12

Снижение потерь мощности в коронном разряде в условиях осадков

© К.Б. Тыныштыкбаев, Г.Ж. Иманбаев, А.М. Айнабаев, З.А. Инсепов¶

Назарбаев Университет, ЧУ "Nazarbayev University Research and Innovation System", Астана, Казахстан ¶ E-mail: zinsepov@nu.edu.kz

Поступило в Редакцию 9 февраля 2018 г.

Приведены результаты высоковольтных испытаний в условиях имитации дождя в коронном разряде образцов алюминиевого провода марки AS 300/39 с покрытиями, синтезированными методом микродугового оксидирования с использованием электролита с добавками оксида графена и углеродных нанотрубок. Показан существенный эффект: до 40% снижения потерь мощности в короне за счет гидрофильных свойств покрытия.

DOI: 10.21883/PJTF.2018.12.46296.17247

Проблема подавления коронного разряда (CD — corona discharge) является фундаментальной задачей, поставленной еще лордом Кельвином [1], техническое решение которой до сих пор не найдено. Ежегодные мировые потери электроэнергии в коронных разрядах составляют 6 млрд USD в год [2]. Значительные (до 20%) потери электроэнергии от суммарных потерь электроэнергии в воздушных линиях электропередачи высокого и сверхвысокого напряжений связаны с CD при неблагоприятных погодных условиях: дождь, снег [3].

Настоящая работа выполнена с целью изучения возможности снижения потерь в CD путем нанесения покрытий на поверхность высоковольтных алюминиевых проводов.

Для исследования использовались образцы неизолированного алюминиевого провода марки AS300/39, ГОСТ 839–80 (далее провода), применяемого в высоковольтных (500 kV) воздушных линиях (ВЛ) электропередачи. Синтез покрытий из оксида алюминия α -Al₂O₃ осуществлялся методом микродугового оксидирования [4] из электролита с добавками оксида графена (ОГ) и углеродных нанотрубок (УНТ).

89

Микродуговое оксидирование образцов провода диаметром 24 mm и длиной 1500 mm проводилось при пропускании тока величиной 3 A через электрод (катод)—электролит—образец провода (анод) при ступенчатой подаче напряжения от 160 до 320 V с шагом 20 V в течение 4h для каждого образца. Электролиты имели следующий состав: тип EI (образец A1) — NaOH (3 g/l), Na₄P₂O₇ (4 g/l), Na₂SiO₃ (15 g/l), C₃H₈O₃ (10 ml/l), Al₂O₃ (50 mg/l); тип EII (образец A4) — электролит состава EI с добавками суспензии ОГ (2 mg OГ/1 ml H₂O) (производство Sigma Aldrich, CША); тип EIII (образец A5) — электролит E1 с добавками суспензии УНТ (50 g 0.01 wt.% УНТ на 100 ml C₃H₈O₃) (производство TUBALL, Новосибирск, Россия).

Морфология и элементный состав покрытий исследовались с помощью сканирующего электронного микроскопа Crossbeam 540 Carl Zeiss и рентгеновского флуоренсцентного спектрометра XRF Panalytical AXIOS. Отдельные измерения были проведены с помощью сканирующего электронного микроскопа TESCAN LYRA3 GMH с энергодисперсионным спектрометром EDS X-MAX (Санкт-Петербург).

Результаты элементного XRF-анализа показали, что в основном покрытия состоят из оксидов алюминия Al_2O_3 и кремния SiO_2 (wt.%): образец A1 содержит 37.9 Al_2O_3 , 45.2 SiO_2 , 6.3 P_2O_5 ; образец A4 — 36.9 Al_2O_3 , 35.4 SiO_2 , 9.0 P_2O_5 ; образец A5 — 37.1 Al_2O_3 , 32.0 SiO_2 , 21.5 P_2O_5 . Суммарное содержание остальных элементов менее 10%, углерод и углеродные соединения используемыми методами XRF и EDS не регистрируются.

Высоковольтные (свыше $100 \, kV$) испытания проводились в системе электродов провод-плоскость на испытательном полигоне СибНИИЭ (Новосибирск), который имитирует реальные условия возникновения CD на проводах ВЛ $500 \, kV$ в условиях имитации дождя и сухого климата [5].

Результаты высоковольтных испытаний показывают, что образцы с покрытиями более устойчивы к короне, CD начинают развиваться при бо́льших напряжениях, чем напряжение начала возникновения CD на образце провода без покрытия (см. таблицу). На образцах A1, A4 и A5 с покрытиями напряжение начала коронного разряда составляет $V_{\rm CD} = 100$ kV, а на образце A0 без покрытия $V_{\rm CD} = 80$ kV (за начало $V_{\rm CD}$ принято напряжение при мощности потерь 3 W). Наибольшая мощность потерь P = 26.2 (26.2) W в короне при рабочем напряжении V = 140 kV наблюдается в образце A0, наименьшие потери P(A4) = 17.3 (17.3) W и

Характеристика	Образец			
	A0	A1	A4	A5
Напряжение начала CD,* kV	80/83	100/97	100/97	100/94
Напряжение V , kV	Мощность потерь на корону P , ** W			
50	0.2	< 0.1	< 0.1	0.6
70	0.3 (0.2)	0.2 (0.4)	0.2 (0.8)	0.3 (0.4)
80	2.5	1.7	0.7	1.7
100	6.8 (5.8)	3.3 (3.3)	3.5 (2.8)	3.7 (3.1)
120	16.0	10.2	9.7	11.2
140	26.2(26.2)	20.2 (19.3)	17.3 (17.3)	19.1 (16.6)
150	34.6	27.2	24.8	24.6
170	55.0	46.2	46.2	43.5

Характеристики коронных разрядов на образцах провода под дождем

* В числителе приводится напряжение начала CD по эопограммам, в знаменателе — по потерям на корону при мощности потерь 3 W.

** Без скобок приводятся значения потерь, полученные при подъеме напряжения, в скобках — при снижении напряжения.

P = 19.1 (16.6) W имеют место на образцах A4 и A5 соответственно, а в образце A1 потери составляют P = 20.2 (19.3) W (без скобок указаны значения мощности потери при подъеме напряжения, в скобках — при снижении) (см. таблицу). При рабочем напряжении V = 120 kV испытательного стенда обеспечивалось равенство максимальной напряженности поля на исследуемом образце провода и максимальной напряженности поля на составляющих расщепленного провода $3 \times AS300/39$ BЛ 500 kV [5].

Наименьшие мощности потерь на CD наблюдаются в образцах A4 и A5 с покрытиями, синтезированными в электролитах EII и EIII с добавками ОГ и УНТ.

На рис. 1 приведены эопограммы образцов, полученные с помощью электронно-оптического преобразователя "Филин-6". На них видны очаги возникновения CD на каплях воды: чем меньше капель воды на проводе, тем меньше очагов CD. Количество очагов CD на образцах *A*1, *A*4 и *A*5 провода с покрытием значительно меньше, чем на образце *A*0 исходного провода без покрытия (рис. 1). Высокая антикоронная устойчивость образцов *A*4 и *A*5 связана с образованием меньшего числа

Рис. 1. Эопограммы CD, полученные в условиях имитации дождя при напряжении 80 kV на образцах провода A0(a), A1(b), A4(c) и A5(d).

очагов CD в виде капель воды, на которых происходит локальное усиление напряженности электрического поля и начинают развиваться CD. Образование капель воды связано со смачиваемостью поверхности покрытий образцов провода.

Эксперименты по изучению смачиваемости покрытий были проведены на контрольных образцах провода диаметром 4 mm и длиной 180 mm, отделенных от поверхностного витка исследуемых образцов провода. Результаты показали высокую смачиваемость покрытий у образцов A4 и A5. Вес образцов A4 и A5 после смачивания увеличился на 13.5 и 8.5 mg по сравнению с весом образцов A1 (5.3 mg) и A0 (1.1 mg) соответственно.

Высокая смачиваемость покрытий образцов A4 и A5 связана с пористостью поверхности покрытий.

Электронно-микроскопические измерения показывают, что морфология поверхности покрытий зависит от состава электролита. Поверхность покрытия образца A1, полученного в электролите EI, содержит трещины (рис. 2, a). Поверхность образцов A4 и A5, полученных в электролитах EII и EIII соответственно, является пористой, содержит мелкие поры размером 200 nm. На рис. 2, b показано электронно-

μm 2 μm

Рис. 2. Электронно-микроскопические изображения поверхности образцов A1 (*a*) и A5 (*b*).

микроскопическое изображение пор на поверхности образца A5. Аналогичные поры наблюдаются и на поверхности образца A4.

Образцы A4 и A5 показали высокую антикоронную устойчивость из-за гидрофильности покрытий, обусловленной их пористостью. Отсюда следует вывод, что антикоронная устойчивость образцов достигается за счет гидрофильности покрытий, приводящей к росту смачиваемости поверхности водой, при котором происходит устранение или уменьшение локальных очагов короны в виде капель воды на образцах.

Данные покрытия обладают высокой прочностью. Как показывают результаты высоковольтных испытаний при подъеме и снижении напряжения CD (см. таблицу), гистерезисные явления отсутствуют. Мощность потерь в короне на одинаковых ступенях напряжения в процессе его подъема и снижения изменяется незначительно. Это свидетельствует о том, что покрытие провода не деградирует под воздействием электрического поля и коронных разрядов.

Кроме того, результаты длительной выдержки образцов после испытаний на открытом воздухе в дождь, снег, сильные морозы показали устойчивость покрытий к внешним воздействиям погоды.

Таким образом, результаты высоковольтных испытаний в условиях имитации дождя показали высокую антикоронную устойчивость образцов алюминиевого провода марки AS300/39 с покрытиями на основе высокотемпературного оксида алюминия α-Al₂O₃, модифицированного оксидом графена и углеродными нанотрубками. Такая устойчивость достигается за счет гидрофильности полученных покрытий, приводящей к росту смачиваемости поверхности водой, при котором происходит устранение или уменьшение локальных очагов короны.

Работа финансировалась АО "КЕGOC" (договор № 192) и частично ЧУ "Nazarbayev University Research and Innovation System" (договоры № 111, 268 и 282).

Список литературы

- [1] *Thomson W., Larmor J.* // Mathematical and physical papers. Cambridge: University Press., 1911. V. 6. P. 211–215.
- [2] Stability vs. Power Loss Cost Considerations; http://www.ofilsystems.com/articles/cost%20considerations.html

- [3] Шаров Ю.В., Гаджиев М.Г. // Электро. 2010. № 3. С. 19–23.
- [4] Погребняк А.Д., Каверина А.Ш., Кылышканов М.К. // Физикохимия поверхности и защита материалов. 2014. Т. 50. № 1. Р. 72–88.
- [5] Высоковольтный испытательный комплекс СИБНИИЭ (информационный материал). Новосибирск, 2001. 10 с.