.
- [13] Singh S.K., Kumar K., Rai S.B. // Sensors Actuators A: Physical. 2009. V. 149. P. 16–20.
- [14] Siaï A., Haro-González P., Horchani Naifer K., Férid M. // Opt. Mater. 2018. V. 76. P. 34–41.
- [15] Li D., Qin W., Zhang P., Wang L., Lan M., Shi P. // Opt. Mater. Express. 2017. V. 7. P. 329–340.