03

Запись и визуализация волоконных решеток показателя преломления с наклонными штрихами

© К.А. Коннов, Е.А. Фролов, А.И. Грибаев, В.В. Захаров, А.А. Михнева, В.А. Новикова, С.В. Варжель

Университет ИТМО, 197101 Санкт-Петербург, Россия e-mail: fralik95@list.ru

Поступила в редакцию 31.12.2017 г. В окончательной редакции 19.03.2018 г.

С использованием интерферометра Тальбота и КrF-эксимерной лазерной системы в одномодовом изотропном оптическом волокне с повышенной фоторефрактивностью записаны наклонные волоконные брэгговские решетки с различными углами наклона. Изучены их спектры. С помощью конфокального лазерного сканирующего люминесцентного микроскопа получены изображения решеток в проходящем свете. Экспериментально проверена расчетная зависимость угла наклона решетки, записываемой в интерферометре Тальбота, от угла между штрихами интерференционной картины, создаваемой в интерферометре, и поперечным сечением оптического волокна.

DOI: 10.21883/OS.2018.07.46266.2-18

Введение

В связи с быстрым развитием технологий изготовления волоконно-оптических устройств решетки Брэгга нашли свое применение в качестве пассивных оптических элементов, получивших распространение в областях оптических телекоммуникаций, волоконных лазеров и сенсорных систем. Такие структуры характеризуются полностью волоконным исполнением, малыми размерами, защищенностью от воздействия электромагнитных полей, долговечностью, стабильностью, низкими вносимыми потерями и гибкой спектральной передаточной характеристикой [1–4].

Первые исследования волоконных дифракционных структур были сосредоточены на формировании эффективных и стабильных во времени стандартных решеток Брэгга, что предъявляло требования к увеличению фоторефрактивности оптических волокон (OB) и устранению несовершенств в технологиях их изготовления. Однако уже в 1990 г. на конференции Оптических Волоконных Коммуникаций (OFC) Г. Мельц и др. впервые представили модель модового взаимодействия на наклонной волоконной брэгтовской решетке (HBБP) [5]. Было показано, что взаимодействие мод на фазовых дифракционных решетках может быть в некоторой степени усилено с помощью введения угла между штрихами решетки и поперечным сечением OB.

В отличие от стандартных волоконных брэгтовских решеток (ВБР) штрихи НВБР имеют определенный угол наклона относительно поперечного сечения ОВ, в связи с чем возникает более сложное модовое взаимодействие. Вследствие наличия угла наклона перекачка света происходит из сердцевины световода в подмножество большого числа мод, которые могут распространяться в оболочке OB.

Одно из преимуществ НВБР состоит в том, что они могут связывать направляемые моды на опреде-

ленных длинах волн с модами, распространяющимися в обоих направлениях. Направление распространения будет зависеть от угла наклона решетки, что подробнее описано далее. Эта особенность позволяет использовать НВБР при изготовлении сглаживающего эрбиевого усилителя [6], оптического анализатора спектра [7], фильтра ввода-вывода [8]. Другая особенность НВБР они чувствительны к показателю преломления внешней среды, что позволяет использовать их при изготовлении рефрактометров [9-11] и измерителей концентрации [12,13]. НВБР, имеющие относительно большой угол наклона, обладают высокой чувствительностью к состоянию поляризации проходящего света. Таким образом, они могут быть использованы в качестве поляриметра [14–16], датчика кручения [17], поляризационнозависимого эквалайзера [18].

Для оптимизации записи НВБР в используемом в работе оптическом волокне требуется точно знать зависимость угла наклона решетки, записываемой в интерферометре Тальбота, от угла между штрихами интерференционной картины, создаваемой в интерферометре, и поперечным сечением оптического волокна. Для достижения поставленной цели были решены следующие задачи: записаны НВБР с различными углами наклона, проведена визуализация образцов НВБР на оптическом микроскопе и проанализированы полученные изображения; проведено сопоставление экспериментальных данных и расчетной зависимости угла наклона решетки от угла между штрихами интерференционной картины и поперечным сечением оптического волокна.

Наклонные волоконные решетки показателя преломления

Как и стандартные ВБР, НВБР обладают периодической модуляцией показателя преломления вдоль оси ОВ,

Рис. 1. Структурная схема НВБР.

однако отличаются от ВБР тем, что имеют определенный угол между штрихами решетки и поперечным сечением световода, что приводит к возникновению более сложного модового взаимодействия, как показано на рис. 1.

Вследствие наличия угла наклона кроме взаимодействия мод сердцевины, распространяющихся в прямом и обратном направлениях, которое наблюдается на стандартных ВБР, в НВБР возникает взаимодействие мод сердцевины и оболочки, которое включает взаимодействие моды сердцевины, распространяющейся в прямом направлении, и моды оболочки, распространяющейся в том же и противоположном направлениях. Соответственно спектр пропускания НВБР имеет множественные резонансные пики, которые отсутствуют в спектре отражения из-за быстрого затухания оболочечных мод. Направление распространения оболочечных мод будет зависеть от угла наклона решетки θ_{int} (рис. 1). Если $\theta_{\rm int} < 45^\circ$, то мода сердцевины будет взаимодействовать с модой оболочки, распространяющейся в противоположном направлении, а если $\theta_{int} > 45^{\circ}$, то в том же направлении.

Для связанных мод коэффициент фазового рассогласования $\Delta\beta$ равен

$$\Delta\beta = \beta_i \pm \beta_d - \frac{2\pi}{\Lambda_g} N \cos\theta_{\rm int}, \qquad (1)$$

где β_i и β_d — постоянные распространения для падающей и дифрагированной моды соответственно, Λ_g — период решетки, θ_{int} — угол наклона решетки, а N — целое число. Стоит отметить, что знак "±" описывает случай, когда мода распространяется в направлении "∓" z (рис. 1).

Когда условие согласования фаз выполняется, $\Delta\beta = 0$, то выражение (1) будет иметь вид

$$\beta_i \pm \beta_d = \frac{2\pi}{\Lambda_g} N \cos \theta_{\rm int}.$$
 (2)

Если и β_i , и β_d имеют одинаковые знаки, то фаза будет согласована для мод, распространяющихся в противопо-

ложных направлениях; если они имеют противоположные знаки, то взаимодействуют моды, распространяющиеся в одном и том же направлении. В большинстве случаев доминирует дифракция первого порядка, поэтому N предполагается равным единице [19,20].

Для количественного описания передаточной характеристики НВБР необходимо получить выражение, которое определяет длину волны резонанса моды оболочки. Резонансная длина волны, зависящая от параметров решетки, в НВБР может быть получена путем решения уравнений модового взаимодействия, однако куда более удобно решить эту задачу, пользуясь аналогией между резонансными условиями для ВБР и НВБР. Для стандартных ВБР резонансная длина волны, удовлетворяющая условию Брэгга, может быть описана как

$$\lambda_{\text{Bragg}} = (n_{\text{core},i}^{\text{eff}} + n_{\text{core},d}^{\text{eff}})\Lambda_g, \qquad (3)$$

где $n_{\text{core},i}^{\text{eff}}$, $n_{\text{core},d}^{\text{eff}}$ — эффективные показатели преломления для падающей и дифрагированной моды сердцевины OB соответственно. Под брэгговским резонансом понимается взаимодействие между модами сердцевины, распространяющимися в прямом и обратном направлениях. В свою очередь, для НВБР из-за появления угла наклона θ_{int} период решетки вдоль оси OB может быть пересчитан как

$$\Lambda = \frac{\Lambda_g}{\cos \theta_{\rm int}}.\tag{4}$$

С учетом угла наклона θ_{int} условие брэгговского резонанса для НВБР принимает вид

$$\lambda_{\text{Bragg}} = (n_{\text{core},i}^{\text{eff}} + n_{\text{core},d}^{\text{eff}}) \frac{\Lambda_g}{\cos \theta_{\text{int}}}.$$
 (5)

В связи с тем, что НВБР имеет определенный угол наклона к оси ОВ, часть света, распространяющегося по сердцевине, при взаимодействии с решеткой будет перетекать в моды оболочки, распространяющиеся в прямом и противоположном направлениях. Тогда уравнение для резонансной длины волны для мод оболочки примет вид

$$\lambda_{\mathrm{cl},m} = (n_{\mathrm{core}}^{\mathrm{eff}} \pm n_{\mathrm{cl},m}^{\mathrm{eff}}) \frac{\Lambda_g}{\cos \theta_{\mathrm{int}}},\tag{6}$$

где $n_{cl,m}^{eff}$ — эффективный показатель преломления *m*-й моды оболочки.

В уравнении (6) знаки "+" и "–" описывают ситуации, когда мода распространяется в направлениях -z и +z(рис. 1) соответственно для случаев перекачки моды сердцевины в моду оболочки, распространяющуюся в обратном направлении и в прямом [20].

Схема записи наклонных волоконных решеток

Для данной работы был использован интерферометрический метод записи, который описан в работе [21]. Такой способ предоставляет возможность изменения

Рис. 2. Схема интерферометра Тальбота.

Рис. 3. Экспериментальная схема для наблюдения спектра пропускания.

периода интерференционной картины в широком диапазоне (путем поворота зеркал на угол ϕ (рис. 2)), что позволяет записывать ВБР с различным периодом, при этом используется только одна фазовая маска для амплитудного разделения лазерного пучка. Также данный способ можно использовать для записи решеток показателя преломления в процессе вытяжки ОВ в связи с отсутствием непосредственного контакта фазовой маски и световода, который имеет место в случае записи методом фазовой маски. Функциональная схема интерферометра Тальбота, оптимизированная для записи НВБР, представлена на рис. 2, где α — угол дифракции 1-го порядка.

Схема была доработана путем установки поворотного держателя ОВ. Изменяя угол поворота ОВ θ_{ext} (внешний угол наклона) относительно интерференционной картины, можно получать НВБР с различными углами наклона θ_{int} .

Экспериментальные результаты

Для экспериментов использовалось одномодовое изотропное ОВ (диаметр кварцевой оболочки 125 µm) с повышенной фоторефрактивностью производства НИ-ТИОМ ВНЦ "ГОИ им. С.И. Вавилова". Повышение фоторефрактивности волоконного световода производилось путем увеличения концентрации диоксида германия до 12 mol.% на этапе формирования заготовки (в стандартном телекоммуникационном ОВ — 3 mol.%) и последующей водородной обработки. Условия проведения водородной обработки OB те же, что и в работе [22].

После удаления защитной акрилатной оболочки волоконный световод устанавливается в поворотный держатель. Для того чтобы установить положение OB, при котором его ось была бы перпендикулярна штрихам интерференционной картины, необходимо записывать решетки, поворачивая OB с достаточно малым шагом (в настоящей работе данный шаг составлял 0.2°), при этом отслеживая в спектре отражения изменение положения пика, соответствующего длине волны Брэгта. При достижении λ_{Bragg} минимального значения такое положение OB принимается за 0°.

Для записи одной НВБР ОВ облучалось в течение 1 min с частотой 10 Hz, при этом плотность энергии на поверхности волоконного световода составляла

Рис. 4. Зависимости длины волны Брэгга $\lambda_{\text{Bragg}}(a)$ и коэффициента отражения R(b) решетки от внешнего угла наклона $\theta_{\text{ext.}}$

Рис. 5. Спектры пропускания (a) и отражения (b) НВБР с внешним углом наклона 4°.

Рис. 6. Изображения НВБР с внешними углами наклона $4^{\circ}(a)$, $10^{\circ}(b)$ и $20^{\circ}(c)$, полученные на конфокальном сканирующем микроскопе.

220 mJ/cm². Для того чтобы была возможность отслеживать не только изменение пика, соответствующего длине волны Брэгга, но и множество пиков, соответствующих взаимодействию моды сердцевины и оболочечных мод, регистрировался спектр пропускания с помощью схемы, представленной на рис. 3. Спектр наблюдался на оптическом спектроанализаторе Yokogawa AQ6370C с диапазоном измерений 600–1700 nm и разрешающей способностью 20 pm.

В ходе работы были получены образцы НВБР, записанные с различными внешними углами наклона θ_{ext} . С увеличением θ_{ext} значение длины волны Брэгга λ_{Bragg} также увеличивается, но при этом уменьшается дифракционная эффективность брэгговского резонанса решетки, о чем свидетельствуют зависимости, представленные на рис. 4. Данные зависимости построены для используемого в работе изотропного оптического волокна без водородной обработки. Зависимость, представленная на рис. 4, *a*, может быть использована при записи ВБР методом фазовой маски, одним из недостатков которого является фиксированное значение периода интерференционной картины, образующейся за фазовой маской. Таким образом, с помощью введения угла наклона θ_{ext} можно подстраивать длину волны брэгговского резонанса индуцируемой решетки. Чем больше угол, тем меньше связь мод сердцевины, распространяющихся в прямом и обратном направлениях (рис. 4, *b*), поэтому эффективно такую подстройку можно осуществлять только в области малых углов.

На рис. 5 представлены спектры пропускания (a) и отражения (b) НВБР с внешним углом наклона 4°, длина волны Брэгга в этом случае равна $\lambda_{\text{Bragg}} = 1562.74$ nm.

Рис. 7. Расчетная зависимость (сплошная линия) и экспериментальные значения (точки) угла наклона штрихов в НВБР θ_{int} от внешнего угла наклона θ_{ext} .

НВБР индуцирована в изотропном оптическом волокне, подвергнутом водородной обработке.

Визуализация наклонных волоконных решеток показателя преломления

С помощью конфокального лазерного сканирующего микроскопа Zeiss LSM 710 в проходящем свете лазера с длиной волны 405 nm проведена визуализация НВБР с различными углами наклона. На рис. 6 представлены изображения НВБР с внешними углами наклона 4° (*a*), 10° (b) и 20° (c). Изображения волоконных решеток получали методом светлого поля с иммерсионным объективом с апертурой 1.3. НВБР индуцированы в изотропном оптическом волокне, подвергнутом водородной обработке. Путем вращения ОВ относительно своей оси добивались того положения, при котором штрихи НВБР были перпендикулярны оси ОВ, после чего с помощью поворотного держателя ОВ вместе с решеткой поворачивали на 90°, что соответствовало максимальному углу наклона НВБР. Из рис. 6 видно, что внутренний угол наклона решетки θ_{int} отличается от внешнего θ_{ext} (угла между штрихами интерференционной картины и поперечным сечением ОВ). Связано это с тем, что при прохождении УФ излучения через ОВ возникает призматический эффект из-за его цилиндрической формы. Измеренные значения внутренних углов наклона решеток θ_{int} составляли 5.4°, 12.8° и 26.4°, соответствующие внешним углам наклона $\theta_{\text{ext}} = 4^{\circ}$, 10° и 20° .

Полученные экспериментальные значения близки к теоретическим, рассчитанным по формуле (7) [20], о чем свидетельствуют данные, представленные на рис. 7:

$$\theta_{\rm int} = \frac{\pi}{2} - \arctan \frac{1}{n \tan \theta_{\rm ext}},$$
(7)

где *n* — показатель преломления оболочки OB.

Заключение

НВБР представляет собой универсальное устройство для выборочного возбуждения определенных мод оболочки, посредством чего имеется возможность регистрировать изменение состояния окружающей среды, контролируя спектральный отклик решетки, что может быть реализовано в оптических датчиках. Так как реакция на внешнее изменение мод оболочки с различными эффективными показателями преломления и моды сердцевины различны, на основе НВБР можно создать компактный датчик для измерения воздействия сразу нескольких физических величин. Такие структуры предоставляют гибкость в подстройке длины волны брэгговского резонанса при записи НВБР методом фазовой маски.

В ходе настоящей работы был модернизирован интерферометр Тальбота для возможности записи НВБР. Были записаны НВБР с различными внешними углами наклона, а также получены и проанализированы изображения НВБР с внешними углами наклона 4°, 10° и 20°. На основе полученных данных экспериментально проверена расчетная зависимость внутреннего угла наклона решетки от внешнего угла между штрихами интерференционной картины и поперечным сечением OB.

Настоящая работа выполнена в Университете ИТМО при финансовой поддержке Министерства образования и науки Российской Федерации (Уникальный идентификатор проекта: RFMEFI57816X0202, Соглашение № 14.578.21.0202).

Список литературы

- Hill K.O., Fujii Y., Johnson D.C., Kawasaki B.S. // Appl. Phys. Lett. 1978. V. 32. N 10. P. 647–649.
- [2] Hill K.O., Meltz G. // J. Lightwave Technology. 1997. V. 15. N 8. P. 1263–1276.
- [3] *Kashyap R*. Fiber Bragg gratings, 2nd Edn. Academic Press, 2011.
- [4] Othonos A., Kalli K. Fiber Bragg Gratings: fundamentals and applications in telecommunications and sensing // Artech House, 1999.
- [5] Meltz G., Morey W.W., Glenn W.H. // Optical fiber Communication Conference, OFC. 90, San Francisco, CA, 1990.
- [6] Kashyap R., Wyatt R., Campbell J. // Electronics Lett. 1993.
 V. 29. N 2. P. 154–156.
- [7] Wagener J.L., Strasser T.A., Pedrazzani J.R., DeMarco J., DiGiovanni D. // Integrated Optics and Optical Fibre Communications, 11th International Conference on, and 23rd European Conference on Optical Communications (Conf. Publ. No.: 448). IET. 1997. V. 5. P. 65–68.
- [8] Castro J.M., Geraghty D.F., West B.R., Honkanen S. // Appl. Opt. 2004. V. 43. N 33. P. 6166–6173.
- [9] Caucheteur C., Mégret P. // IEEE Photonics Technology Lett. 2005. V. 17. N 12. P. 2703–2705.
- [10] Laffont G., Ferdinand P. // Meas. Sci. Technol. 2001. V. 12. N 7. P. 765–770.
- [11] Chan C.F., Chen C., Jafari A., Laronche A., Thomson D.J., Albert J. // Appl. Opt. 2007. V. 46. N 7. P. 1142–1149.

- [12] Zhou K., Chen X., Zhang L., Bennion I. // Proc. SPIE. 2005.
 V. 5855. P. 158–161.
- [13] Zhou K., Chen X., Zhang L., Bennion I. // Measurement Science and Technology. 2006. V. 17. N 5. P. 1140.
- [14] Peupelmann J., Krause E., Bandemer A., Schaffer C. // Electron. Lett. 2002. V. 38. N 21. P. 1248–1250.
- [15] Bouzid A., Abushagur M.A., El-Sabae A., Azzam R.M.A. // Opt. Commun. 1995. V. 118. N 3–4. P. 329–334.
- [16] Westbrook P.S., Strasser T.A., Erdogan T. // Optical Fiber Communication Conference. Optical Society of America. 2000. Paper PD22.
- [17] Chen X., Zhou K., Zhang L., Bennion I. // IEEE photonics technology letters. 2006. V. 18. N 24. P. 2596–2598.
- [18] Mihailov S.L., Walker R.B., Stocki T.J., Johnson D.C. // Electron. Lett. 2001. V. 37. N 5. P. 284–286.
- [19] Yariv A. // IEEE J. Quantum. Electron. 1973. V. 9. N 9. P. 919–933.
- [20] Chen X. // Current Developments in Optical Fiber Technology. InTech, 2013.
- [21] Gribaev A.I., Pavlishin I.V., Stam A.M., Idrisov R.F., Varzhel S.V., Konnov K.A. // Opt. Quant. Electron. 2016. V. 48. Art. 540. P. 1–7.
- [22] Варжель С.В., Мунько А.С., Коннов К.А., Грибаев А.И., Куликов А.В. // Оптический журнал. 2016. Т. 83. № 10. С. 74-78.