04

Разрядные характеристики плазменного источника Пеннинга

© Н.В. Мамедов,^{1,2} Н.Н. Щитов,¹ Д.В. Колодко,² И.А. Сорокин,² Д.Н. Синельников²

1 Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова,

127055 Москва, Россия

² Национальный исследовательский ядерный университет «МИФИ»,

115409 Москва, Россия

(Поступило в Редакцию 21 июня 2017 г.)

Представлены результаты исследований разрядных характеристик плазменного источника Пеннинга. Измерены вольт-амперные характеристики (BAX), энергетическое распределение и масс-зарядовый состав ионов, эмитируемых из разряда при различных режимах его горения. Установлена связь между всплесками тока разряда и увеличением провисания потенциала (до 50% от напряжения на аноде). Измеренные BAX хорошо согласуются с теоретическими зависимостями. Показано, что содержание атомарных ионов водорода повышается с 5 до 10% при увеличении анодного напряжения от 1 до 3.5 kV и вкладываемой в разряд мощности (от 0.2 до 3 W).

DOI: 10.21883/JTF.2018.08.46304.2396

Введение

За последние несколько лет опубликовано большое количество работ [1–25], посвященных исследованию характеристик разряда с осциллирующими электронами в магнитном поле (или пеннинговского разряда). Благодаря своей простоте и надежности данный тип разряда применяется в различных областях науки и техники. Широкое распространение получили магниторазрядные датчики давления [1], ионные источники как для напылительных установок [2], так и для миниатюрных линейных ускорителей [3–5,9,10]. Данный тип разряда применяется и в системах электромагнитной сепарации изотопов [6], в источниках калиброванного светового излучения [7], в источниках гипертермальных пучков нейтральных частиц [12].

В большинстве работ приводятся только зависимости тока разряда от различных физических параметров (давления, напряжения на аноде, величины магнитного поля) [3–8,11,16–19] или зависимости тока разряда от некоторых геометрических параметров разрядной ячейки [13–19]. В нескольких работах, посвященных исследованию характеристик миниатюрных линейных ускорителей [3,5], измеряется также масс-зарядовый состав эмитированных ионов. Однако практически во всех работах не приводится энергетическое распределение ионов в разряде, нет данных о режимах его горения и практически нет теоретических оценок тока разряда.

Как известно, знание распределения потенциала внутри плазмы источника необходимо для полного понимания разрядных процессов и механизмов образования различных ионных фракций. Данное распределение потенциала, зависящее от их режимов горения разряда, определяет энергетическое распределение ионов, вылетевших из ионного источника, и пространственное распределение ионов вблизи экстрагирующего отверстия [26]. Увеличение электронной плотности плазмы в разряде путем изменения режима его горения повлечет за собой и изменение в масс-зарядовом составе разряда.

В настоящей работе показано полное исследование разрядных характеристик плазменного источника Пеннинга с помощью анализа энергетических и массзарядовых спектров ионов (эмитированных из источника в продольном направлении). Также произведена теоретическая оценка тока разряда.

1. Теоретическая часть

В зависимости от физических (напряжения на аноде U_d , величины магнитного поля H, давления рабочего газа Р, материала электродов) и геометрических (радиуса анода r_a, длины анода l_a, длины разрядной ячейки/расстояния между катодами l) параметров разряда существует несколько режимов его горения. В нескольких ранних обзорах [27-30], посвященных разряду Пеннинга, показаны диаграммы различных состояний разряда (рис. 1). Также на рис. 1 дано схематическое изображение ячейки Пеннинга с указанием пути от катода (с) к аноду (a) через центр (b), по которому измеряется потенциал, символические законы изменения которого представлены на боковых графиках. В середине рисунка помещена диаграмма различных режимов горения разряда в координатах "плотность газа-отношение квадрата индукции B^2 магнитного поля к напряжению на аноде".

Сплошная линия, напоминающая гиперболу, обозначает кривую зажигания. Прямые линии разделяют области слабого (низкого) магнитного поля — LMF (low magnetic field), сильного (высокого) — HMF (high magnetic field), "переходную" — TM (transition mode), высокого давления — HP (high pressure) и область тлеющего разряда — GD (glow discharge).

e-mail: m_nikitos@mail.ru

Рис. 1. Диаграмма различных режимов горения разряда с осциллирующими электронами [27,28].

При увеличении давления и постоянной индукции последовательно меняется режим (мода) разряда. При низких давлениях и индукциях разряд не существует, что и отмечено "No discharge". В случае длинного анода потенциал в центре лишь немногим отличается от потенциала анода и почти не изменен по сравнению с отсутствием разряда (в случае кольцевого анода потенциал на оси почти вдвое меньше потенциала анода). После зажигания разряда ситуация меняется в зависимости от величины В. При малых В и увеличении плотности газа (давления) разряд непрерывно переходит из моды ТМ в моду LMF. Распределение потенциала сильно искажается облаком отрицательного заряда, существующим во всем объеме ячейки. Это происходит из-за того, что в скрещенных полях данной конфигурации электроны движутся по замкнутым циклоидам и перемещаются к аноду только в результате соударений с атомами газа. Ионы же свободно (почти без соударений) движутся к катоду вдоль линий электрического поля, не испытывая серьезного влияния магнитного поля.

При увеличении магнитного поля все больше и больше электронов начинают осциллировать вдоль оси разряда, двигаясь по замкнутым циклоидам и медленно диффундируя к аноду. Образовывается область отрицательного объемного заряда, что приводит к падению потенциала на оси вплоть до катодного, т.е. до нуля. Анодное падение потенциала сжимается, и разряд входит в режим НМГ. Он простирается вплоть до очень высоких значений *В*. Из рис. 1 следует, что вокруг оси образуется область плазмы, свободная от поля: электронное облако образует оболочку, прилегающую к аноду. При больших давлениях возникает переходный режим (TM) к режиму высокого давления (HP). Начиная с некоторого давления, разряд может существовать, только если формируется катодный слой. Центральная плазма все еще присутствует. Однако при переходе к HP анодное падение внезапно исчезает, и распределение потенциала становится похожим на распределение в нормальном тлеющем разряде. Отличие состоит в наличии сильного аксиального электрического поля в центральной плазме. Затем при самых высоких давлениях магнитное поле уже не является определяющим для поддержания разряда. Длина свободного пробега электрона становится меньше длины ячейки. Получаем тлеющий разряд с необычной конфигурацией электродов (GD). При больших токах этот разряд может перейти в дугу.

Для расчета тока разряда можно воспользоваться работами [29,30]. Основная ионизация электронами, осциллирующими по оси разряда z, происходит внутри цилиндра (с $r < r_a$), в котором электрическое поле слабо меняется. Электроны, образовавшиеся в этой области в результате ионизации, движутся в основном по радиусу и перемещаются к аноду со скоростью (формулы приведены в СГС):

$$v(r) = M v_e r, \tag{1}$$

$$M = rac{\sqrt{2 heta^2} + \sqrt{2 heta^2 - eta^2}}{2\sqrt{2(heta^2 - eta^2)}},$$
 $heta = rac{eH}{2mc}, \ eta^2 = 2 \, rac{e(U_d - U_0)}{mr_a^2},$

гле

 r_a — радиус анода, H — напряженность магнитного поля, v_e — частота столкновений электронов с атомами газа (при больших энергиях электронов v_e можно считать постоянной), $\Delta U = U_d - U_0$ — разность между потенциалом на аноде и потенциалом в центре разрядной ячейки, U_0 — потенциал в центре разрядного промежутка, m, e — масса и заряд электрона.

Формула для разрядного тока находится из решения уравнения Пуассона и уравнения непрерывности (с учетом радиальной скорости электронов в скрещенных полях)

$$i = -2\pi r \rho(r) v(r), \tag{2}$$

$$\frac{1}{r}\frac{d}{dr}(rE(r)) = -4\pi\rho(r).$$
(3)

Измерения распределения потенциала U(r) в области плоскости симметрии разрядного промежутка и учет частоты вращения электронного облака показали, что в первом приближении U(r) определяется выражением

$$U(r) = U_0 \left(1 + \frac{U_d - U_0}{U_0} \frac{r^2}{r_a^2} \right).$$

Тогда напряженность электрического поля равна

$$E(r) = 2(U_d - U_0) \frac{r^2}{r_a^2}.$$
 (4)

Подставляя выражение (2) в (3) с учетом (1) и (4), получаем выражение для разрядного тока

$$I_{\text{discharge}} = \left(\frac{\sqrt{2\theta^2} + \sqrt{2\theta^2 - \beta^2}}{2\sqrt{2\theta^2 - \beta^2}} - 1\right) \nu_{e1} p \, \frac{m}{e} \beta^2 r_a^2 l_a, \quad (5)$$

где l_a — длина анода, v_{e1} — частота столкновений электронов с атомами газа при p = 1 Torr.

В работе [27], исходя из классической формулы подвижности электронов в поперечном магнитном поле, получены выражения, связывающее величину провисания потенциала с током разряда (формулы приведены в СИ):

$$U_d - U_0 = \frac{3e}{16m} \frac{\vartheta_i}{\vartheta_c} r_a^2 B^2, \qquad (6)$$

$$I_{\text{discharge}} = \frac{3e}{4m} \pi l \varepsilon_0 \, \frac{\vartheta_i^2}{\vartheta_c} \, r_a^2 B^2. \tag{7}$$

Следовательно, ток разряда равен

$$I_{\text{discharge}} = 4\pi l \varepsilon_0 \vartheta_i (U_d - U_0), \qquad (8)$$

где $\varepsilon_0 = 8.85 \cdot 10^{-12} \,\mathrm{C}^2 \mathrm{m}^{-3} \mathrm{kg}^{-1} \mathrm{s}^2$, l — длина анода, $U_d - U_0$ — разность между потенциалом на аноде и потенциалом в центре разрядной ячейки, ϑ_i — частота ионизации, r_a^2 — радиус анода, B — магнитная индукция.

2. Экспериментальное оборудование

На рис. 2 представлен высоковакуумный стенд для проведения экспериментов по измерению основных параметров ионного пучка [20]. Для регистрации энергетических спектров использовался четвертьсферический электростатический дефлектор с энергетическим разрешением от 0.8 до 1.5%. Кроме того, предусмотренный в составе стенда магнитный масс-монохроматор позволяет осуществлять анализ эмитируемых плазмой источника ионов с отношением массы к заряду до M/Z = 40 при максимальном ускоряющем напряжении 10 kV, обеспечивая при этом разрешение по массам $M/\Delta M \leq 30$ (при энергии регистрируемых ионов 5 keV). Ток ионного пучка измерялся с помощью вторичного электронного умножителя ВЭУ-1 (минимальное значение регистрируемого тока 10⁻¹² A). Вакуумная система с дифференциальной откачкой, состоящая из двух турбомолекулярных насосов Pfeiffer HiPace 80, обеспечивает рабочее давление в плазменном источнике (ПИ) порядка $10^{-3} - 10^{-4}$ Torr и не менее 10^{-5} Torr в пролетной области анализаторов.

Приведенная схема измерений имеет преимущества над методом ленгмюровских зондов [21] в том, что данные измерения не вносят возмущения в сам разряд [26].

Рис. 2. Схема экспериментального стенда: I — натекатель, 2 — трубка напуска газа, 3 — плазменный источник Пеннинга, 4 — диафрагма, 5 — измерительный зонд, 6 — турбомолекулярный насос Pfeiffer HiPace 80, 7 — электростатический энергоанализатор, 8 — цилиндр Фарадея, 9 — траектория ионного пучка, 10 — магнитный массанализатор, 11 — вторичный электронный умножитель ВЭУ-1. Источник питания № 1 (PS1) — мантигора HR-6000P или БП-138 ($U_{\text{discharge}}$, $I_{\text{discharge}}$), источник питания № 2 — Advanced Hivolt PSM 5 ($U_{\text{extraction}}$), амперметр № 1 (A1) — мультиметр Victor 86B ($I_{\text{extraction}}$), амперметр № 2 (A2) — пикоамперметр Keithley 6485 (I_{profile}).

3. Экспериментальные результаты и обсуждение

3.1. Измерения ВАХ и энергетического распределения эмитируемых ионов

На рис. 3 представлены вольт-амперные характеристики (ВАХ) разряда при различных давлениях внутри ПИ (рабочий газ — водород). Как видно из данных графиков, при давлениях выше 5 mTorr происходят резкие скачки тока разряда, после чего сравнительно плавный рост тока разряда при увеличении напряжения на аноде. Для интерпретации особенностей поведения ВАХ приведем результаты работы [27], речь о которых пойдет ниже. В ПИ плотность ионов пропорциональна плотности газа, следовательно, существует некое критическое значение давления, при котором плотность ионов на внутренней границе оболочки плазмы становится сравнимой с плотностью электронов. В предположении ограниченности плотности электронов увеличение давления выше этого уровня приводит к исчезновению анодной оболочки. Таким образом, при определенной комбинации магнитного поля, давления и анодного напряжения в момент перехода к другому режиму горения разряда происходит уменьшение потенциала в катодной области.

Рис. 3. a — теоретическая оценка ВАХ разряда по формуле (9), $U_{\text{discharge}} = 1 \text{ kV}$, $I_{\text{discharge}} = 220 \,\mu\text{A}$, $I_{\text{extraction}} = 1602 \,\mu\text{A}$; b — теоретическая оценка ВАХ разряда по формуле (10), $U_{\text{discharge}} = 1.2 \text{ kV}$, $I_{\text{discharge}} = 2304 \,\mu\text{A}$, $I_{\text{extraction}} = 250 \,\mu\text{A}$; c — экспериментальные ВАХ разряда при различных давлениях внутри ПИ, $U_{\text{discharge}} = 2 \text{ kV}$, $I_{\text{discharge}} = 3968 \,\mu\text{A}$, $I_{\text{extraction}} = 431 \,\mu\text{A}$.

Рис. 4. Фотографии разряда при различных напряжениях на аноде ($P = 2 \text{ mTorr}, U_{\text{extraction}} = 20 \text{ kV}$) [31].

В центральной области анода образуется более плотная плазма.

Сделанные выводы качественно согласуются с экспериментами [31], в которых показано, что скачки тока соответствуют изменениям характера и области горения разряда (рис. 4).

На рис. 5 представлены семейства энергетических спектров экстрагированных ионов при различном напряжении на аноде (при этом корпус источника был заземлен) и при различных давлениях. Как видно из графиков "низких давлений" (P < 5 mTorr) (рис. 5, *a*, *b*), спектры имеют несимметричную форму. Слева от максимума наблюдается резкий рост, справа — плав-

ное падение (высокоэнергетичный хвост). Общий вид спектров, представленных на рис. 5, можно попытаться качественно интерпретировать следующим образом. В центральной части разряда за исключением прикатодных областей по оси потенциал практически постоянен. Поэтому подавляющееся число образующихся в этой области ионов, проходя одинаковую разность прикатодного падения потенциала, приобретают примерно одинаковую энергию на выходе из ПИ. Изза провисания анодного потенциала на оси источника максимум энергетического спектра смещен в низкоэнергетическую область. Левая часть спектра может быть объяснена тем, что часть ионов, образующих-

Рис. 5. Семейства энергетических спектров экстрагированных ионов при различном напряжении на разрядном промежутке (указано возле соответствующих кривых): *a* — 1, *b* — 2, *c* — 7 и *d* — 10 mTorr.

Рис. 6. Зависимость разности между прикладываемым напряжением на аноде и максимумом в получаемом энергетическом спектре (провисание потенциала ΔU) от напряжения на аноде при различных давлениях.

ся в пределах области катодного падения потенциала вблизи антикатода, приобретает меньшую энергию. "Плавный спад" (правая часть спектра) обусловлен

Рис. 7. Обзорный масс-спектр эмитируемых ПИ ионов при давлении P = 1 mTorr и напряжении разряда $U_d = 3.5$ kV без дополнительного ускоряющего напряжения ($U_{\text{ex}} = 0$ kV).

регистрацией ионов из объема плазмы, где величина потенциала плазмы заметно больше потенциала на оси.

Рис. 8. Зависимости атомно-молекулярного отношения от напряжения на аноде (*a*), тока разряда (*b*) и мощности (*c*), вводимой в разряд, при различных давлениях рабочего газа.

В переходной области (при давлениях $P \ge 5$ mTorr), как видно из рис. 5, *c*, *d*, энергетические спектры смещаются в более низкоэнергетическую область, происходит заметное уширение спектров, уменьшение амплитуды максимума спектра, появляются дополнительные низкоэнергетичные пики с интенсивностью на порядок меньше основного пика. При дальнейшем увеличении напряжения на аноде спектры вновь становятся более моноэнергетичными (рис. 5, *d*), с тем лишь отличием от спектров рис. 5, *a*, что в спектрах рис. 5, *d* присутствуют низкоэнергетичные пики. В переходной области разряд может "перескакивать" из одного режима горения в другой и обратно [27], что наглядно демонстрирует изменение формы и положения энергетического спектра (рис. 5).

На рис. 6 показана зависимость провисания потенциала (разность между прикладываемым напряжением на аноде и максимумом в получаемом энергетическом спектре $\Delta U = U_d - E_{\max}/e$) от напряжения на аноде при различных давлениях. Видно, что при низких давлениях ($P < 5 \,\mathrm{mTorr}$) данная величина линейно растет с увеличением прикладываемого напряжения, в то время как

при более высоких давлениях происходит резкий скачок в величине провисания, а затем выход этого значения на плато.

Сравнивая результаты работы [27] с фотографиями разрядной области (рис. 4) и энергетическими спектрами (рис. 5), зарегистрированными в настоящей работе, можно полагать, что после своего зажигания разряд непрерывно переходит из моды T (таунсендовский режим) в моду LMF (низкого магнитного поля), т.е. при малых B и при увеличении плотности газа (давления) распределение потенциала искажается облаком отрицательного заряда, существующим во всем объеме ячейки [27]. При больших давлениях ($P \ge 5$ mTorr) возникает переходный режим (TM), однако перехода в режим высокого давления (HP) не наблюдается.

Для убедительности приведенных выше доводов произведем расчет величины тока разряда и сравним с экспериментально зарегистрированными ВАХ. Для исследуемого плазменного источника длина анода $l_a = 15$ mm, радиус анода $r_a = 6$ mm и величина магнитной индукции B = 80 mT.

Частота ионизации оценивалась по формуле $\vartheta_i = n_0 \upsilon_i \sigma_i$, где $\upsilon_i = 2.35 \cdot 10^6$ m/s — скорость электрона для ионизации, $\sigma_i \approx 10^{-20}$ m² — сечение ионизации для молекулы водорода [32], n_0 [m⁻³] = $3.5 \cdot 10^{22} p$ [Torr] — концентрация нейтральных частиц в зависимости от давления.

Таким образом, формула (5) соответствует (9), а формула (8)–(10):

$$I_{\text{discharge}} = 0.28 \, \frac{(U_d - U_0)^2 p l_a r_a^2}{10^4 - (U_d - U_0)},\tag{9}$$

$$U_{\text{discharge}} = 7.7 \cdot 10^{-2} l p (U_d - U_0).$$
(10)

Как видно, измеренные ВАХ (рис. 2) хорошо согласуются с теоретическими зависимостями, оцененными по формуле (10).

3.2. Измерение масс-зарядового спектра эмитируемых ионов

На рис. 7 представлен обзорный масс-спектр эмитируемых ионов при давлении P = 1 mTorr и напряжении разряда $U_d = 2 \,\mathrm{kV}$ без дополнительного ускоряющего напряжения ($U_{\rm ex} = 0 \, {\rm kV}$). Как видно, типичное распределение по массам имеет вид: ${
m H}^+ \sim 6\%, ~{
m H}^+_2 \sim 90.5\%,$ ${
m H}^+_{2-1} \sim 1.4\%, ~{
m H}^+_2(E) \sim 0.2\%, ~{
m H}^+_3 \sim 0.3\%, ~{
m OH}^+ \sim 0.2\%,$ $m H_2O^+ \sim 0.8\%,\,N^+ \sim 0.08\%,\,O^+ \sim 0.09\%.~H^+_{2-1}$ — молекулярные ионы, развалившиеся в процессе транспортировки пучка до входа в магнитный масс-сепаратор. Оценки показывают, что $H_2^+(E)$ — пик молекулярных ионов, у которых энергетический спектр находится левее основного пика и имеет на порядок меньшую амплитуду (как, например, на рис. 5, d). Суммарный вклад примесных ионов (воды, кислорода и азота) не превышает 1.5% во всех экспериментах, причем основной вклад вносят молекулярные ионы H₂O⁺.

На основании полученных данных построены зависимости отношения числа атомарных к общему числу атомарных и молекулярных ионов водорода $\delta = H^+/(H^+ + H_2^+)$, эмитируемых из ионных источников от напряжения на аноде, тока разряда и мощности, вводимой в разряд при различных давлениях рабочего газа. Как видно из рис. 8, процентное содержание атомарных ионов в эмитируемых потоках находится в пределах 5–10%.

В целом нет видимых различий в зависимостях атомно-молекулярного отношения от давления и тока разряда в указанном диапазоне. Атомно-молекулярное отношение растет с увеличением анодного напряжения (от 1 до $3.5 \, \rm kV$) и мощности, вкладываемой в разряд (от 0.2 до $3 \, \rm W$). Таким образом, можно добиться незначительного увеличения протонной компоненты в "более мощных" режимах горения разряда (TM). Данный эффект достигается вследствие того, что образование протона происходит не только за счет однократного процесса соударения электрона с молекулой водорода,

но и за счет многократных ступенчатых процессов: диссоциация молекулы с последующей ионизацией атомов, ионизация молекулы с последующей диссоциацией молекулярного иона, диссоциативная рекомбинация. Такой способ увеличения протонной компоненты имеет существенный недостаток — повышение мощности разряда подразумевает под собой увеличение скорости эрозии внутренних частей разрядной ячейки и, как следствие, уменьшение ее срока службы.

Заключение

Проведены исследования разрядных характеристик плазменного источника Пеннинга. Показано, что при давлениях выше 5 mTorr происходят резкие скачки тока разряда (с ~ 300 до 700 μ A). Данные скачки тока объясняются увеличением плотности плазмы в центре разряда и увеличением провисания потенциала при изменении режима горения разряда. Измерены энергетические распределения ионов для различных разрядных напряжений и давлений. Показаны форма и общий вид энергетических спектров в зависимости от режима горения разряда. При напряжении на аноде 2 kV провисание потенциала может варьировать от 600 до 1100 V. Определен компонентный состав вытягиваемого пучка ионов. Содержание атомарных ионов находится в пределах 5-10%, растет с увеличением анодного напряжения (от 1 до 3.5 kV) и мощности, вкладываемой в разряд (от 0.2 до 3 W). Измеренные ВАХ хорошо согласуются с теоретическими оценками тока разряда, рассчитанными с помощью измеренной величины провисания потенциала.

Список литературы

- [1] Cherenshchykov S.A. // Vacuum. 2004. Vol. 73. P. 285–289. DOI: 10.1016/j.vacuum.2003.12.003
- [2] Hillis D.L., Morgan P.D., Ehrenberg J.K., Groth M., Stamp M.F., Von Hellermann M., Kumar V. // Rev. Sci. Instrum. 1999. Vol. 70. P. 359.
- [3] Sy A., Ji Q., Persaud A., Waldmann O., Schenkel T. // Rev. Sci. Instrum. 2012. Vol. 83. P. 02B309.
- [4] Das B.K., Shyam A., Das R., Rao A.D.P. // Instrum. Exp. Tech. 2013. Vol. 56. N 2. P. 130–133.
- [5] Yan F, Jin D., Chen L, Wan X. // Proc. of Vacuum Electronic Conference. Beijing, China, 2015. DOI: 10.1109/IVEC.2015.7223900
- [6] Samokhin A., Gavrikov A., Liziakin G., Usmanov R., Smirnov V. // Plasma Fus. Res. 2016. Vol. 1. P. 1401115.
- [7] Prakash R. et al. // Rev. Sci. Instrum. 2012. Vol. 83. P. 123502.
- [8] Das B.K. et al. // Nucl. Instrum. Meth. Res. A. 2012. Vol. 669.
 P. 19.
- [9] Ludewight B. et al. // Proc. of FNDA. USA, Berkeley, 2011.
- [10] Liu W. et al. // Nuclear Nucl. Instrum. Meth. Res. A. 2014. Vol. 768. P. 120.
- [11] Rovey J.L., Ruzic B.P., Houlahan T.J. // Rev. Sci. Instrum. 2007. Vol. 78. P. 106101.
- [12] Abolmasov S.N., Samukawa S. // Rev. Sci. Instrum. 2007. Vol. 78. P. 073302.

- [13] Баберцян Р.П., Егиазарян Г.А., Тер-Геворкян Э.И. // ЖТФ. 1994. Т. 64. Вып. 10. С. 202–207.
- [14] Баберцян Р.П., Бадалян Э.С. и др. // ЖТФ. 1996. Т. 66. Вып. 6. С. 77-83.
- [15] Баберцян Р.П., Бадалян Э.С. и др. // ЖТФ. 2000. Т. 70. Вып. 4. С. 24–28.
- [16] Егиазарян Г.А., Хачатрян Ж.Б. и др. // ЖТФ. 2006. Т. 76. Вып. 2. С. 62–68
- [17] Баберцян Р.П., Бадалян Э.С. и др. // ЖТФ. 1998. Т. 68. Вып. 9. С. 29–32.
- [18] Das B.K., Shyam A. // Rev. Sci. Instrum. 2008. Vol. 79.
 P. 123305. DOI: 10.1063/1.3054268
- [19] Mamedov N., Schitov N., Kanshin I. // Instrum. Exp. Tech. 2016. Vol. 59. N 6. P. 868–876.
- [20] Mamedov N.V., Kolodko D.V., Sorokin I.A., Kanshin I.A., Sinelnikov D.N. // J. Phys. Conf. Ser. 2017. Vol. 830. P. 012063.
- [21] Liziakin G., Gavrikov A., Murzaev Y.A., Usmanov R., Smirnov V. // Phys. Plasmas. 2016. Vol. 23. N 12. P. 123502.
- [22] Oks E.M., Shandrikov M.V., Vizir A.V. // Rev. Sci. Instrum. 2016. Vol. 87. P. 02B703.
- [23] Surzhikov S.T. // J. Phys. Conf. Ser. 2017. Vol. 815. P. 012004.
- [24] Суржиков С.Т. // ДАН. 2016. Vol. 471. № 5. С. 537–541.
- [25] Dikalyuk A.S., Kuratov S.E. // J. Phys. Conf. Ser. 2017. Vol. 815. P. 012001.
- [26] Rohwer P., Baumann H., Schutze W., Bethge K. // Nucl. Instrum. Meth. 1983. Vol. 211. P. 543–546.
- [27] Schuurman W. // Physica. 1967. Vol. 36. P. 136-160.
- [28] Hooper E.B., jr. // Adv. Electron. El. Phys. 1970. Vol. 27. P. 295–343.
- [29] Рейхрудель Э.М., Смирницкая Г.В., Нгуен Хыу Ти. // ЖТФ. 1969. Т. 39. Вып. 6. С. 1052–1060.
- [30] Смирницкая Г.В., Нгуен Хыу Ти // ЖТФ. 1969. Т. 39. Вып. 6. С. 1044–1051.
- [31] Щитов Н.Н., Каньшин И.А., Мамедов Н.В. // Физикохимическая кинетика в газовой динамике. 2015. Т. 16. Вып. 4. С. 2–11.
- [32] *Tawara H., Itikawa Y., Nishimura H., Yoshino M.* // J. Phys. Chem. Ref. Data. 1990. Vol. 19. P. 617–636.